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Triangle generates exact Delaunay triangulations, constrained Delaunay
triangulations, and quality conforming Delaunay triangulations.  The latter
can be generated with no small angles, and are thus suitable for finite
element analysis.  If no command line switches are specified, your .node
input file will be read, and the Delaunay triangulation will be returned in
.node and .ele output files.  The command syntax is:

triangle [-prq__a__AcevngBPNEIOXzo_YS__lQVh] input_file

Underscores indicate that numbers may optionally follow certain switches;
do not leave any space between a switch and its numeric parameter.
input_file must be a file with extension .node, or extension .poly if the
-p switch is used.  If -r is used, you must supply .node and .ele files,
and possibly a .poly file and .area file as well.  The formats of these
files are described below.

Command Line Switches:

    -p  Reads a Planar Straight Line Graph (.poly file), which can specify
        points, segments, holes, and regional attributes and area
        constraints.  Will generate a constrained Delaunay triangulation
        fitting the input; or, if -s, -q, or -a is used, a conforming
        Delaunay triangulation.  If -p is not used, Triangle reads a .node
        file by default.
    -r  Refines a previously generated mesh.  The mesh is read from a .node
        file and an .ele file.  If -p is also used, a .poly file is read
        and used to constrain edges in the mesh.  Further details on
        refinement are given below.
    -q  Quality mesh generation by Jim Ruppert's Delaunay refinement
        algorithm.  Adds points to the mesh to ensure that no angles
        smaller than 20 degrees occur.  An alternative minimum angle may be
        specified after the `q'.  If the minimum angle is 20.7 degrees or
        smaller, the triangulation algorithm is theoretically guaranteed to
        terminate (assuming infinite precision arithmetic - Triangle may
        fail to terminate if you run out of precision).  In practice, the
        algorithm often succeeds for minimum angles up to 33.8 degrees.
        For highly refined meshes, however, it may be necessary to reduce
        the minimum angle to well below 20 to avoid problems associated
        with insufficient floating-point precision.  The specified angle
        may include a decimal point.
    -a  Imposes a maximum triangle area.  If a number follows the `a', no
        triangle will be generated whose area is larger than that number.
        If no number is specified, an .area file (if -r is used) or .poly
        file (if -r is not used) specifies a number of maximum area



        constraints.  An .area file contains a separate area constraint for
        each triangle, and is useful for refining a finite element mesh
        based on a posteriori error estimates.  A .poly file can optionally
        contain an area constraint for each segment-bounded region, thereby
        enforcing triangle densities in a first triangulation.  You can
        impose both a fixed area constraint and a varying area constraint
        by invoking the -a switch twice, once with and once without a
        number following.  Each area specified may include a decimal point.
    -A  Assigns an additional attribute to each triangle that identifies
        what segment-bounded region each triangle belongs to.  Attributes
        are assigned to regions by the .poly file.  If a region is not
        explicitly marked by the .poly file, triangles in that region are
        assigned an attribute of zero.  The -A switch has an effect only
        when the -p switch is used and the -r switch is not.
    -c  Creates segments on the convex hull of the triangulation.  If you
        are triangulating a point set, this switch causes a .poly file to
        be written, containing all edges in the convex hull.  (By default,
        a .poly file is written only if a .poly file is read.)  If you are
        triangulating a PSLG, this switch specifies that the interior of
        the convex hull of the PSLG should be triangulated.  If you do not
        use this switch when triangulating a PSLG, it is assumed that you
        have identified the region to be triangulated by surrounding it
        with segments of the input PSLG.  Beware:  if you are not careful,
        this switch can cause the introduction of an extremely thin angle
        between a PSLG segment and a convex hull segment, which can cause
        overrefinement or failure if Triangle runs out of precision.  If
        you are refining a mesh, the -c switch works differently; it
        generates the set of boundary edges of the mesh, rather than the
        convex hull.
    -e  Outputs (to an .edge file) a list of edges of the triangulation.
    -v  Outputs the Voronoi diagram associated with the triangulation.
        Does not attempt to detect degeneracies.
    -n  Outputs (to a .neigh file) a list of triangles neighboring each
        triangle.
    -g  Outputs the mesh to an Object File Format (.off) file, suitable for
        viewing with the Geometry Center's Geomview package.
    -B  No boundary markers in the output .node, .poly, and .edge output
        files.  See the detailed discussion of boundary markers below.
    -P  No output .poly file.  Saves disk space, but you lose the ability
        to impose segment constraints on later refinements of the mesh.
    -N  No output .node file.
    -E  No output .ele file.
    -I  No iteration numbers.  Suppresses the output of .node and .poly
        files, so your input files won't be overwritten.  (If your input is
        a .poly file only, a .node file will be written.)  Cannot be used
        with the -r switch, because that would overwrite your input .ele
        file.  Shouldn't be used with the -s, -q, or -a switch if you are
        using a .node file for input, because no .node file will be
        written, so there will be no record of any added points.
    -O  No holes.  Ignores the holes in the .poly file.
    -X  No exact arithmetic.  Normally, Triangle uses exact floating-point
        arithmetic for certain tests if it thinks the inexact tests are not
        accurate enough.  Exact arithmetic ensures the robustness of the
        triangulation algorithms, despite floating-point roundoff error.
        Disabling exact arithmetic with the -X switch will cause a small
        improvement in speed and create the possibility (albeit small) that
        Triangle will fail to produce a valid mesh.  Not recommended.



    -z  Numbers all items starting from zero (rather than one).  Note that
        this switch is normally overrided by the value used to number the
        first point of the input .node or .poly file.  However, this switch
        is useful when calling Triangle from another program.
    -o2 Generates second-order subparametric elements with six nodes each.
    -Y  No new points on the boundary.  This switch is useful when the mesh
        boundary must be preserved so that it conforms to some adjacent
        mesh.  Be forewarned that you will probably sacrifice some of the
        quality of the mesh; Triangle will try, but the resulting mesh may
        contain triangles of poor aspect ratio.  Works well if all the
        boundary points are closely spaced.  Specify this switch twice
        (`-YY') to prevent all segment splitting, including internal
        boundaries.
    -S  Specifies the maximum number of Steiner points (points that are not
        in the input, but are added to meet the constraints of minimum
        angle and maximum area).  The default is to allow an unlimited
        number.  If you specify this switch with no number after it,
        the limit is set to zero.  Triangle always adds points at segment
        intersections, even if it needs to use more points than the limit
        you set.  When Triangle inserts segments by splitting (-s), it
        always adds enough points to ensure that all the segments appear in
        the triangulation, again ignoring the limit.  Be forewarned that
        the -S switch may result in a conforming triangulation that is not
        truly Delaunay, because Triangle may be forced to stop adding
        points when the mesh is in a state where a segment is non-Delaunay
        and needs to be split.  If so, Triangle will print a warning.
    -i  Uses an incremental rather than divide-and-conquer algorithm to
        form a Delaunay triangulation.  Try it if the divide-and-conquer
        algorithm fails.
    -F  Uses Steven Fortune's sweepline algorithm to form a Delaunay
        triangulation.  Warning:  does not use exact arithmetic for all
        calculations.  An exact result is not guaranteed.
    -l  Uses only vertical cuts in the divide-and-conquer algorithm.  By
        default, Triangle uses alternating vertical and horizontal cuts,
        which usually improve the speed except with point sets that are
        small or short and wide.  This switch is primarily of theoretical
        interest.
    -s  Specifies that segments should be forced into the triangulation by
        recursively splitting them at their midpoints, rather than by
        generating a constrained Delaunay triangulation.  Segment splitting
        is true to Ruppert's original algorithm, but can create needlessly
        small triangles near external small features.
    -C  Check the consistency of the final mesh.  Uses exact arithmetic for
        checking, even if the -X switch is used.  Useful if you suspect
        Triangle is buggy.
    -Q  Quiet: Suppresses all explanation of what Triangle is doing, unless
        an error occurs.
    -V  Verbose: Gives detailed information about what Triangle is doing.
        Add more `V's for increasing amount of detail.  `-V' gives
        information on algorithmic progress and more detailed statistics.
        `-VV' gives point-by-point details, and will print so much that
        Triangle will run much more slowly.  `-VVV' gives information only
        a debugger could love.
    -h  Help:  Displays these instructions.

Definitions:



  A Delaunay triangulation of a point set is a triangulation whose vertices
  are the point set, having the property that no point in the point set
  falls in the interior of the circumcircle (circle that passes through all
  three vertices) of any triangle in the triangulation.

  A Voronoi diagram of a point set is a subdivision of the plane into
  polygonal regions (some of which may be infinite), where each region is
  the set of points in the plane that are closer to some input point than
  to any other input point.  (The Voronoi diagram is the geometric dual of
  the Delaunay triangulation.)

  A Planar Straight Line Graph (PSLG) is a collection of points and
  segments.  Segments are simply edges, whose endpoints are points in the
  PSLG.  The file format for PSLGs (.poly files) is described below.

  A constrained Delaunay triangulation of a PSLG is similar to a Delaunay
  triangulation, but each PSLG segment is present as a single edge in the
  triangulation.  (A constrained Delaunay triangulation is not truly a
  Delaunay triangulation.)

  A conforming Delaunay triangulation of a PSLG is a true Delaunay
  triangulation in which each PSLG segment may have been subdivided into
  several edges by the insertion of additional points.  These inserted
  points are necessary to allow the segments to exist in the mesh while
  maintaining the Delaunay property.

File Formats:

  All files may contain comments prefixed by the character '#'.  Points,
  triangles, edges, holes, and maximum area constraints must be numbered
  consecutively, starting from either 1 or 0.  Whichever you choose, all
  input files must be consistent; if the nodes are numbered from 1, so must
  be all other objects.  Triangle automatically detects your choice while
  reading the .node (or .poly) file.  (When calling Triangle from another
  program, use the -z switch if you wish to number objects from zero.)
  Examples of these file formats are given below.

  .node files:
    First line:  <# of points> <dimension (must be 2)> <# of attributes>
                                           <# of boundary markers (0 or 1)>
    Remaining lines:  <point #> <x> <y> [attributes] [boundary marker]

    The attributes, which are typically floating-point values of physical
    quantities (such as mass or conductivity) associated with the nodes of
    a finite element mesh, are copied unchanged to the output mesh.  If -s,
    -q, or -a is selected, each new Steiner point added to the mesh will
    have attributes assigned to it by linear interpolation.

    If the fourth entry of the first line is `1', the last column of the
    remainder of the file is assumed to contain boundary markers.  Boundary
    markers are used to identify boundary points and points resting on PSLG
    segments; a complete description appears in a section below.  The .node
    file produced by Triangle will contain boundary markers in the last
    column unless they are suppressed by the -B switch.

  .ele files:
    First line:  <# of triangles> <points per triangle> <# of attributes>



    Remaining lines:  <triangle #> <point> <point> <point> ... [attributes]

    Points are indices into the corresponding .node file.  The first three
    points are the corners, and are listed in counterclockwise order around
    each triangle.  (The remaining points, if any, depend on the type of
    finite element used.)  The attributes are just like those of .node
    files.  Because there is no simple mapping from input to output
    triangles, an attempt is made to interpolate attributes, which may
    result in a good deal of diffusion of attributes among nearby triangles
    as the triangulation is refined.  Diffusion does not occur across
    segments, so attributes used to identify segment-bounded regions remain
    intact.  In output .ele files, all triangles have three points each
    unless the -o2 switch is used, in which case they have six, and the
    fourth, fifth, and sixth points lie on the midpoints of the edges
    opposite the first, second, and third corners.

  .poly files:
    First line:  <# of points> <dimension (must be 2)> <# of attributes>
                                           <# of boundary markers (0 or 1)>
    Following lines:  <point #> <x> <y> [attributes] [boundary marker]
    One line:  <# of segments> <# of boundary markers (0 or 1)>
    Following lines:  <segment #> <endpoint> <endpoint> [boundary marker]
    One line:  <# of holes>
    Following lines:  <hole #> <x> <y>
    Optional line:  <# of regional attributes and/or area constraints>
    Optional following lines:  <constraint #> <x> <y> <attrib> <max area>

    A .poly file represents a PSLG, as well as some additional information.
    The first section lists all the points, and is identical to the format
    of .node files.  <# of points> may be set to zero to indicate that the
    points are listed in a separate .node file; .poly files produced by
    Triangle always have this format.  This has the advantage that a point
    set may easily be triangulated with or without segments.  (The same
    effect can be achieved, albeit using more disk space, by making a copy
    of the .poly file with the extension .node; all sections of the file
    but the first are ignored.)

    The second section lists the segments.  Segments are edges whose
    presence in the triangulation is enforced.  Each segment is specified
    by listing the indices of its two endpoints.  This means that you must
    include its endpoints in the point list.  If -s, -q, and -a are not
    selected, Triangle will produce a constrained Delaunay triangulation,
    in which each segment appears as a single edge in the triangulation.
    If -q or -a is selected, Triangle will produce a conforming Delaunay
    triangulation, in which segments may be subdivided into smaller edges.
    Each segment, like each point, may have a boundary marker.

    The third section lists holes (and concavities, if -c is selected) in
    the triangulation.  Holes are specified by identifying a point inside
    each hole.  After the triangulation is formed, Triangle creates holes
    by eating triangles, spreading out from each hole point until its
    progress is blocked by PSLG segments; you must be careful to enclose
    each hole in segments, or your whole triangulation may be eaten away.
    If the two triangles abutting a segment are eaten, the segment itself
    is also eaten.  Do not place a hole directly on a segment; if you do,
    Triangle will choose one side of the segment arbitrarily.



    The optional fourth section lists regional attributes (to be assigned
    to all triangles in a region) and regional constraints on the maximum
    triangle area.  Triangle will read this section only if the -A switch
    is used or the -a switch is used without a number following it, and the
    -r switch is not used.  Regional attributes and area constraints are
    propagated in the same manner as holes; you specify a point for each
    attribute and/or constraint, and the attribute and/or constraint will
    affect the whole region (bounded by segments) containing the point.  If
    two values are written on a line after the x and y coordinate, the
    former is assumed to be a regional attribute (but will only be applied
    if the -A switch is selected), and the latter is assumed to be a
    regional area constraint (but will only be applied if the -a switch is
    selected).  You may also specify just one value after the coordinates,
    which can serve as both an attribute and an area constraint, depending
    on the choice of switches.  If you are using the -A and -a switches
    simultaneously and wish to assign an attribute to some region without
    imposing an area constraint, use a negative maximum area.

    When a triangulation is created from a .poly file, you must either
    enclose the entire region to be triangulated in PSLG segments, or
    use the -c switch, which encloses the convex hull of the input point
    set.  If you do not use the -c switch, Triangle will eat all triangles
    on the outer boundary that are not protected by segments; if you are
    not careful, your whole triangulation may be eaten away.  If you do
    use the -c switch, you can still produce concavities by appropriate
    placement of holes just inside the convex hull.

    An ideal PSLG has no intersecting segments, nor any points that lie
    upon segments (except, of course, the endpoints of each segment.)  You
    aren't required to make your .poly files ideal, but you should be aware
    of what can go wrong.  Segment intersections are relatively safe -
    Triangle will calculate the intersection points for you and add them to
    the triangulation - as long as your machine's floating-point precision
    doesn't become a problem.  You are tempting the fates if you have three
    segments that cross at the same location, and expect Triangle to figure
    out where the intersection point is.  Thanks to floating-point roundoff
    error, Triangle will probably decide that the three segments intersect
    at three different points, and you will find a minuscule triangle in
    your output - unless Triangle tries to refine the tiny triangle, uses
    up the last bit of machine precision, and fails to terminate at all.
    You're better off putting the intersection point in the input files,
    and manually breaking up each segment into two.  Similarly, if you
    place a point at the middle of a segment, and hope that Triangle will
    break up the segment at that point, you might get lucky.  On the other
    hand, Triangle might decide that the point doesn't lie precisely on the
    line, and you'll have a needle-sharp triangle in your output - or a lot
    of tiny triangles if you're generating a quality mesh.

    When Triangle reads a .poly file, it also writes a .poly file, which
    includes all edges that are part of input segments.  If the -c switch
    is used, the output .poly file will also include all of the edges on
    the convex hull.  Hence, the output .poly file is useful for finding
    edges associated with input segments and setting boundary conditions in
    finite element simulations.  More importantly, you will need it if you
    plan to refine the output mesh, and don't want segments to be missing
    in later triangulations.



  .area files:
    First line:  <# of triangles>
    Following lines:  <triangle #> <maximum area>

    An .area file associates with each triangle a maximum area that is used
    for mesh refinement.  As with other file formats, every triangle must
    be represented, and they must be numbered consecutively.  A triangle
    may be left unconstrained by assigning it a negative maximum area.

  .edge files:
    First line:  <# of edges> <# of boundary markers (0 or 1)>
    Following lines:  <edge #> <endpoint> <endpoint> [boundary marker]

    Endpoints are indices into the corresponding .node file.  Triangle can
    produce .edge files (use the -e switch), but cannot read them.  The
    optional column of boundary markers is suppressed by the -B switch.

    In Voronoi diagrams, one also finds a special kind of edge that is an
    infinite ray with only one endpoint.  For these edges, a different
    format is used:

        <edge #> <endpoint> -1 <direction x> <direction y>

    The `direction' is a floating-point vector that indicates the direction
    of the infinite ray.

  .neigh files:
    First line:  <# of triangles> <# of neighbors per triangle (always 3)>
    Following lines:  <triangle #> <neighbor> <neighbor> <neighbor>

    Neighbors are indices into the corresponding .ele file.  An index of -1
    indicates a mesh boundary, and therefore no neighbor.  Triangle can
    produce .neigh files (use the -n switch), but cannot read them.

    The first neighbor of triangle i is opposite the first corner of
    triangle i, and so on.

Boundary Markers:

  Boundary markers are tags used mainly to identify which output points and
  edges are associated with which PSLG segment, and to identify which
  points and edges occur on a boundary of the triangulation.  A common use
  is to determine where boundary conditions should be applied to a finite
  element mesh.  You can prevent boundary markers from being written into
  files produced by Triangle by using the -B switch.

  The boundary marker associated with each segment in an output .poly file
  or edge in an output .edge file is chosen as follows:
    - If an output edge is part or all of a PSLG segment with a nonzero
      boundary marker, then the edge is assigned the same marker.
    - Otherwise, if the edge occurs on a boundary of the triangulation
      (including boundaries of holes), then the edge is assigned the marker
      one (1).
    - Otherwise, the edge is assigned the marker zero (0).
  The boundary marker associated with each point in an output .node file is
  chosen as follows:
    - If a point is assigned a nonzero boundary marker in the input file,



      then it is assigned the same marker in the output .node file.
    - Otherwise, if the point lies on a PSLG segment (including the
      segment's endpoints) with a nonzero boundary marker, then the point
      is assigned the same marker.  If the point lies on several such
      segments, one of the markers is chosen arbitrarily.
    - Otherwise, if the point occurs on a boundary of the triangulation,
      then the point is assigned the marker one (1).
    - Otherwise, the point is assigned the marker zero (0).

  If you want Triangle to determine for you which points and edges are on
  the boundary, assign them the boundary marker zero (or use no markers at
  all) in your input files.  Alternatively, you can mark some of them and
  leave others marked zero, allowing Triangle to label them.

Triangulation Iteration Numbers:

  Because Triangle can read and refine its own triangulations, input
  and output files have iteration numbers.  For instance, Triangle might
  read the files mesh.3.node, mesh.3.ele, and mesh.3.poly, refine the
  triangulation, and output the files mesh.4.node, mesh.4.ele, and
  mesh.4.poly.  Files with no iteration number are treated as if
  their iteration number is zero; hence, Triangle might read the file
  points.node, triangulate it, and produce the files points.1.node and
  points.1.ele.

  Iteration numbers allow you to create a sequence of successively finer
  meshes suitable for multigrid methods.  They also allow you to produce a
  sequence of meshes using error estimate-driven mesh refinement.

  If you're not using refinement or quality meshing, and you don't like
  iteration numbers, use the -I switch to disable them.  This switch will
  also disable output of .node and .poly files to prevent your input files
  from being overwritten.  (If the input is a .poly file that contains its
  own points, a .node file will be written.)

Examples of How to Use Triangle:

  `triangle dots' will read points from dots.node, and write their Delaunay
  triangulation to dots.1.node and dots.1.ele.  (dots.1.node will be
  identical to dots.node.)  `triangle -I dots' writes the triangulation to
  dots.ele instead.  (No additional .node file is needed, so none is
  written.)

  `triangle -pe object.1' will read a PSLG from object.1.poly (and possibly
  object.1.node, if the points are omitted from object.1.poly) and write
  their constrained Delaunay triangulation to object.2.node and
  object.2.ele.  The segments will be copied to object.2.poly, and all
  edges will be written to object.2.edge.

  `triangle -pq31.5a.1 object' will read a PSLG from object.poly (and
  possibly object.node), generate a mesh whose angles are all greater than
  31.5 degrees and whose triangles all have area smaller than 0.1, and
  write the mesh to object.1.node and object.1.ele.  Each segment may have
  been broken up into multiple edges; the resulting constrained edges are
  written to object.1.poly.

  Here is a sample file `box.poly' describing a square with a square hole:



    # A box with eight points in 2D, no attributes, one boundary marker.
    8 2 0 1
    # Outer box has these vertices:
     1   0 0   0
     2   0 3   0
     3   3 0   0
     4   3 3   33     # A special marker for this point.
    # Inner square has these vertices:
     5   1 1   0
     6   1 2   0
     7   2 1   0
     8   2 2   0
    # Five segments with boundary markers.
    5 1
     1   1 2   5      # Left side of outer box.
     2   5 7   0      # Segments 2 through 5 enclose the hole.
     3   7 8   0
     4   8 6   10
     5   6 5   0
    # One hole in the middle of the inner square.
    1
     1   1.5 1.5

  Note that some segments are missing from the outer square, so one must
  use the `-c' switch.  After `triangle -pqc box.poly', here is the output
  file `box.1.node', with twelve points.  The last four points were added
  to meet the angle constraint.  Points 1, 2, and 9 have markers from
  segment 1.  Points 6 and 8 have markers from segment 4.  All the other
  points but 4 have been marked to indicate that they lie on a boundary.

    12  2  0  1
       1    0   0      5
       2    0   3      5
       3    3   0      1
       4    3   3     33
       5    1   1      1
       6    1   2     10
       7    2   1      1
       8    2   2     10
       9    0   1.5    5
      10    1.5   0    1
      11    3   1.5    1
      12    1.5   3    1
    # Generated by triangle -pqc box.poly

  Here is the output file `box.1.ele', with twelve triangles.

    12  3  0
       1     5   6   9
       2    10   3   7
       3     6   8  12
       4     9   1   5
       5     6   2   9
       6     7   3  11
       7    11   4   8
       8     7   5  10



       9    12   2   6
      10     8   7  11
      11     5   1  10
      12     8   4  12
    # Generated by triangle -pqc box.poly

  Here is the output file `box.1.poly'.  Note that segments have been added
  to represent the convex hull, and some segments have been split by newly
  added points.  Note also that <# of points> is set to zero to indicate
  that the points should be read from the .node file.

    0  2  0  1
    12  1
       1     1   9     5
       2     5   7     1
       3     8   7     1
       4     6   8    10
       5     5   6     1
       6     3  10     1
       7     4  11     1
       8     2  12     1
       9     9   2     5
      10    10   1     1
      11    11   3     1
      12    12   4     1
    1
       1   1.5 1.5
    # Generated by triangle -pqc box.poly

Refinement and Area Constraints:

  The -r switch causes a mesh (.node and .ele files) to be read and
  refined.  If the -p switch is also used, a .poly file is read and used to
  specify edges that are constrained and cannot be eliminated (although
  they can be divided into smaller edges) by the refinement process.

  When you refine a mesh, you generally want to impose tighter quality
  constraints.  One way to accomplish this is to use -q with a larger
  angle, or -a followed by a smaller area than you used to generate the
  mesh you are refining.  Another way to do this is to create an .area
  file, which specifies a maximum area for each triangle, and use the -a
  switch (without a number following).  Each triangle's area constraint is
  applied to that triangle.  Area constraints tend to diffuse as the mesh
  is refined, so if there are large variations in area constraint between
  adjacent triangles, you may not get the results you want.

  If you are refining a mesh composed of linear (three-node) elements, the
  output mesh will contain all the nodes present in the input mesh, in the
  same order, with new nodes added at the end of the .node file.  However,
  there is no guarantee that each output element is contained in a single
  input element.  Often, output elements will overlap two input elements,
  and input edges are not present in the output mesh.  Hence, a sequence of
  refined meshes will form a hierarchy of nodes, but not a hierarchy of
  elements.  If you a refining a mesh of higher-order elements, the
  hierarchical property applies only to the nodes at the corners of an
  element; other nodes may not be present in the refined mesh.



  It is important to understand that maximum area constraints in .poly
  files are handled differently from those in .area files.  A maximum area
  in a .poly file applies to the whole (segment-bounded) region in which a
  point falls, whereas a maximum area in an .area file applies to only one
  triangle.  Area constraints in .poly files are used only when a mesh is
  first generated, whereas area constraints in .area files are used only to
  refine an existing mesh, and are typically based on a posteriori error
  estimates resulting from a finite element simulation on that mesh.

  `triangle -rq25 object.1' will read object.1.node and object.1.ele, then
  refine the triangulation to enforce a 25 degree minimum angle, and then
  write the refined triangulation to object.2.node and object.2.ele.

  `triangle -rpaa6.2 z.3' will read z.3.node, z.3.ele, z.3.poly, and
  z.3.area.  After reconstructing the mesh and its segments, Triangle will
  refine the mesh so that no triangle has area greater than 6.2, and
  furthermore the triangles satisfy the maximum area constraints in
  z.3.area.  The output is written to z.4.node, z.4.ele, and z.4.poly.

  The sequence `triangle -qa1 x', `triangle -rqa.3 x.1', `triangle -rqa.1
  x.2' creates a sequence of successively finer meshes x.1, x.2, and x.3,
  suitable for multigrid.

Convex Hulls and Mesh Boundaries:

  If the input is a point set (rather than a PSLG), Triangle produces its
  convex hull as a by-product in the output .poly file if you use the -c
  switch.  There are faster algorithms for finding a two-dimensional convex
  hull than triangulation, of course, but this one comes for free.  If the
  input is an unconstrained mesh (you are using the -r switch but not the
  -p switch), Triangle produces a list of its boundary edges (including
  hole boundaries) as a by-product if you use the -c switch.

Voronoi Diagrams:

  The -v switch produces a Voronoi diagram, in files suffixed .v.node and
  .v.edge.  For example, `triangle -v points' will read points.node,
  produce its Delaunay triangulation in points.1.node and points.1.ele,
  and produce its Voronoi diagram in points.1.v.node and points.1.v.edge.
  The .v.node file contains a list of all Voronoi vertices, and the .v.edge
  file contains a list of all Voronoi edges, some of which may be infinite
  rays.  (The choice of filenames makes it easy to run the set of Voronoi
  vertices through Triangle, if so desired.)

  This implementation does not use exact arithmetic to compute the Voronoi
  vertices, and does not check whether neighboring vertices are identical.
  Be forewarned that if the Delaunay triangulation is degenerate or
  near-degenerate, the Voronoi diagram may have duplicate points, crossing
  edges, or infinite rays whose direction vector is zero.  Also, if you
  generate a constrained (as opposed to conforming) Delaunay triangulation,
  or if the triangulation has holes, the corresponding Voronoi diagram is
  likely to have crossing edges and unlikely to make sense.

Mesh Topology:

  You may wish to know which triangles are adjacent to a certain Delaunay
  edge in an .edge file, which Voronoi regions are adjacent to a certain



  Voronoi edge in a .v.edge file, or which Voronoi regions are adjacent to
  each other.  All of this information can be found by cross-referencing
  output files with the recollection that the Delaunay triangulation and
  the Voronoi diagrams are planar duals.

  Specifically, edge i of an .edge file is the dual of Voronoi edge i of
  the corresponding .v.edge file, and is rotated 90 degrees counterclock-
  wise from the Voronoi edge.  Triangle j of an .ele file is the dual of
  vertex j of the corresponding .v.node file; and Voronoi region k is the
  dual of point k of the corresponding .node file.

  Hence, to find the triangles adjacent to a Delaunay edge, look at the
  vertices of the corresponding Voronoi edge; their dual triangles are on
  the left and right of the Delaunay edge, respectively.  To find the
  Voronoi regions adjacent to a Voronoi edge, look at the endpoints of the
  corresponding Delaunay edge; their dual regions are on the right and left
  of the Voronoi edge, respectively.  To find which Voronoi regions are
  adjacent to each other, just read the list of Delaunay edges.

Statistics:

  After generating a mesh, Triangle prints a count of the number of points,
  triangles, edges, boundary edges, and segments in the output mesh.  If
  you've forgotten the statistics for an existing mesh, the -rNEP switches
  (or -rpNEP if you've got a .poly file for the existing mesh) will
  regenerate these statistics without writing any output.

  The -V switch produces extended statistics, including a rough estimate
  of memory use and a histogram of triangle aspect ratios and angles in the
  mesh.

Exact Arithmetic:

  Triangle uses adaptive exact arithmetic to perform what computational
  geometers call the `orientation' and `incircle' tests.  If the floating-
  point arithmetic of your machine conforms to the IEEE 754 standard (as
  most workstations do), and does not use extended precision internal
  registers, then your output is guaranteed to be an absolutely true
  Delaunay or conforming Delaunay triangulation, roundoff error
  notwithstanding.  The word `adaptive' implies that these arithmetic
  routines compute the result only to the precision necessary to guarantee
  correctness, so they are usually nearly as fast as their approximate
  counterparts.  The exact tests can be disabled with the -X switch.  On
  most inputs, this switch will reduce the computation time by about eight
  percent - it's not worth the risk.  There are rare difficult inputs
  (having many collinear and cocircular points), however, for which the
  difference could be a factor of two.  These are precisely the inputs most
  likely to cause errors if you use the -X switch.

  Unfortunately, these routines don't solve every numerical problem.  Exact
  arithmetic is not used to compute the positions of points, because the
  bit complexity of point coordinates would grow without bound.  Hence,
  segment intersections aren't computed exactly; in very unusual cases,
  roundoff error in computing an intersection point might actually lead to
  an inverted triangle and an invalid triangulation.  (This is one reason
  to compute your own intersection points in your .poly files.)  Similarly,
  exact arithmetic is not used to compute the vertices of the Voronoi



  diagram.

  Underflow and overflow can also cause difficulties; the exact arithmetic
  routines do not ameliorate out-of-bounds exponents, which can arise
  during the orientation and incircle tests.  As a rule of thumb, you
  should ensure that your input values are within a range such that their
  third powers can be taken without underflow or overflow.  Underflow can
  silently prevent the tests from being performed exactly, while overflow
  will typically cause a floating exception.

Calling Triangle from Another Program:

  Read the file triangle.h for details.

Troubleshooting:

  Please read this section before mailing me bugs.

  `My output mesh has no triangles!'

    If you're using a PSLG, you've probably failed to specify a proper set
    of bounding segments, or forgotten to use the -c switch.  Or you may
    have placed a hole badly.  To test these possibilities, try again with
    the -c and -O switches.  Alternatively, all your input points may be
    collinear, in which case you can hardly expect to triangulate them.

  `Triangle doesn't terminate, or just crashes.'

    Bad things can happen when triangles get so small that the distance
    between their vertices isn't much larger than the precision of your
    machine's arithmetic.  If you've compiled Triangle for single-precision
    arithmetic, you might do better by recompiling it for double-precision.
    Then again, you might just have to settle for more lenient constraints
    on the minimum angle and the maximum area than you had planned.

    You can minimize precision problems by ensuring that the origin lies
    inside your point set, or even inside the densest part of your
    mesh.  On the other hand, if you're triangulating an object whose x
    coordinates all fall between 6247133 and 6247134, you're not leaving
    much floating-point precision for Triangle to work with.

    Precision problems can occur covertly if the input PSLG contains two
    segments that meet (or intersect) at a very small angle, or if such an
    angle is introduced by the -c switch, which may occur if a point lies
    ever-so-slightly inside the convex hull, and is connected by a PSLG
    segment to a point on the convex hull.  If you don't realize that a
    small angle is being formed, you might never discover why Triangle is
    crashing.  To check for this possibility, use the -S switch (with an
    appropriate limit on the number of Steiner points, found by trial-and-
    error) to stop Triangle early, and view the output .poly file with
    Show Me (described below).  Look carefully for small angles between
    segments; zoom in closely, as such segments might look like a single
    segment from a distance.

    If some of the input values are too large, Triangle may suffer a
    floating exception due to overflow when attempting to perform an
    orientation or incircle test.  (Read the section on exact arithmetic



    above.)  Again, I recommend compiling Triangle for double (rather
    than single) precision arithmetic.

  `The numbering of the output points doesn't match the input points.'

    You may have eaten some of your input points with a hole, or by placing
    them outside the area enclosed by segments.

  `Triangle executes without incident, but when I look at the resulting
  mesh, it has overlapping triangles or other geometric inconsistencies.'

    If you select the -X switch, Triangle's divide-and-conquer Delaunay
    triangulation algorithm occasionally makes mistakes due to floating-
    point roundoff error.  Although these errors are rare, don't use the -X
    switch.  If you still have problems, please report the bug.

  Strange things can happen if you've taken liberties with your PSLG.  Do
  you have a point lying in the middle of a segment?  Triangle sometimes
  copes poorly with that sort of thing.  Do you want to lay out a collinear
  row of evenly spaced, segment-connected points?  Have you simply defined
  one long segment connecting the leftmost point to the rightmost point,
  and a bunch of points lying along it?  This method occasionally works,
  especially with horizontal and vertical lines, but often it doesn't, and
  you'll have to connect each adjacent pair of points with a separate
  segment.  If you don't like it, tough.

  Furthermore, if you have segments that intersect other than at their
  endpoints, try not to let the intersections fall extremely close to PSLG
  points or each other.

  If you have problems refining a triangulation not produced by Triangle:
  Are you sure the triangulation is geometrically valid?  Is it formatted
  correctly for Triangle?  Are the triangles all listed so the first three
  points are their corners in counterclockwise order?

Show Me:

  Triangle comes with a separate program named `Show Me', whose primary
  purpose is to draw meshes on your screen or in PostScript.  Its secondary
  purpose is to check the validity of your input files, and do so more
  thoroughly than Triangle does.  Show Me requires that you have the X
  Windows system.  If you didn't receive Show Me with Triangle, complain to
  whomever you obtained Triangle from, then send me mail.

Triangle on the Web:

  To see an illustrated, updated version of these instructions, check out

    http://www.cs.cmu.edu/~quake/triangle.html

A Brief Plea:

  If you use Triangle, and especially if you use it to accomplish real
  work, I would like very much to hear from you.  A short letter or email
  (to jrs@cs.cmu.edu) describing how you use Triangle will mean a lot to
  me.  The more people I know are using this program, the more easily I can
  justify spending time on improvements and on the three-dimensional



  successor to Triangle, which in turn will benefit you.  Also, I can put
  you on a list to receive email whenever a new version of Triangle is
  available.

  If you use a mesh generated by Triangle in a publication, please include
  an acknowledgment as well.

Research credit:

  Of course, I can take credit for only a fraction of the ideas that made
  this mesh generator possible.  Triangle owes its existence to the efforts
  of many fine computational geometers and other researchers, including
  Marshall Bern, L. Paul Chew, Boris Delaunay, Rex A. Dwyer, David
  Eppstein, Steven Fortune, Leonidas J. Guibas, Donald E. Knuth, C. L.
  Lawson, Der-Tsai Lee, Ernst P. Mucke, Douglas M. Priest, Jim Ruppert,
  Isaac Saias, Bruce J. Schachter, Micha Sharir, Jorge Stolfi, Christopher
  J. Van Wyk, David F. Watson, and Binhai Zhu.  See the comments at the
  beginning of the source code for references.


