Lightning Detectors

Egor! Come quick! A storm approaches!

Here is a VLF receiver tuned to 300 kHz designed to detect the crackle of approaching lightning. A bright lamp flashes in synchrony with the lightning bolts indicating the proximity and intensity of the storm. Figure 1 shows the simple receiver which consists of a tuned amplifier driving a modified flasher circuit. The flasher is biased to not flash until a burst of RF energy, amplified by the first 2N4401, is applied to the base of the 2N4403. The receiver standby current is about 350 microamps which is nothing at all to a couple of D cells, hardly denting the shelf life. Of course, the stormier it gets, the shorter the battery life.

schematic

For best effect, mount the lamp in an old-fashioned holder with an extra-large colored glass lens. Or construct your own fixture with a plate of textured colored glass behind a panel painted with black-crackle paint. Watch a few old science fiction movies for other ideas.

A totally different approach is to mount the circuit in an empty glass jar with the antenna and bulb protruding through the top. (A malted-milk jar has a nice, red plastic lid which is easy to work and looks good.) Use a pin jack for the antenna. The gadget looks quite home-made but fascinating.

Boat owners may wish to replace the lamp with a 3-volt beeper to provide an early warning of approaching bad weather. Choose one of those unbreakable clear plastic jars like the large jars of coffee creamer. A little silicone rubber will seal the antenna hole in the lid of the jar. Use a longer antenna for increased sensitivity since there are few electrical noise sources on the lake.

Tune-up is simple: adjust the potentiometer until the regular flashing just stops. (Use a multi-turn trimmer.) When properly adjusted, the lamp will occasionally flash when large motors or appliances switch on and off and an approaching storm will give quite a show. Obviously, tune-up is a bit more difficult during stormy weather. Adjust the pot with no antenna if lightning is nearby. Tune an AM radio to the bottom of the dial to monitor the pulses that the lightning detector is receiving.

This lightning detector is not so sensitive that it will flash with every crackle heard on the radio but will only flash when storms are nearby. Increased sensitivity may be achieved by increasing the antenna length. The experienced experimenter may wish to add another gain stage after the first by duplicating the RF amplifier circuitry including capacitor coupling with the addition of a 47 ohm emitter resistor to reduce the gain somewhat. This additional gain can cause stability problems if the layout is poor so novices are advised to use a longer antenna or adjust the sensitivity potentiometer more delicately instead! (When operating properly, the additional gain makes the pot adjustment much less critical.)

Theory of Operation:

Lightning flashes generate a broad spectrum of radio frequencies with especially intense emissions in the VLF band. This receiver is designed to pick up a band near 300kHz which is fairly empty except for lightning static. These radio "crackles" are picked up by the antenna with the help of the 10 millihenry choke. Short antennas (short compared to the wavelength, that is) behave as though a very tiny capacitor is connected in series and this choke resonates with this capacitor allowing current to flow into the receiver. The 330 uH and 680 pF form a tuned circuit at 300 kHz and the 0.01 uF couples this tank into the base of the first transistor amplifier. The amplified radio signal on the collector is coupled into the base of the second transistor which is part of a lamp flasher circuit. The flasher is biased such that it doesn't flash (by careful adjustment of the pot) until a radio burst pulls the base of the 2N4403 down. Positive feedback causes the flasher to quickly turn full on until the 100 uF capacitor discharges giving a good lamp flash. The circuit quickly resets by charging the 100 uF capacitor through the 1N914.

Transistor substitutions are fine. Most modern small-signal transistors will work well in the circuit including 2N3904 (NPN) and 2N3906 (PNP). Avoid high frequency "RF" transistors since unwanted oscillations may result.

Note: A reader, Bob Radmore (N2PWP) has written an article featuring this lightning detector for the April, 2002 issue of QST, ARRL's monthly membership journal.

Inspired by this season's first thunderstorm here is another experimental version of the lightning detector that features lower battery drain and additional functions:

Basic Low-Power Receiver

schematic

The basic receiver is similar to the first version except that the RF amplifier is a bit starved for current which saves power and also provides demodulation for listening to the lightning crackles. The flasher portion uses much less current but only provides a low current positive pulse which needs further conditioning for most purposes. When idle this new circuit draws only about 100 uA so applications using smaller batteries are practical. One or more of the following options are connected to the receiver to complete the detector:

LED Driver

schematic

This LED driver consumes much less current than the previous design but the light output is less.

Audio Amplifier

schematic

The audio amplifier connects to the collector of Q1 and allows the user to listen to the received signal. The volume is not great but an optional volume control may be added by replacing Q1's 10k collector resistor with a 10k potentiometer with the wiper connecting to the 10k on the input of the amplifier. A power switch is included since this amplifier will draw several milliamps. Adjust the resistor from the cathode to reference for 5 to 20 mA DC power consumption.

Averaging Meter

schematic

The averaging meter shows a fairly steady reading that is proportional to the lightning activity. A DC output is provided for driving a comparator for alarms, automatic controls, etc.:

Alarm Comparator

schematic

The alarm comparator is used to drive a buzzer or other type alarm, a motor, relay, or other heavy electrical load. A separate power supply provides power to the comparator and load. The 10k input resistor connects to the output of the averaging meter circuit  and the 10 megohm provides some hysterisis for quick switching. The 50k pot is adjusted for the desired trip point. Any n-channel VMOS power transistor will work as long as it is rated for the load current. An LM358 op-amp or other ground-sensing op-amp may be substituted for the comparator.

All of the options may be included in one unit.

lightning detector