
ULC� Conversion���������

Rev. D (05/07/95) 1

Conversion Process

Conversion

The Basic Process

At its most simple level, the process of going from an
FPGA or PLD design into a lower cost alternative device
can be broken down into three steps (Figure 1). The first
step is to convert the netlist from the FPGA or PLD form
into the new technology. Step two is to take some action
to verify that this conversion was done correctly, and to
ensure ultimate testability of the final device. Step three
is to actually manufacture the new device. Two of these
steps are fairly similar regardless of vendor, and one
varies significantly. The netlist conversion task typically
is a fairly automated procedure, usually consisting of
some kind of logic synthesis program to convert the
netlist. The back end, building the parts is also similar,
consisting of making a mask, metalizing wafers, and
assembling parts. The verification step, however, tends to
differ.

Design Verification—
Alternative Approaches

There are three approaches to the design verification task
that are commonly in use. The most typical is the
traditional ASIC design flow. Using this method, the
customer is responsible for generating vectors, running
simulations, and signing-off these simulations. This may
involve expending significant effort on tasks with which
the engineer may not be familiar. It also means that the
customer is responsible for ensuring the correctness of the
converted design. The customer assumes any risk in the
event of failures at the system level.

A second approach simplifies the task for both the
designer as well as the silicon vendor: this is to assume
that the conversion was done correctly, and just build the

parts with no prior verification. Production testability is
accomplished by adding internal scan paths. This
approach simplifies the conversion process, but it
significantly increases the risk that the parts will not work
correctly in the system the first time, as the logic synthesis
programs tend to introduce errors in some 25% to 35% of
the cases. While the vendor may commit to fix any errors,
having to re-spin a design will impact the production
schedule significantly.

MHS Verify-Before-Silicon

The third approach is MHS’ Verify-Before-Silicon
technique. In this approach, MHS undertakes the task of
verifying that the conversion has been done correctly.
This is done by comparing a simulation of the ULC
conversion to the actual FPGA or PLD prior to making a
mask and building the ULC, and making sure that they
match.

There are two options for vector generation for design
verification on a ULC design: 1) the customer can supply
the vectors, or, (2) vectors may be generated by MHS. If
MHS generates the vectors there may be a substantial
impact on conversion. MHS will primarily use Automatic
Test Vector Generation software or ATVG. ATVG can
successfully cover a substantial portion of many circuits
but not in all cases. Design features such as gated clocks,
complex state machines, and encryption logic can cause
blockage for the ATVG. When this occurs, MHS may: 1)
accept the level of coverage and add internal scan paths
for acceptable production testing; 2) assign an engineer to
analyze the circuit to generate vectors manually; or 3) not
accept the circuit for conversion without
customer-provided vectors or modifications to improve
testability.

Figure 1. Simplified Conversion Process

FPGA
Design
Data

Build
Parts

Convert
Netlist

Verify
Conversion

ULC� Conversion ���������

Rev. D (05/07/95)2

Figure 2. MHS Verify-Before-Silicon Process

FPGA Design Data

� Design Files

� Timing Specification

� Optional Vectors

Build
Protos

Convert
toULC
Netlist

Verify
Conversion

Generate
Vectors

(If req’d)

Netlist, Vectors, Timing

Compare ULC
Functional Simulation

to FPGA/PLD

Compare ULC
Timing Simulation

to Timing Spec

Match Match

Don’t
Match

Don’t
Match

Modify
Netlist
and/or
Vectors

Design Considerations
When converting from an FPGA or PLD to a ULC, there
are a number of issues of which the designer must be
aware. Many of these relate to differences in the
performance of the technologies. Some of these have
potential impact on the design, others merely affect the
documentation which must be provided.

Timing

When converting an FPGA and also older (slow) PLD and
CPLD devices, the ULC generally will be faster than the
original device. Design shortcomings, which were
masked by the lower performance of the programmable
device, may become problems in the converted ULC.
MHS’ Verify-Before-Silicon methodology will discover
some of these, but not necessarily all of them. The
designer is wise to avoid these situations wherever
possible, since such performance-related problems can
potentially be harmful even if no conversion is ever made.
The majority of devices on the market are not specified
with minimum timing specs. In the future, any given
speed FPGA or PLD is likely to run faster because of
continued improvements in the technologies.

For the timing specification of a PLD or CPLD, the
pin-to-pin timing specification of the original device is
sometimes an adequate timing specification for the ULC.
For an FPGA, this is seldom the case, as the pin-to-pin
timing is much more dependent on the placement and
routing of the design. Thus, to the extent that the design

involves critical timing requirements in this type of
design, it is more important that a timing specification be
provided by the circuit designer.

Programmed Delays

It is possible to program delays into an FPGA or PLD by
specific routing or stacking of logic. While it is possible
to achieve a working circuit with this technique, there is
no guarantee that it will continue working over time as
noted above. When converting to a ULC, it is extremely
unlikely that the circuit will function as expected. The
best solution is to redesign the circuit prior to submission.
If this is not practical, then it may be possible to achieve
the desired delay within the ULC. This can only be
achieved, however, if the required timing is documented
along with the ULC design checklist.

Deglitching Circuits

If any deglitching circuits have been included, it is
important to document them and what was their objective.
It is completely reasonable to have the ULC duplicate the
operation of the FPGA or PLD in these circuits, if properly
documented. Without documentation two dangers exists:
1) the logic synthesis process may reduce or eliminate the
logic, and, 2) even if the logic is matched the ULC will not
have the same logic or routing delays, and so will not
function as expected. However, if the objective is
documented, any such problems can be corrected.

ULC� Conversion���������

Rev. D (05/07/95) 3

Design Considerations (Cont’d)

Gated Clocks

Clock signals which pass through logic which toggles
them on or off are known as gated clocks. This type of
circuit is may generate glitches on the clock line which
could cause unexpected operation. Small glitches on a
clock line that are too short to have any effect in the
FPGA, may cause toggling in the ULC. While this type of
problem will typically be discovered in verification,
fixing it may delay the conversion. Gated clocks also
substantially reduce the effectiveness of ATVG. If it is not
possible to avoid gated clocks, they should be
documented, and so designed that the inputs are stable and
avoid the possibility of a glitch.

External Timing

This is the most critical performance-related issue when
converting to a ULC. Changes in device timing can
potentially cause violations of setup or hold times to other
devices. They can also lead to race conditions at the
system level. While such issues internal to the device will
generally be discovered and corrected by MHS’
Verify-Before-Silicon methodology, there is no way for
MHS to know about them at the system level. Therefore,
it is very important that any critical timing requirements
that the ULC must meet be specified by the designer.

Redundant or Fault-Tolerant Circuits

If any redundant or fault-tolerant circuits have been
included, it is important to document them. It is very
likely that the logic synthesis process will recognize and
remove them unless optimization is disabled around
them.

Combinational Latches

If any latches have been built using equations in PLD
architecture devices, it is important to document them.
Such latches are typically built because the designer
needed more latches than were available in the original
PLD, but did not want to use a larger part with more
resources. These will be manually replaced during the

conversion with a normal latch which has more robust
operation and greater repeatability for testing.

Internal Tri-State Busses

Internal tri-state busses should be designed such that they
are not allowed to float, i.e., they should have pull-ups or
pull-downs. If they have not been designed this way,
please document them and indicate whether there are any
circumstances under which they would be floating in
actual operation. MHS will add pull-ups (or pull-downs if
preferred) to the ULC.

Power-On Reset

It is generally good practice to avoid relying on a device’s
internal power-on reset (POR). Typically there will be
alternative approaches to reset, such as a system reset on
the board. If POR is required for correct operation of the
ULC in the board, please indicate this on the design
documentation supplied with the checklist.

Internal Scan Path Testing

To improve the test coverage of circuits with low
testability through functional vectors, MHS will
frequently add internal scan paths. With this technique,
normal flip-flops are replaced with special scan flip-flops
which have a transparent scan test mode that allows data
to be loaded directly into these (typically inaccessible)
nodes. A “scan chain” is built incorporating the scan path
flip-flops and latches. This then permits data to be serially
loaded and read from them in the scan test mode. A
compact production test program can thus be created to
test a very high percentage of the chip area. This program
can also be written without substantial knowledge of the
chip’s function, making the development much faster.
The scan chain is generally accessed though unused pins,
hidden dual-mode pins, or through the JTAG
boundary-scan Test Access Port. (See Boundary-Scan
Support.)

ULC� Conversion ���������

Rev. D (05/07/95)4

Boundary Scan Support

The Joint Test Action Group (JTAG) has defined a standard
protocol, IEEE STD. 1149.1-1990 (IEEE Standard Test
Access Port and Boundary-Scan Architecture), for
integrated circuits. This makes it possible to test the
interconnection on a circuit board as well as of the device
itself. Many of the newer FPGA and CPLD devices now
include support for this protocol, which is commonly
referred to as JTAG Boundary-Scan Testing (BST) or just
JTAG. JTAG support can be included in a ULC conversion,
but it must be specifically requested. In addition, while the
interface and architecture for JTAG are well defined, there
are options which can be taken during the conversion of a
device which affect compatibility and cost.

The JTAG standard defines a test access port (TAP) that
consists of five pins, one of which is optional. The five
pins are test clock (TCK), test mode select (TMS), test
data in (TDI), test data out (TDO), and the optional test
reset (TRS). Commands and data are serially loaded into
and read from these pins to control operation and testing.
Commands are in the form of an opcode, generally two or
three-bits which allows either four or eight instructions.
Three instructions are mandatory: 1) EXTEST, drives
external I/O through the boundary scan registers, 2)
BYPASS, shifts internal data out to adjacent devices,
bypassing a device’s boundary scan registers, and,
3) SAMPLE/PRELOAD, loads data into or out of the
registers. The actual BST registers are a (set of) register(s)
at each I/O pin for capturing and loading data, as well as
enable and direction control. The actual numbers of
registers varies from FPGA to FPGA and often by pin
type. For a more complete description of the JTAG
implementation of a specific FPGA or CPLD, please read
the appropriate device data sheet from the original
supplier.

There are three options for the level of JTAG support in
a ULC conversion of a device which supports JTAG: no
support, which is the default; MHS standard JTAG; and
full emulation of the original JTAG.

Full OEM JTAG Support

In converting to a ULC, it is possible to maximize
test-program compatibility by fully implementing the
scan register arrangement of the original device. In this
approach, all of the registers are implemented in each
chain just as in the FPGA or CPLD. This allows a test
program to be used for either the ULC or the

programmable device. However, only the three
mandatory instructions would be supported. The
disadvantage of this approach is that it uses significant
silicon resources which frequently perform no function
which can increase the cost of the ULC.

Standard ULC JTAG Support

In an FPGA or CPLD, most of the pins are I/Os which
require multiple registers to support BST. Once the device
is configured, however, many of these pins become
unidirectional, which would only require a single register.
Other pins are not even used in the actual design, or may not
even exist in the selected package, yet would require all of
the registers for full support. It is generally more
cost-effective to reduce the scan-chain to only what is
needed in the specific design. MHS has defined the
following standard for this.

With MHS JTAG only the necessary signal registers are
included in the scan chain:

for inputs only one bit (in)

for outputs only one bit (out)

for 3-state outputs two bits (out and enable)

for bi-directionals three bits (in, out and enable)

In addition, there is only one enable bit in the scan chain
for an entire bus (several bi-directionals and 3-state
outputs all using the same enable signal).

The TAP specific pins (TCK, TMS, TDI and TDO) are not
included in the JTAG chain, whereas they may be in the
FPGA. The clock signals are buffered, taking into account
the value of the JTAG register for these pins. In the FPGA,
the global clock pins may be buffered from the pad not
taking this value into account.

The instruction register can have either two bits (three or
four instructions) or three bits (five or more instructions).
The three mandatory instructions, EXTEST,
SAMPLE/PRELOAD, and BYPASS are supported. No
support can be provided for any instructions which are
specific to the FPGA or CPLD architecture such as
Readback or Configure. The internal scan chain may be
designed for access using one of the user instructions
(INTEST).

An Identification register can be provided which
identifies the part and the supplier (MHS).

ULC� Conversion���������

Rev. D. (22/06/95) 2-27

Device-Specific Conversion Information

Actel FPGA Conversion

FGPA Description

Actel devices come in four families for which ULC
conversions are supported: ACT1 (A1010, A1020), ACT 2
(A1225, A1240 and A1280), ACT3 (A1415-A14100), and
the 1200XL family. These devices have an FPGA
architecture with a channeled gate-array-like structure for
routing. They use an Antifuse technology for programmable
interconnect. The three families differ in size, routability,
and performance, but they can be treated similarly from the
standpoint of conversion to a ULC. Actel devices are not
reprogrammable.

The basic element in an Actel FPGA is called a Logic
Module. ACT 1 logic modules are an 8-input, one- output
circuit made of three 2–1 multiplexers and one 2-input OR
gate. ACT 2 and ACT 3 devices add inputs to the module,
and separate modules into two parts: a simpler C-Module,
which can only implement combinational logic and the
S-Module, which can implement sequential logic as well.
ACT 1 and ACT 2 I/O pins may be inputs, outputs, tri-state
outputs or bi-directional I/Os. ACT 3 devices add registers
to the I/O cells along with additional clock lines.

Input Files

Input files required are the .ADL file and the .PIN file
produced by the Actel design system.

Dedicated Pins

Two pins, MODE and VPP are dedicated for probing and
programming, and not supported by the ULC.

Issues for Conversion

Resetability and timing are the two main issues the FPGA
designer needs to consider in preparing an Actel design
for conversion to ULC.

Resetability

Unlike the majority of other FPGA and PLD devices, the
Actel architecture does not include a built-in master reset
for registers and latches. This is no doubt due to the
fact that the Actel Logic Module is a more generic
structure than the basic elements of many other
architectures, and does not include specific registers.
However, this presents a special problem for the ULC
conversion. The Verify-Before-Silicon methodology

requires placing the actual programmed Actel FGPA on
a tester and testing it. This action requires that the FPGA
design have some method for resetting any registers,
flip-flops and latches. An Actel design which does not
meet this requirement cannot be converted to a ULC.

To avoid this problem, all sequential elements of the
circuit can be designed explicitly as elements with reset
and have their reset lines tied to an I/O which becomes a
user’s master reset. This technique may have the
undesirable effect of using more Actel resources than are
readily available, however. Alternatively, sequential
elements can be designed so that they are all loadable (or
resetable) with an explicit input sequence (clock for an
unknown number of clocks until a desired state is
achieved is not acceptable). However, it may not be
practical to reach all sequential elements with this
technique. A combination of these approaches may also
be possible.

Timing

The FPGA architecture of Actel devices means that the
input to output timing cannot be easily determined
primarily from the data sheet. Rather, it is largely a
function of the layout and routing of the specific design.
(The exception to this is the clock-to-output timing of the
registered I/Os in an ACT 3 device.) It is therefore
important for the FPGA designer to understand the
system’s timing requirements and to document any
critical timing requirements in the ULC design input
package. This should be system-level timing on a
pin-to-pin basis rather than the internal timing of the
Actel. It could include propagation delays for
combinatorial paths, clock to output delays for sequential
paths, as well as set-up and hold times for input and output
pins.

It is important to be aware that asynchronous path timing
in the ULC device is likely to be significantly faster than
the timing of the FPGA. This could potentially lead to
race conditions or set-up and hold- time violations at the
system level. These would not be discovered by the ULC
design verification process. Additional delays can
frequently be added to the ULC to meet system level
minimum timing constraints, but only where the
requirement is documented by the FPGA designer. The
FPGA designer typically does not need to be concerned
about timing violations internal to the ULC, as these will
be discovered by MHS during the conversion.

ULC� Conversion ���������

Rev. D. (22/06/95)2-28

Altera EPLD Conversion

Altera offers both Complex PLD (CPLD) architecture
devices and FPGA architecture devices for which ULC
conversions are supported. Altera FPGA conversion is
discussed in the next section.

EPLD Description

Altera EPLDs (Erasable PLD) come in three families: the
“Classic” EP series, the “MAX” EPM5000 series, and the
“MAX” EPM7000 series. These families implement
logic using a common PLD sum-of-product structure. The
basic element of the EPLDs is a logic block called a
macrocell. Each macrocell contain a programmable AND
array called “product terms,” followed by an OR gate to
complete the sum, an XOR gate for product term
inversion, and a programmable register.

In the Classic family, product terms come directly from
input pins or feedback from other macrocells (in devices
with more than one macrocell). In the MAX families,
macrocells are grouped together in sets of four (MAX
5000) or eight (MAX7000) to form Logic Array Blocks
or LABs. The MAX7000 architecture adds a product term
select matrix to the macrocell, allowing additional
flexibility in the use of the product terms. Inputs to the
LABs come from the PIA or from other shared product
terms within the LAB. The PIA is a programmable matrix
which routes signals from the input and I/O pins, as well
as the feedback terms, from the macrocells to the LABs.
Classic and MAX5000 devices are programmed via
on-board EPROM, and windowed versions can be
re-programmed. MAX7000 devices are programmed via
on-board EEPROM, and are reprogrammable.

Input Files

The .EDO EDIT output from the MAX Plus compiler is

required. All other design files, including schematics,
simulation, and equation files are requested.

Dedicated Pins

There are no dedicated programming pins on the Altera
EPLD devices. Global clock and Output Enable pins are
treated as normal inputs for the purpose of conversion.

Issues for Conversion

There primary issue for consideration in conversion of the
EPLD devices is timing.

Timing

The PLD-based architecture of the Altera EPLD devices
makes the considerations for timing of the converted
device much simpler than in FPGA devices. The data
sheet parameters for timing are a reasonable guideline for
the maximum timing parameters. However, minimums
are generally not given, and a faster part will still meet the
specification. This is of special concern when converting
from the older, slower technologies, where the
application may be predicated on a specific delay. In such
cases, it is recommended that the system be tested before
attempting conversion with a faster programmable device
to ensure compatibility. If specific minimum delays are
required, they should be noted on a separate, customer
supplied specification.

At the opposite end of the spectrum in the EPLDs, the
newer technologies, such as the MAX7000 series, offer
versions with very fast global clock to output timing. If the
application is using a faster version of one of these devices
for TPD, but does not require the global TCO specification,
it should be noted. This will impact the required ULC
technology, and in some cases affect the feasibility of
conversion.

ULC� Conversion���������

Rev. D. (22/06/95) 2-29

Altera FPGA Conversion

FGPA Description

The “FLEX” EPF8000 series has a segmented FPGA
architecture with a channeled gate-array-like structure for
routing. Segments are called Logic Array Blocks (LABs)
which have global interconnect lines running in both the
rows and columns between them. Interconnect
programming is provided by a large matrix of switches
which are configured by the contents of an onboard static
RAM. The SRAM is volatile, which means that a
FLEX8000 series FPGA must be re-configured each time
following power-up. A FLEX8000 series FPGA may be
re-configured in-system at any time. But if the
re-configurability is utilized, then the design typically
cannot be converted into a ULC.

The basic element in a FLEX8000 FPGA is called a Logic
Element or LE. Each LE contains a four-input
combinatorial function block or Look Up Table (LUT), an
AND/OR cascade block, a register, and one output. The
LUT can be configured to any combination of the four
inputs as well as several special arithmetic and counter
modes with three inputs plus carry-in. There are also
preset, clear, and clock inputs, and cascade and carry
outputs. LEs are grouped into sets of eight to form the

LABs. The LABs also contain local interconnect and
control signals. Configuration of the LEs and LABs is also
performed by the contents of the onboard static RAM
which is loaded at startup.

The FLEX8000 series also supports a JTAG
boundary-scan testing mode as a selectable option.

Input Files

The .EDO EDIT output from the MAX Plus compiler is
required. All other design files, including schematics,
simulation, and equation files are requested.

Dedicated Pins

There are seven dedicated pins on a FLEX 8000 FPGA,
plus a number of Dual-Purpose pins which have specific
functions during configuration, then become I/O pins for
user mode. The ULC will support none of these pins
unless specifically requested. Special clock pins are
treated as normal inputs for ULC conversion. Table 1
summarizes the dedicated and special purpose pins of the
FLEX 8000 FPGA.

Table 2: FLEX8000 Dedicated and Dual-Purpose Pins

Pina I/O Description

Dedicated Pins (only supported if specifically requested)

nSP, MSEL1, MSEL0 I Configuration scheme selection pins; ignored.

nSTATUS O Open-drain output; high always, no internal pull-up.

nCONFIG I Low resets device.

CONF_DONE I Input with pull-up. Must be held low for access to dual-purpose configuration pins.

DCLK I Programming clock input. Not supported as output.

Dual-Purpose Pins (only supported if boundary-scan requested)

TDI, TCK, TMS I Boundary-scan pins; Test Data In, Test Clock, Test Mode Select.

TDO O Test Data Out for boundary-scan.

Dual-Purpose Pins (only supported if specifically requested)
These pins require CONF_DONE to be held low to operate in configuration mode.

RDYnBUSY O High when CONF_DONE is low.

HDC O High when CONF_DONE is low.

LDC O Low when CONF_DONE is low.

nRE, nWS, CS, nCS I Low on nCS and nRS and high on nWS and CS puts RDYnBUSY on DATA7.

DATA7 to DATA0 I(/0) Internally pulled-up whenever CONF_DONE is low. DATA7 follows RDYnBUSY output as defined above.

Note
a. Pins not listed are not supported in configuration mode.

ULC� Conversion ���������

Rev. D. (22/06/95)2-30

Altera FPGA Conversion (Cont’d)

Issues for Conversion

For the FLEX8000 FPGA timing, programming
emulation and JTAG support must be considered.

Timing

In the segmented FPGA architecture of the FLEX8000
series, Altera claims that the timing characteristics offer
greater predictability than other FPGA architectures.
While this may be true, the very flexibility of the FPGA
architecture means that the timing will not be
deterministic. That is to say, the input to output timing
cannot be easily determined primarily from the data
sheet; it is rather, largely a function of the layout and
routing of the specific design. (The exception to this is of
course the clock to output timing of the registered I/Os.)
It is therefore important for the FPGA designer to
understand the system timing requirements and to
document any critical timing requirements in the ULC
design input package. This should be system-level timing
on a pin-to-pin basis rather than the internal timing of the
FLEX device. It could include propagation delays for
combinatorial paths, clock-to-output delays for
sequential paths, as well as set-up and hold times for input
and output pins.

It is important to be aware that asynchronous path timing
in the ULC device is likely to be quite different than the
timing of the FPGA. This could potentially lead to race
conditions or set-up and hold time violations at the system
level, which would not be discovered by the ULC design
verification process. Additional delays can frequently be
added to the ULC to meet system level minimum timing
constraints; however, this can only be accomplished
where the requirement is documented by the FPGA
designer. The FPGA designer typically does not need to
be concerned about timing violations internal to the ULC
as these will be discovered by MHS during the
conversion.

Programming Emulation

The are six different modes for programming the
FLEX8000 FPGAs, plus corresponding modes for each to
program multiple FLEX8000 devices together. Two of the
modes are serial, and four are parallel. In three of the
modes, the FPGA controls the programming (Active); the
other three are controlled by an external source (Passive).
The method used by the FPGA designer must be stated in

the ULC design input package, along with the required
handshaking for correct system operation, (if different
from the ULC default). Configuration options selected
with the Device Configuration Option Bits must be
explicitly requested in the documentation supplied in the
ULC design checklist.

The most common mode is programming a single FPGA
with a stand-alone serial PROM (Active-serial). In this
mode, the FPGA automatically starts clocking and
reading from the PROM at power-up or upon release of
nCONFIG. In this mode, the converted ULC will operate
in the default mode, with CONF_DONE being released
right away if required. CONF_DONE does not respond to
nCONFIG and is an output only unless specifically
requested. The configuration PROM is superfluous to the
ULC and may be deleted from the board. Active-Parallel
modes, where the FPGA reads its data in parallel from a
standard PROM operate similarly.

In the passive modes, the FPGA acts as a peripheral to a
microprocessor or the system bus. Some of the user I/Os
on the device come up at power-on as inputs on the system
bus. In this mode, the system feeds data into the FPGA in
parallel or serially until the FPGA receives all its data, at
which time it is configured and responds with
CONF_DONE, then shifts into normal operation. The
ULC will not completely emulate these modes, and it will
not support them in its default mode. If the system
firmware does not recognize that the ULC starts up
programmed, it either must be modified to do so, or the
board must be modified to hold CONF_DONE low until
all data has been sent, to keep the ULC from entering user
mode. RDYnBUSY will be continuously high, and
CONF_DONE will be immediately released, unless some
other level of support is agreed upon.

Other modes involve connecting more than one FPGA
together in parallel or in a parallel bit-slice configuration
on a bus for programming. With some limitations, ULCs
can support these modes also. If all of the FPGAs in the
chain are being replaced, then the ULC in the first position
will provide the appropriate emulation as defined above,
and the others will operate in the default mode. If not all
of the devices in the chain are to be replaced with ULCs,
then the configuration data needs to be modified.
Multi-device passive parallel modes are subject to the
same considerations as single device parallel modes (see
Table 2).

ULC� Conversion���������

Rev. D. (22/06/95) 2-31

Altera FPGA Conversion (Cont’d)

JTAG Support
JTAG support can be provided at three levels: none,
partial, and full, as described in the previous section.

Keeping in mind that there are potential cost implications
of this decision, the appropriate level must be selected.

Table 3: ULC Support of FLEX8000 Configuration Modes

Mode Supporta Comments

Active Serial AS Yes Default Mode. DCLK not generated. PROM(s) may be deleted.

Passive Serial PS Yes Default Mode.

Active Parallel Up APU Yes Default Mode. DCLK and RDCLK not generated. ADD17 to ADD0 and DATA7 to
Active Parallel Down APD Yes

Default Mode. DCLK and RDCLK not generated. ADD17 to ADD0 and DATA7 to
DATA0 immediately in user I/O mode. PROM(s) may be deleted.

Passive Parallel Asynchronous PPA Yesb Supported in default mode if firmware recognises CONF_DONE without trying to
load data. Otherwise, if firmware must load data, CONF_DONE must be held low

Passive Parallel Synchronous PPS Yesb

load data. Otherwise, if firmware must load data, CONF_DONE must be held low
externally while configuration data is being loaded. RDYnBUSY high when
CONF_DONE low.

Multi-Device
Sequential Active Serial MD-SAS Limited

If all devices are ULCs, supported in default mode. Otherwise, first device in series
Multi-Device
Active Serial Bit-Slice MD-ASB Limited

If all devices are ULCs, supported in default mode. Otherwise, first device in series
cannot be ULC, and configuration data must be modified to eliminate data for ULCs.

Multi-Device
Passive Serial Bit-Slice MD-PSB Yes Default Mode.

Multi-Device
Passive Parallel Synchronous MD-PPS Yesb

If devices are ULCs, supported in default mode if firmware recognizes
CONF_DONE without trying to load data. If firmware must load data,
CONF DONE must be held low externally while configuration data is being loaded

Multi-Device
Passive Parallel Asynchronous MD-PPA Yesb

CONF_DONE must be held low externally while configuration data is being loaded.
RDYnBUSY high when CONF_DONE low. In mixed ULC/FLEX configuration,
configuration data must be modified to eliminate data for ULCs.

Multi-Device
Active Parallel Hybrid MD-PAH Limited

If all devices are ULCs, supported in default mode. Otherwise, first device in series
cannot be ULC, and configuration data must be modified to eliminate data for ULCs.

Note
a. Support other than default must be specifically requested.
b. Support subject to potential system modification requirements as noted.

AMD/MACH EPLD Conversion

PLD Description

The AMD MACH families are classic examples of the
Complex PLD architecture. The simplest description of
these devices is several large PAL blocks on a single chip
with a switching matrix for interconnect. These PAL
blocks implement logic using a sum or products
technique. This is formed by a programmable AND array
to create the custom product terms driving a fixed OR
array to complete the sum. The inputs to the AND array
come only from the switching matrix, which is fed by
input and I/O pins as well as feedback from macrocells.
In the MACH devices the OR array is actually
programmably allocable through the Logic Allocator

block to the various output (and buried) macrocells, thus
giving added flexibility. The macrocells may be
programmed to be combinatorial or one of several types
of registers or latches. Inputs to the macrocells may also
come directly from an input or I/O pin. Outputs may go
to a pin (output macrocell only) and/or feedback into the
switching matrix. Programming is accomplished by
EEPROM, thus making MACH devices reprogrammable.

Input Files

Required input files are the PALASM source file (.PDS)
and the JEDEC programming file (.JED).

ULC� Conversion ���������

Rev. D. (22/06/95)2-32

AMD/MACH EPLD Conversion (Cont’d)

Dedicated Pins

There are generally no pins dedicated for programming
on this type of device. There are dedicated clock lines, the
number of which depends on the device.

Issues for Conversion

Conversion of MACH devices is generally very
straightforward if the correct file types are available.

Timing

The PLD architecture allows that all signals will have the
same delay from input to output, unless through a

feedback path, which is easily determined. Thus the
device data sheet is a valid pin to pin timing specification
for the converted part. MACH devices offer versions with
very fast clock to output timing. If the application is using
a faster version of one of these devices for TPD, but does
not require the TCO specification, please so indicate, as
this will impACT the required ULC technology, and in
some cases affect the feasibility of conversion.

Miscellaneous

MACH devices types support the ability to pre-load
registers from the outputs. ULCs will not support this
feature. This feature is typically only used during design
and debug in any event.

AT&T FPGA Conversion

FGPA Description

AT&T devices come in two families for which ULC
conversions are supported: the ATT3000 series and the
ORCA family. ATT3000 series devices are
second-sources for the Xilinx XC3000 series; please refer
to the Xilinx FPGA section for information about these
devices.

The ORCA series has an FPGA architecture with a
channeled gate-array-like structure for routing. The
ORCA 2C series segments the routing by splitting the
device into quadrants with additional routing channels
provided for interquad routing. Further, in the largest of
the 2C devices, quadrants are broken into subquads, with
additional routing resources provided between them.
Programmable interconnect is provided by a large matrix
of switches which are configured by the contents of an
onboard static RAM. The SRAM is volatile, which means
that an ORCA FPGA must be re-configured each time
following power-up. An ORCA FPGA may be
re-configured in-system at any time. But if the
re-configurability is utilized, then the design typically
cannot be converted into a ULC.

The basic element in an ORCA FPGA is called the
Programmable Logic Cell or PLC. Each PLC contains a
combinatorial function block or Look Up Table (LUT),

four registers/latches, and internal interconnect and
routing muxes. There are 14 data inputs, one for carry and
four for control. There are five outputs and one carry
output. The LUT has six inputs and can be subdivided into
two blocks with five inputs or four blocks with four inputs.
The LUT can also be used in a ripple mode or as two
blocks of memory 16 bits x 2 bits. Configuration of the
PLC is performed by the contents of the onboard static
RAM which is loaded at start-up.

The ORCA series also supports a JTAG boundary-scan
mode as a selectable option.

Input Files

The EDIF netlist output from Viewlogic and the .BIT file
output from the NeoCAD FPGA Foundry for ORCA.

Dedicated and Special Purpose Pins

There are seven dedicated pins on an ORCA FPGA plus a
number of special-purpose pins which have specific
functions during configuration, then become User I/O pins
for normal operation. The ULC will support none of these
pins unless specifically requested. Special clock pins are
treated as normal inputs for ULC conversion. Table 4
summarizes the dedicated and special purpose pins of the
ORCA FPGAs

ULC� Conversion���������

Rev. D. (22/06/95) 2-33

AT&T FPGA Conversion (Cont’d)

Table 4: ORCA Dedicated and Special Purpose Pins

Pina I/O Description

Dedicated Pins (only supported if specifically requested)

RESET I Resets device when low.

CCLK I Programming clock input. Not supported as output.

DONE I Input with pull-up. Must be held low for access to special purpose configuration pins.

PRGM I Resets device when low.

RD CFGN I Tri-states all I/O. Only implemented if boundary-scan support requested. Readback function not supported.

RD_DATA/TDO O Test Data Out for boundary-scan (if requested). Readback function not supported.

Special Purpose Pins (only supported if boundary-scan requested)

TDI, TCK, TMS I Boundary-scan pins Test Data In, Test Clock, Test Mode Select. Internal pull-up enabled during configuration.

Special Purpose Pins (only supported if specifically requested)
These pins require DONE to be held low to operate in configuration mode.

RDY/BUSY O High when DONE is low

DIN I For slave serial mode, data on DIN appears on DOUT after TPD.

DOUT O For slave serial mode, data on DIN appears on DOUT after TPD. DOUT not supported for other modes.

M0,M1,M2 I Configuration mode pins. Internal pull-up ignored.

INIT O Open-drain output with pull-up. High when DONE is low.

HDC O High when DONE is low.

LDC O Low when DONE is low.

CS0, CS1, RD, WR I In peripheral modes, low on CSO andRD and high on WR and CS1 puts RDY/BUSY on D7.

D(7:0) I(/O) Internally pull-up when DONE is low. D7 follows RDY/BUSY as defined above.

Note
a. Pins not listed are not supported in configuration mode.

Issues for Conversion

Timing, programming emulation, and RAM are the three
main issues the FPGA designer needs to consider in
preparing an ORCA FPGA design for conversion to ULC.

Timing

The FPGA architecture of the ORCA devices means that the
basic timing for a design is not deterministic. That is to say,
the input to output timing cannot be easily determined
primarily from the data sheet; rather, it is largely a function
of the layout and routing of the specific design. It is therefore
important for the FPGA designer to understand his system
timing requirements and to document any critical timing
requirements in the ULC design input package. This should
be system-level timing on a pin-to-pin basis rather than the
internal timing of the ORCA device. It could include
propagation delays for combinatorial paths, clock-to-output

delays for sequential paths, as well as set-up and hold times
for input and output pins.

Support other than default must be specifically requested.

Note: Support is subject to potential system modification
requirements as noted.

It is important to be aware that asynchronous path timing in
the ULC device is likely to be somewhat to significantly
faster than the timing of the FPGA. This could potentially
lead to race conditions or set-up and hold time violations at
the system level, which would not be discovered by the ULC
design verification process. Additional delays can
frequently be added to the ULC to meet system level
minimum timing constraints; however, this can only be
accomplished where the requirement is documented by the
FPGA designer. The FPGA designer typically does not need
to be concerned about timing violations internal to the ULC
as these will be discovered by MHS during the conversion.

ULC� Conversion ���������

Rev. D. (22/06/95)2-34

AT&T FPGA Conversion (Cont’d)

Programming Emulation

The are a number of different modes for programming the
ORCA FPGAs. The method used by the FPGA designer
must be stated in the ULC design input package, along
with the required handshaking for correct system
operation, if different from the ULC default. It is also
possible to read-back the loaded contents of the FPGA in
some modes; however, the ULC will not support this
feature, as there is no loaded program to read back.

The most common modes involve programming a single
FPGA with a stand-alone serial or parallel PROM. In this
modes, the FPGA automatically starts clocking and
reading from the PROM at power-up or upon release of
RESET. For these modes, the converted ULC will operate
in the default mode, with DONE being available right
away, if required. DONE does not respond to RESET
unless specifically requested. The configuration PROM is
superfluous to the ULC and may be deleted from the
board.

Two other modes have the FPGA acting as a peripheral to
a microprocessor or the system bus. Some of the user I/Os
on the device come up at power-on as inputs on the system
bus. The system feeds data in parallel into the FPGA until
it releases Program, at which time the FPGA is configured
and responds with DONE, then shifts into normal
operation. For emulation of this modes, the ULC will
respond appropriately, if DONE is held low, and the
programming data will actually be ignored. Otherwise
DONE, if required, will be true immediately and the
device will be in normal mode.

Other modes involve connecting more than one ORCA
FPGA together in a daisy-chain for programming. The
first device in the chain is the master, and operates in one
of the previously described modes, then shifts data out to
the remaining devices in the chain, which are slaves. With
some limitations, ULCs can support these modes also. If
all of the FPGAs in the chain are being replaced, then the
ULC in the master position will provide the appropriate
emulation as defined above, and the slaves will operate in
the default mode. If not all of the devices in the chain are
to be replaced with ULCs, the master position cannot be
a ULC. Any ULCs in the chain will pass configuration
data directly on to the subsequent device after tPD,
however the ULC will not recognize or keep its own
configuration data. Therefore if a ULC is to be followed
by an FPGA in a daisy chain, the configuration data will
need to be altered. (See Table 5.)

RAM

ULCs do support ORCA LUT RAM blocks. But as large
amounts of RAM can significantly affect the size of the
ULC die required, it is important to indicate that RAM is
being used, and to provide the total number of bits
required.

JTAG Support

JTAG support can be provided at three levels: none,
partial, and full as described in the previous section.
Keeping in mind that there are potential cost implications
of this decision, the appropriate level must be selected.

Table 5: ULC Support of ORCA Configuration Modes

Mode Supporta Comments

Master Serial Yes Default Mode. CCLK not generated. PROM(s) may be deleted.

Slave Serial Yes Data on DIN passed directly to DOUT after TPD. Device does not absorb its own bits.

Master Parallel Up Yes Default Mode. CCLK not generated. A(17:0) and D(7:0) immediately at non-config I/O modes.
PROM() b d l dMaster Parallel Down Yes

g () () y g
PROM(s) may be deleted.

Asynchronous Peripheral Yesb Supported in default mode if firmware recognizes DONE without trying to load data. Otherwise, if
firmware must load data DONE must be held low externally while configuration data is being loadedSynchronous Peripheral Yesb firmware must load data, DONE must be held low externally while configuration data is being loaded.
RDY/BUSY is high continuously when DONE is low. CCLK not generated and DOUT not supported

Slave Parallel Yesb
RDY/BUSY is high continuously when DONE is low. CCLK not generated and DOUT not supported
for daisy-chain.

RAM_W (Scan) TBD

Daisy Chained Limited
If all devices are ULCs, supported in default mode. Otherwise, master cannot be ULC, and
configuration data must be modified to eliminate data for ULCs.

Note
a. Support other than default must be specifically requested.
b. Support subject to potential system modification requirements as noted.

ULC� Conversion���������

Rev. D. (22/06/95) 2-35

Lattice pLSI EPLD Conversion

PLD Description

The Lattice PLSI families are examples of the Complex
PLD architecture. There are three families, pLSI1000,
pLSI2000, and pLSI3000 with slight architectural
differences: ispLSI devices have the same architecture,
but are programmable in-system. The simplest
description of these devices is many small PLD blocks
called Generic Logic Blocks (GLB) on a single chip with
a switching matrix called the Global Routing Pool (GRP)
for interconnect. Inputs to the GRP come from the I/O
pins and from GLB feedback.

The GLBs implement logic using a sum or products
technique which is a programmable AND array to create
the custom product terms driving Product Term Sharing
Array (Programmable OR array) to complete the sum,
which in turn feeds a group of four configurable registers.
The registers may be programmed to be one of several
types of registers or latches and may be bypassed for a
straight combinatorial path. The GLB’s inputs to the AND
array come from the GRP plus two dedicated inputs which
are shared with other GLBs within a megablock.

A megablock in the pLSI1000 series consists of the
8 GLBs, 16 I/O cells, and a switching matrix called the
Output Routing Pool (ORP) by which the GLB outputs are
feed to the I/Os. In the pLSI2000 series, each megablock
has two ORPs and 32 I/O cells.

The pLSI3000 series groups two GLBs together with a
common AND array, into a “Twin-GLB.” Twin GLBs
have no dedicated inputs. The pLSI3000 megablock
groups four Twin-GLBs together with one ORP and 16
I/O cells. pLSI3000 also has a different global clocking
arrangement and support for JTAG Boundary-scan.

Programming is accomplished by EEPROM, thus making
these devices reprogrammable.

Input Files

Required input files are a Verilog netlist output from the
Lattice design system, or if the design was originally
created using Viewlogic rather than Lattice, a pre-layout
EDIF netlist from Viewlogic is acceptable.

Dedicated Pins

There is one dedicated pin for ispLSI programming, and
several others which have dual functionality. None of
these programming functions are supported by the ULC;
only the normal mode functions of the dual function pins
are supported. In the 3000 series, these dual-purpose pins
perform the boundary-scan functions in normal mode;
these would be supported if boundary-scan support is
requested in the ULC. There are dedicated clock lines, the
number of which depends on the device.

Issues for Conversion

Conversion of pLSI is relatively straightforward,
provided the correct input file types are available.

Timing

The modified PLD architecture allows that all signals will
have the approximately same delay from input to output,
unless through a feedback path, which is easily
determined. The only variability is that the delay is
effected by GLB loading. But this effect is fairly small,
unless there are large differences in loading between
product terms. Thus the device data sheet is a valid
pin-to-pin timing specification for the converted part.

JTAG Support

For the pLSI3000 series, JTAG support can be provided
at three levels: none, partial, and full as described in the
previous section. Keeping in mind that there are potential
cost implications of this decision, the appropriate level
must be selected.

ULC� Conversion ���������

Rev. D. (22/06/95)2-36

PALs and GALs Conversion

PLD Description

PALs and GALs are the most basic form of the
programmable logic device or PLD. These devices
typically implement logic using a sum or products
technique. This will usually mean a programmable AND
array to create the custom product terms driving a fix OR
array to complete the sum. The OR array is optionally
followed by a series of (programmable) registers, which
may have feedback into the array, and which drive
(typically) tri-state outputs or I/Os. Programming is
accomplished by fuses, EPROM or EEPROM.

Input Files

Required input files are: PALASM source file (.PDS) or
OPEN ABLE source file (.ABL) plus the JEDEC
programming file (.JED).

Dedicated Pins

There are generally no pins dedicated for programming
on this type of device.

Issues for Conversion

Conversion of PALs and GALs is generally very
straightforward.

Timing

The PLD architecture allows that all signals will have the
same delay from input to output, unless through a
feedback path, which is easily determined. Thus the
device data sheet is a valid pin-to-pin timing specification
for the converted part. However, if converting from an
older, slower device, it is very important to test the
application with a device which will more closely match
the ULC speed. This will help determine whether the
faster device will not cause system problems.

Miscellaneous

Many PAL and GAL device types support the ability to
pre-load registers from the outputs. ULCs will not support
this feature. This feature is typically used only during
design and debug.

Xilinx FPGA Conversion

FGPA Description

Xilinx devices come in three main families for which
ULC conversions are supported: XC2000, XC3000, and
XC4000. Other, derivative families, such as the
XC3000A and XC3100 need not be given separate
treatment from the standpoint of conversions. These
devices have an FPGA architecture with a channeled
gate-array-like structure for routing. Programmable
interconnect is provided by a large matrix of switches
which are configured by the contents of an onboard static
RAM. The SRAM is volatile, which means that a Xilinx
FPGA must be reconfigured each time following
power-up. A Xilinx FPGA may be reconfigured in-system
at any time, however, if the reconfigurability is utilized,
then the design typically cannot be converted into a ULC.
The three families offer differences in size, routability,
and performance for the FPGA designs; however, they
can be treated similarly from the standpoint of conversion
to a ULC. The XC4000 series offers the additional

capability of providing user accessible RAM blocks,
which can also be readily incorporated in the ULC
conversion.

The basic element in a Xilinx FPGA is called a
Configuration Logic Block or CLB. The CLBs vary in
complexity between the families. Each CLB contains a
combinatorial function block, two flip-flops, and
multiplexers to direct signals within the CLB and to its
two to four outputs. The combinatorial section can be
configured to any combination of the four or five inputs,
including being separated into two distinct blocks of three
or four inputs. Additional inputs are provided for control
which in some cases may be used as additional function
inputs. Configuration of the CLB is performed by the
contents of the onboard static RAM which is loaded at
startup.

Xilinx XC4000 series devices support JTAG
boundary-scan testing as a built-in option.

ULC� Conversion���������

Rev. D. (22/06/95) 2-37

Xilinx FPGA Conversion (Cont’d)

Input Files

Input files required are the (post-layout) .LCA file, the
.MCS (or .BIT) file and a simulatable .XNF file. Designs
with hard macros or user-configured CLBs must be
flattened. This can typically be accomplished by running
the programs XNF2LCA then LCA2XNF from the Xilinx
development system. The header of the .XNF file will tell
which program generated it.

Dedicated and Special Purpose Pins

There are seven dedicated pins on a Xilinx FPGA plus a
number of Special-Purpose pins which have specific

functions during configuration, then become User I/O
pins for normal operation. The ULC will support none of
these pins unless specifically requested. Special clock
pins are treated as normal inputs for ULC conversion.
Table 6 summarizes the dedicated and special purpose
pins of the Xilinx FPGAs.

Issues for Conversion

Timing, programming emulation, RAM, and JTAG
support are the four main issues the FPGA designer needs
to consider in preparing a Xilinx FPGA design for
conversion to ULC.

Table 6: Xilinx Dedicated and Special Purpose Pins

Pina I/O Description

Dedicated Pins (only supported if specifically requested)

CCLK I Programming clock input. Not supported as output.

DONE (XC4000)
D/P (XC2/3000) I Input with pull-up. Must be held low for access to special purpose configuration pins.

RESET (XC2/3000) I Resets device when low.

PROGRAM (XC4000) I Resets device when low.

M0/RTRIG I Configuration pin, Readback Trigger. Ignored, Readback not supported. (XC2/3000)

M1/RDATA I Configuration pin, Readback Data. Ignored, Readback not supported.

PWRDWN I Not Supported

User I/O Pins That Can Have Special-Functions (only supported if boundary-scan requested) [XC4000]

TDI, TCK, TMS I Boundary-scan pins; Test Data In, Test Clock, Test Mode Select. Internal pull-up enabled during configuration.

TDO O Test Data Out for boundary-scan.

User I/O Pins That Can Have Special-Functions (only supported if specifically requested)
These pins require DONE to be held low to operate in configuration mode.

RDY/BUSY O High when DONE is low

DIN I For slave serial mode, data on DIN appears on DOUT after TPD.

DOUT O For slave serial mode, data on DIN appears on DOUT after TPD. DOUT not supported for other modes.

M0,M1 I Configuration mode pins. Ignored. (XC4000)

M2 I Configuration mode pin. Ignored.

INIT O Open-drain output with pull-up. High when DONE is low.

HDC O High when DONE is low.

LDC O Low when DONE is low.

CS0, CS1, RD, WR I In peripheral modes, low on CSO and RD and high on WR and CS1 puts RDY/BUSY on D7.

D(7:0) I(/O) Internally pull-up when DONE is low. D7 follows RDY/BUSY as defined above.

Note
a. Pins not listed are not supported in configuration mode.

ULC� Conversion ���������

Rev. D. (22/06/95)2-38

Xilinx FPGA Conversion (Cont’d)

Timing

The FPGA architecture of Xilinx devices means that the
input to output timing cannot be easily determined
primarily from the data sheet. Rather, it is largely a
function of the layout and routing of the specific design.
(The exception to this is of course the clock to output
timing of the registered I/Os.) It is therefore important for
the FPGA designer to understand the system timing
requirements and to document any critical timing
requirements in the ULC design input package. This
should be system-level timing on a pin-to-pin basis rather
than the internal timing of the Xilinx device. It could
include propagation delays for combinatorial paths, clock
to output delays for sequential paths, as well as set-up and
hold times for input and output pins.

It is important to be aware that asynchronous path timing
in the ULC device is likely to be somewhat to
significantly faster than the timing of the FPGA. This
could potentially lead to race conditions or set-up and
hold time violations at the system level, which would not
be discovered by the ULC design verification process.
Additional delays can frequently be added to the ULC to
meet system level minimum timing constraints; however,
this can only be accomplished where the requirement is
documented by the FPGA designer. The FPGA designer
typically does not need to be concerned about timing

violations internal to the ULC as these will be discovered
by MHS during the conversion.

Programming Emulation

Support other than default must be specifically requested.

Note: Support is subject to potential system modification
requirements as noted.

There are a number of different modes for programming
the Xilinx FPGAs. The method used by the FPGA
designer must be stated in the ULC design input package,
along with the required handshaking for correct system
operation, if different from the ULC default. It is also
possible to read-back the loaded contents of the FPGA in
some modes; however, the ULC will not support this
feature, as there is no loaded program to read back.

The most common modes involve programming a single
FPGA with a stand-alone serial or parallel PROM . In this
modes, the FPGA automatically starts clocking and
reading from the PROM at power-up or upon release of
RESET. For these modes, the converted ULC will operate
in the default mode, with DONE being available right
away, if required. DONE does not respond to RESET
unless specifically requested. The configuration PROM is
superfluous to the ULC and may be deleted from the
board.

Table 7: ULC Support of Xilinx Configuration Modes

Mode Supporta Comments

Master Serial Yes Default Mode. CCLK not generated. PROM(s) may be deleted.

Slave Serial Yes Data on DIN passed directly to DOUT after TPD. Device does not absorb its own bits.

Master Parallel Up/Down
(XC4000) Yes

Default Mode. DCLK and RDCLK not generated. ADD17 to ADD0 and DATA7 to DATA0 in user
mode at start. PROM(s) may be deleted. CCLK not generated and DOUT not supported for
daisy-chain.

Peripheral (XC2/3000)
Asynchronous
Peripheral (XC4000)

Yesb Supported in default mode if firmware recognizes DONE without trying to load data. Otherwise, if
firmware must load data, DONE must be held low externally while configuration data is being loaded.
RDY/BUSY is high continuously when DONE is low. CCLK not generated and DOUT not supported

Synchronous Peripheral
(XC4000) Only Yesb

RDY/BUSY is high continuously when DONE is low. CCLK not generated and DOUT not supported
for daisy-chain.

Daisy-Chained Limited
If all devices are ULCs, supported in default mode. Otherwise, master cannot be ULC, and
configuration data must be modified to eliminate data for ULCs.

Note
a. Support other than default must be specifically requested.
b. Support subject to potential system modification requirements as noted.

ULC� Conversion���������

Rev. D. (22/06/95) 2-39

Xilinx FPGA Conversion (Cont’d)

Two other modes have the FPGA acting as a peripheral to
a microprocessor or the system bus. In these some of the
user I/Os on the device come up at power-on as inputs on
the system bus. The system then feeds data in parallel into
the FPGA until it releases Program, at which time the
FPGA is configured and responds with DONE, then shifts
into normal operation. For emulation of this modes, the
ULC will respond appropriately, if DONE is held low, and
the programming data will actually be ignored. Otherwise
DONE, if required, will be true immediately and the
device will be in normal mode.

Other modes involve connecting more than one Xilinx
FPGA together in a daisy-chain for programming. The
first device in the chain is the master, and operates in one
of the previously described modes, then shifts data out to
the remaining devices in the chain, which are slaves. With
some limitations, ULCs can support these modes also. If
all of the FPGAs in the chain are being replaced, then the
ULC in the master position will provide the appropriate
emulation as defined above, and the slaves will operate in
the default mode. If not all of the devices in the chain are
to be replaced with ULCs, the master position cannot be

a ULC. Any ULCs in the chain will pass configuration
data directly on to the subsequent device after TPD. But
the ULC will not recognize or keep its own configuration
data. Therefore, if a ULC is to be followed by an FPGA
in a daisy chain, the configuration data will need to be
altered. Table 7 summaries these modes.

RAM

ULCs do support XC4000 RAM blocks. As large blocks
of RAM can significantly affect the size of the ULC die
required, it is important to indicate that RAM is being
used, and the total number of bits required. All RAM
blocks are broken down by the Xilinx software into
smaller blocks of 16X1, 16X2 or 32X1, so the
higher-level configuration of RAM blocks is not
significant for the ULC.

JTAG Support

JTAG support can be provided at three levels: none,
partial, and full as described in the previous section.
Keeping in mind that there are potential cost implications
of this decision, the appropriate level must be selected.

Conversion Information for Other Families
MHS is continuously evaluating new architectures and
families for ULC conversions. Please check with your

TEMIC representative for the current status of other
families.

ULC� Conversion���������

Rev. D (30/06/95) 13

Test Vectors

Introduction

The traditional ASIC development process requires the
generation of several different classes of “test vectors”
which exercise a design. Some of these have applicability
in FPGA or PLD designs, and some do not. A general
definition of vectors is a set of input stimuli and
(optionally) the corresponding output results for a given
device. Customer provided vectors of any kind are
optional for most ULC designs.

Timing simulation vectors are often used by designers to
verify the performance of sections of a design (critical
paths). Functional simulation vectors are used to exercise
the functionality of a circuit, without regard to timing
performs to verify that the logic is designed correctly and
does the desired function. Both of these vector classes
would be used in the simulation of a design, and either
could have applicability to FPGA or PLD design, if the
designer is performing a simulation.

More commonly discussed are production test vectors
which are used in the development of a production test
program. These generally have very strict rules relating
to tester operation. They also typically pose requirements
relating to the ”fault coverage” of the design. Fault
coverage is a measure of the likelihoof that flaws in the
final production part will be detected by the test program.
It also often involves issues with little relation to the
priorities of the designer. This class of vectors would
seldom have any applicability to FPGA or PLD design, as
it relates more specifically to the silicon. MHS has
automatic procedures for generating production test
vectors and programs.

The conversion of a PLD or FPGA design into a ULC
requires a functional vector set which ideally exercises all
of the functional blocks of the circuit as they are used by
the application, to verify that the conversion was done

correctly. MHS has automatic test vector generation
(ATVG) tools to assist in the development of these
vectors. In some cases, however, manual intervention is
required to achieve acceptable coverage of the design.
This can substantially increase the time required for
conversion.

As previously noted, customer provided vectors are
optional for most ULC designs. However, there are
certain situations where a customer may wish to provide
vectors. Most notably, customer provided functional
vectors can improve the design lead time significantly in
many cases. They also will reduce the required minimum
order size. This is especially true for larger FPGAs and
CPLDs, where 50% to 75% of the design time is spent
developing and debugging test vectors. Additionally, if
the customer wishes to review any critical timing prior to
release of the design (which is not required), then the
provision of timing simulation vectors for the desired
critical path(s) are required. The ATVG generated vectors
do not isolate the required path(s) sufficiently for review
by the customer.

If a complete functional vector set is not available, but
partial simulations have been run, these may still be
useful, and they could result in a reduction of the actual
conversion time. Of particular value would be a vector set
or sequence for initializing the circuit. Equally valuable
vector sets or sequences for any parts of the circuit which
require a specific sequence of events or combination of
inputs to occur for operation. These might include a state
machine, encoders or decoders, or an encryption circuit.
This information can be sent as a vector set in one of the
forms defined below, or as a sequence in the form of a
truth table, written description or waveform. All inputs
should be included even if they are “X”.

ULC� Conversion ���������

Rev. D (30/06/95)14

Generating Vectors
If vectors are to be submitted with a ULC design, there are
several rules which should be followed in their design.
These issues are independent of the format in which the
vectors are to be provided, which is described in the
section “Vector Formats.”

1. The inputs should be periodic, not based on
asynchronous system events. 100 ns is the preferred
period, although other periods are acceptable. A
50-MHz clock, for example, might require a 20-ns
period or shorter if both edges are used.

2. Bidirectional I/Os should be stable for at least one
full period.

3. Clocks and input data should not be toggled in the
same period.

4. One or two files are preferred, rather than a
collection of smaller files. A file containing vectors
for inputs, I/Os and I/O control pins only is
required; one with all pins is optional.

5. All pins should be specified in binary radix, with
one column per pin. Hex busses are not allowed.

6. The vector set should toggle all input pins and cause
all outputs to toggle. This includes all I/Os being
put in output mode and toggling.

7. The vector set should provide at least 85% fault
coverage.

8. The number of vectors is limited to 15,000. If the
number of vectors required to achieve sufficient
functional coverage is greater that 15,000, please
discuss this issue in advance as there may be cost
implications.

9. An information file (text) should be provided with
the vector files (or included in them). The
following information is desired:

a. which simulator was used to generate the
vectors;

b. which I/O control pins apply to which I/Os and
logic;

c. definition of states used, ie., X = don’t care, U=
pull-up (resistive high);

d. format of the header (if it is not obvious).

Vector Formats
There are a significant number of different simulators and
vector formats in use today for the design of PLDs and
FPGAs. MHS is supporting two common formats which
are easily generated by most of the generic and
proprietary EDA tools in general use: JEDEC and a basic
truth table format. Specific instructions for Viewlogic
users are also included here.

The JEDEC format (Figure 1) can be easily generated for
the small PALs, Altera EP classic, MACH, and Lattice
pLSI devices with the design software available for each.
In this format, the vectors are included in the JEDEC file
used to program your part and follow the fusemap. The
truth table format is supported by most of the simulators
used in the design of FPGAs.

ULC� Conversion���������

Rev. D (30/06/95) 15

Vector Formats (Cont’d)

Figure 1. JEDEC Format Example

Created by arctojed VER. V1.013/20/92
Date 11/19/1993
Time 10:4:14
Design Name P06
.np1 file used created 11/19/1993 10:31
Clock pins(s) NONE
*
V0001 000000000N0H000XHLLN*
V0002 000000000N0H000XHLLN*
V0003 000000000N0L001XHLLN*
V0004 000000000N0H000XHLLN*
V0005 000000001N0H110HLLLN*

. . . .

. . . .
V0019 100000000N0H010HHLLN*
V0020 000000000N0H010LHLLN*
V0021 100000000N0H010LHLLN*
V0022 100000000N0H110LHLLN*
C0000*
0000

The truth table format (Figure 2) should have all the
inputs listed one per column and should have an even time
stamp, that is, it should be created with the simulator
output not in a print-on-change mode. While a vector set

with both inputs and outputs is acceptable, a table with
inputs only is preferred. Bidirectional pins and their
control signals should also be included in the table.

Figure 2. Truth Table Example

PPPPPPPPPPPPPPPPPC
IIIIIIIIIIIIIIIIIN
NNNNNNNNNNNNNNNNNT
12345678911111111R
12345678L TIME
 0 110110110101111ZZ1
 2000 110110110101111ZZ1
 4000 010110110101011110
 6000 001001110101110ZZ1
 8000 110011110110100ZZ1

26000 010010000001010100
28000 100001100011000100
30000 110111001011100ZZ1
Symbols
1 : Forcing High
0 : Forcing Low
Z : Tristate (floating)
* : Indeterminate (X)
L : Resistive Low (pull–down)
H : Resistive High (pull–up)

Bidirectional Pins
Pin17, Pin18 – Enable = CNTR

ULC� Conversion ���������

Rev. D (30/06/95)16

Vector Formats (Cont’d)

In order to insure that vectors generated with Viewlogic
are in fact correct (ie., generated with the appropriate
libraries and other settings), .CMD files are not accepted
as an input format for ULC vectors. You must generate
a truth table format output file from your Viewlogic
.CMD file. This is done by making the following changes

(Figure 3) to your .CMD file, then re-running Viewsim
which will create an acceptable input file for ULC
vectors. Basically you will create a variable (all_pr) that
contains all your pins and use that variable to create a
generic truth table output file.

Figure 3. Viewlogic CMD File

|VIEWLOGIC stimuli file for MHS ULC
|
vector all_st +
| List all your inputs—you probably have this already
|
|
vector all_pr +
| List all your PINS both input and output, this is the | variable that will be
used to create the output file.
| The radix should be binary, no HEX busses please.
|
watch +
| This is a copy of the “all_pr” variable above
|
break all_pr ? do (print � filename.ext)
| This line sends the printout to a file “filename.ext”
| (you choose the name), this is the file that will be
| converted and used.
|
| Your vectors follow:
wfm all_st @0 = ZZZZZZZZZZZ
wfm all_st @0 = 11101110000
wfm all_st @4000 = 11111111000
wfm all_st @8000 = 01111111010
wfm all_st @12000 = 11111111000
.
.
.
wfm all_st @8204000 = 10010110100
wfm all_st @8208000 = 00010110110
wfm all_st @8212000 = 10010110100
|
run
|

ULC� Conversion ���������

Rev. D (22/06/95)24

Design Requirements

A ULC Design Checklist must be submitted with each
design package (each code). A copy of the checklist is in
Section 7. This section defines these requirements in
greater detail.

1. Technical Contact

Frequent communication is not generally necessary
for a ULC conversion. However, in the event that a
question should arise regarding the design, please
include the name and phone number of an
appropriate contact.

2. Technical Input Data

Block diagram, schematic, description and
pin-out

Since MHS is performing the verification of a ULC
conversion, it is generally necessary to develop some
understanding of what is happening inside. The
documentation requested here is the minimum
necessary to meet this requirement:

a) Supply a block diagram that identifies the major
circuit blocks in the design and shows the flow
of the signals from inputs to outputs. A full
schematic is desirable if available, and may
take the place of a block diagram.

b) Include a pin-out description. A schematic
representation of the device with all pins
labeled with signal names as produced by many
design packages is helpful. At a minimum, all
pins should be defined: input, output, I/O, VDD,
GROUND, clock, etc. Any special
requirements on any pins should also be
identified here, such as pull-ups, pull-downs,
CMOS vs. TTL levels, special drive, etc.

c) Provide a functional description of the circuit
and how it performs. Identify and give a short
description of the function of all major blocks
and identify any special features such as a
counter that resets itself after n counts. This
description can typically be handled in a half
page for moderate-sized designs.

Miscellaneous

Include any other information that would be useful
in converting your design. Specify problem areas
encountered during the original FPGA or PLD
design. Frequently, this information is useful for the
conversion and facilitates MHS’ commitment to
giving you the best possible product.

3. Part Masters

Part Masters are needed for MHS’
“verify-before-silicon” process. For non-volatile
technologies, two masters are required. For volatile
technologies, a single blank is necessary. Please
double-check that the masters match the provided
files (both source and programming). Mismatched
parts and files are a frequent source of delays in the
conversion process.

4. Marking Instructions

ULCs are marked with the ULC part number, MHS
custom program number, and have a line available
for your custom program number. The desired part
number must be provided. Alternatively, a detailed
marking specification may be submitted if, for
example, you require your company’s logo.
Non-standard markings may impact the cost.

5. Purchase Order

A purchase order with deliveries contingent on
prototype acceptance, which meets the minimums
specified in our quotation, is required to begin the
conversion.

6. Design Files

The essential design files are listed in Table 1. These
may be transmitted on a DOS floppy, or
electronically via Internet or BBS.

ULC� Conversion���������

Rev. D (22/06/95) 25

7. Initialization Information

Initialization/reset sequence

The initialization/reset sequence should be the first
part of your functional input vector set if you are
providing vectors, and is the input pattern required
to bring the entire design to a known state. This
includes resetting or loading all memory devices or
registers/latches and all counters, resetting all
combinational feedback loops, and initializing all
state machines. If you are not providing vectors for
your design, this description should be very detailed,
identifying the states and sequences on all pins even
if they are “don’t cares.” The most effective format
to provide this is a truth table format (see preceding
section, Test Vectors, for example).

Resetability

The Actel architecture does not have a built-in
master reset or power-on reset function, which is
provided for all other PLD and FPGA architectures.
It is therefore necessary to explicitly design-in reset
capability into an Actel design, either with a specific
reset pin or a specific set of input vectors which will
perform the required initialization as described
above. Any Actel design without this capability
cannot be converted. Even with other FPGA and
PLD types, dependence on the built-in power-on
reset for proper operation of your circuit is not
recommended, this function is typically unreliable.

Power-up programming protocol

The power-up programming protocol applies only to
SRAM based FPGAs such as Xilinx LCAs and the
Altera 8000 series. These are volatile devices and
must be programmed on power-up each time.
Identify the power-up programming scheme used,
and whether the system is monitoring any of the
programming pins. By default, these pins are not
supported. In most cases emulation can be provided
on a case-by-case basis.

8. Clocking Scheme Information

Identify all clock pins and the overall clocking
scheme used in the design. This includes internally
derived clocks and an explanation of how the clocks

interact with each other (multiple clock sequence).
Clocks and clock pins should be identified both in the
description and on the block diagram. Latch enable
description should also be included.

9. Critical Timing Information

The system timing requirements should be identified
along with any special requirements for pin-to-pin
propagation, set-up, or hold times. For PAL
architecture devices, the timing is adequately
described by the PLD device data sheet, but for
FPGAs timing is more a function of the design and
specific layout than of the data sheet parameters.
Any special problems encountered with the speed or
routing of the PLD or FPGA should be noted.

10. Input and Output Levels

Some FPGAs allow use of CMOS levels on inputs or
outputs. Select the appropriate threshold levels for
inputs. Some FPGAs, such as Xilinx and Actel,
define VOH = 3.84 V minimum at rated IOH. Though
not specified, these devices typically have outputs
which will swing “rail-to-rail.” The default
specification for ULC outputs is a standard TTL
compatible specification: VOH = 2.4 V minimum at
rated IOH, and the standard outputs on smaller ULCs
will not swing “rail-to-rail.” These ULC drivers will
not have any trouble driving TTL compatible inputs
but may cause problems driving any linear circuitry
such as resistor networks, caps, LEDs, and
integrators. If you require VOH = 3.84 V minimum
and/or “rail-to-rail” output swing, please indicate;
this will preclude the use of the UD technology and
may require additional quoting.

11. Functional Input Patterns

Functional Input Patterns are optional for most ULC
conversions. If they are not provided, however, there
will be a significant impact on the conversion time,
as they will have to be developed by MHS. See
previous section (Test Vectors) for more information
about vector formats. An adequate vector set must
have at least 85% fault coverage, and all signal pins
must toggle.

ULC� Conversion ���������

Rev. D (22/06/95)26

12. Any Requirements Different from FPGA

The ULC design methodology can frequently be
used to develop parts which are not drop-in
replacements for an FPGA or PLD. These might
include special packaging requirements, an output
drive, or faster timing. While this type of
requirement should be well understood and quoted
specifically prior to preparing a design checklist
package, please include a detailed specification for
such requirements, if any.

13. Environmental

Check required temperature range and any special
processing requirements.

14. JTAG Support

MHS can support device series that employ support
the JTAG standard, such as Xilinx XC4000, Altera
Flex 8000, and the Lattice pLSI3000. Please
indicate whether you require this support.

Table 1: Design Files by Family

PAL, GAL and FPLD Files

� Source File (.PDS, .ABL) � JED fuse File

ACTEL FPGA Files

� .ADL Files � .PIN File

ALTERA “Classic” Design Software Files

� .ADF File � .LEF File

� .JED Fuse File � .SCH Schematic File

ALTERA MAX Plus 2 Files

� All Design Files: .GDF, .{PF, .TDF, .FIT, .RPT

� .EDO EDIF Netlist (if using MAX2 software)

� .TBL Sim File Using Binary Radix with All Pins
(or test patterns in truth table format)

AT&T ORCA FPGA Files

� EDIF Netlist File � .BIT Programming File

LATTICE pLSI EPLD Files

� Verilog Netlist File � JED Fuse File

XILINX FPGA Files

� .XNF Netlist File (XNF created by LCA2SNF)

� .LCA Post Layout File

� .BIT Downloadable File

� .MCS Downloadable File (created from .BIT)

ULC� Conversion���������

Rev. A (05/06/95) 11

Conversion to Standard Cell

The ULC to Standard Cell program is designed to provide
an easy migration path with cost reduction for customers
who potentially have very large volumes. The basic
program involves first doing a normal ULC conversion,
and shipping ULCs for the early production ramp. As the
production volume moves into high gear, a second
conversion is started, moving from the ULC into a
second-stage cost reduction with a standard cell
implementation, and then doing a smooth transition into
the new device.

The decision to make this second transition involves a
somewhat more detailed analysis than what is required
initial ULC conversion. Unlike the initial ULC, there are
significant Non-Recurring-Engineering charges (NREs)
associated with the standard cell, as well as substantial
volume commitments. There is also additional engineer
effort and a longer conversion and ramp-up time.

The amount of additional savings will vary significantly
from application to application. A large, heavily utilized,
core-limited FPGA, with large RAM blocks but few pins,
may benefit substantially by a shrunk core. But a lightly
used FPGA, using all of the available pins, will only
benefit if the pad-pitch can be reduced in the standard cell,
or if better use of the entire periphery can be made. MHS
can give a detailed estimate after the ULC conversion is
complete; prior to that, only a very rough estimate can be
made.

Due to the NREs and significant implementation time, the
volume at which conversion to standard cell begins to
make sense typically occurs if the ULC volume would fall

between $250,000 to $500,000 minimum per year with a
minimum run of at least one year. Thus the unit volume
is heavily dependent on the cost of the ULC. A $15.00
device may only require a few tens of thousands of units
to justify this second conversion, while a $2.00 device
would require hundreds of thousands.

While MHS does all the conversion work, the ULC to
Standard Cell conversion also requires greater customer
involvement than the normal ULC conversion. A more
detailed specification for the device is required, as well as
a customer sign-off of the post-layout simulation. Due to
this requirement, it is generally advisable that the
customer provide the original vectors for simulation of
the ULC, as machine generated vectors are very difficult
to interpret. In addition, while having a working ULC
based on the same technology minimizes the risk of
something not working due to major changes in timing for
example, it does not eliminate this risk. MHS only
provides a normal ASIC commitment on the standard
cell: that it will meet the provided specification and the
approved simulation.

A standard cell device is an all mask-level custom device.
To facilitate production start-up, an entire lot of wafers is
run with the prototypes. This means that production
volumes of can be phased-in and shifted over with MHS
coordinating between the two much more rapidly than the
normal lead-time of the standard cell would suggest. At
later stages, the ULC can still be used to fill in unexpected
peaks in production that don’t have sufficient lead-time to
be filled with the standard cell.

	Conversion Process
	Conversion
	Design Considerations
	Internal Scan Path Testing
	Boundary Scan Support

	Device-Specific Information
	Actel FPGA
	Altera EPLD
	Altera FPGA
	AMD/MACH EPLD
	AT&T FPGA
	Lattice pLSI EPLD
	PALs and GALs
	Xilinx FPGA
	Other Families

	Test Vectors
	Introduction
	Generating Vectors
	Vector Formats

	Design Requirements
	Conversion to Standard Cell

