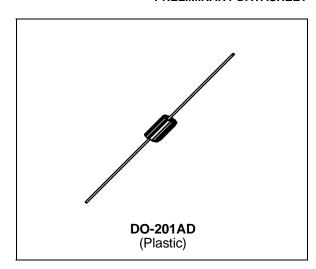


FAST RECOVERY RECTIFIER DIODE

PRELIMINARY DATASHEET


- LOW FORWARD VOLTAGE DROP
- HIGH SURGE CURRENT CAPABILITY

APPLICATIONS

- AC-DC POWER SUPPLIES AND CONVERTERS
- FREE WHEELING DIODES, etc.

Their high efficiency and high reliability combined with small size and low cost make these fast recovery rectifier diode very attractive components for many demanding applications.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter		Value	Unit	
I _{FRM}	Repetive peak forward current	100	Α		
lf (AV)	Average forward current*	$T_a = 90^{\circ}C$ $\delta = 0.5$	3	Α	
I _{FSM}	Surge non repetitive forward current	t _p = 10ms Sinusoidal	100	А	
P _{tot}	Power dissipation *	T _a = 90°C	3.5	W	
T _{stg} Tj	Storage and junction temperature range	- 40 to + 175 - 40 to + 175	°C		
TL	Maximum lead temperature for soldering during 10s at 4mn from case 230				

Symbol	Parameter	PFR					Unit
Syllibol	i arameter	850	851	852	854	856	Oille
V _{RRM}	Repetitive peak revrse voltage	50	100	200	400	600	V
V _{RSM}	Non repetitive peak reverse voltage	75	150	250	450	650	V

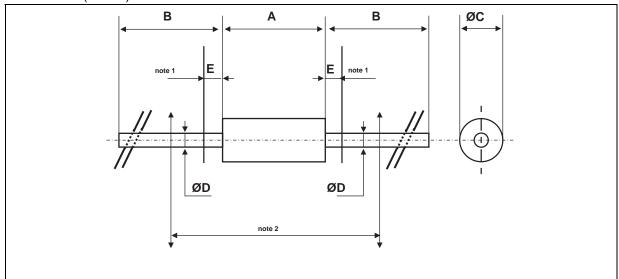
August 1998 - Ed: 2A 1/3

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{th (j - a)}	Junction-ambient*	25	°C/W

^{*} On infinite heatsink with 10mm lead lengh.

STATIC ELECTRICAL CHARACTERISTICS


Synbol	Test Conditions Min. Typ. Ma						
I _R	T _j = 25°C	$V_R = V_{RRM}$			10	μΑ	
	T _j = 100°C				250		
VF	T _j = 25°C	I _F = 3A			1.25	V	

RECOVERY CHARACTERISTICS

Symbol		Min.	Тур.	Max.	Unit		
t _{rr}	T _j = 25℃	IF = 1A	PRF 850→854			150	ns
	$V_R = 30V$	$di_F/dt = -25A/\mu s$	PRF 856			200	
I _{RM}	T _j = 25℃	I _F = 1A	•			2	Α
	V _R = 30V	$diF/dt = -25A/\mu s$					

PACKAGE MECHANICAL DATA

DO-201AD (Plastic)

		DIMEN	SIONS					
REF.	EF. Millimeters		Inches		NOTES			
	Min.	Max.	Min.	Max.				
Α		9.50		0.374	1 - The lead diameter Ø D is not controlled over zone E			
В	25.40		1.000		2 - The minimum axial lengh within which the device may be			
ØC		5.30		0.209	placed with its leads bent at right angles is 0.59"(15 mm)			
ØD		1.30		0.051				
E		1.25		0.049				

■ Marking: type number, white band indicate cathode

■ Cooling method: by convection (method A)

■ Weight: 1g ■ Date code

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any patent or patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written ap-

proval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco -The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

