INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC01 May 1989

HILIPS

QUICK REFERENCE DATA

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage range					
clock (pin 16 to pin 15)	V _{DD} -V _{SS1}	1.1	-	6.0	V
I ² C interface (pin 16 to pin 8)	V _{DD} -V _{SS2}	2.5	_	6.0	V
Crystal oscillator frequency	f _{osc}	-	32.768	_	kHz

PACKAGE OUTLINES

PCF8573P: 16-lead DIL; plastic (SOT38); SOT38-1; 1996 August 23.

PCF8573T: 16-lead mini-pack; plastic (SO16L; SOT162A); SOT162-1; 1996 August 23.

GENERAL DESCRIPTION

Clock/calendar with serial I/O

The PCF8573 is a low threshold, CMOS circuit that functions as a real time clock/calendar with an I²C-bus interface. The IC incorporates an addressable time counter and an addressable alarm register for minutes, hours, days and months. Three special control/status flags, COMP, POWF and NODA, are also available. Information is transferred via a serial two-line bidirectional bus (I²C). Back-up for the clock during supply interruptions is provided by a 1.2 V nickel cadium battery. The time base is generated from a 32.768 kHz crystal-controlled oscillator.

Features

- Serial input/output I²C-bus interface for minutes, hours, days and months
- · Additional pulse outputs for seconds and minutes
- · Alarm register for presetting a time for alarm or remote switching functions
- · Battery back-up for clock function during supply interruption
- Crystal oscillator control (32.768 kHz)

PCF8573

PINNING

1	A0	address input
2	A1	address input
3	COMP	comparator output
4	SDA	serial data line; I ² C-bus
5	SCL	serial clock line; I ² C-bus
6	EXTPF	enable power fail flag input
7	PFIN	power fail flag input
8	V _{SS2}	negative supply 2 (I ² C interface)
9	MIN	one pulse per minute output
10	SEC	one pulse per second output
11	FSET	oscillator tuning output
12	TEST	test input; must be connected to
		V _{SS2} when not in use
13	OSCI	oscillator input
14	OSCO	oscillator input/output
15	V _{SS1}	negative supply 1 (clock)
16	V _{DD}	common positive supply

PCF8573

FUNCTIONAL DESCRIPTION

Oscillator

The PCF8573 has an integrated crystal-controlled oscillator which provides the timebase for the prescaler. The frequency is determined by a single 32.768 kHz crystal connected between OSCI and OSCO. A trimmer is connected between OSCI and V_{DD}.

Prescaler and time counter

The prescaler provides a 128 Hz signal at the FSET output for fine adjustment of the crystal oscillator without loading it. The prescaler also generates a pulse once a second to advance the seconds counter. The carry of the prescaler and the seconds counter are available at the outputs SEC, MIN respectively, and are also readable via the l²C-bus. The mark-to-space ratio of both signals is 1 : 1. The time counter is advanced one count by the falling edge of output signal MIN. A transition from HIGH-to-LOW of output signal SEC triggers MIN to change state. The time counter counts minutes, hours, days and months, and provides a full calendar function which needs to be corrected once every four years. Cycle lengths are shown in Table 1.

UNIT	NUMBER OF BITS	COUNTING CYCLE	CARRY FOR FOLLOWING UNIT	CONTENT OF MONTH COUNTER
minutes	7	00 to 59	59 ightarrow 00	
hours	6	00 to 23	23 ightarrow 00	
days	6	01 to 28	28 ightarrow 01	2 (note 1)
			or $29 \rightarrow 01$	2 (note 1)
		01 to 30	30 ightarrow 01	4, 6, 9, 11
		01 to 31	31 ightarrow 01	1, 3, 5, 7, 8, 10, 12
months	5	01 to 12	$12 \rightarrow 01$	

Table 1	Cvcle	lenath	of the	time	counter
	0,00	iongai.	01 010		00011101

Note to Table 1

1. Day counter may be set to 29 by a write transmission with EXECUTE ADDRESS.

Alarm register

The alarm register is a 24-bit memory. It stores the time-point for the next setting of the status flag COMP. Details of writing and reading of the alarm register are included in the description of the characteristics of the I²C-bus.

Comparator

The comparator compares the contents of the alarm register and the time counter. each with a length of 24 bits. When these contents are equal the flag COMP will be set 4 ms after the falling edge of MIN. This set condition occurs once at the beginning of each minute. This information is latched, but can be cleared by an instruction via the l²C-bus. A clear instruction may be transmitted immediately after the flag is set and will be executed. Flag COMP information is also available at the output COMP. The comparison may be based upon hours and minutes only if the internal flag NODA (no date) is set. Flag NODA can be set and cleared by separate instructions via the l²C-bus, but it is undefined until the first set or clear instruction has been received. Both COMP and NODA flags are readable via the l²C-bus.

PCF8573

Power on/power fail detection

If the voltage $V_{DD}-V_{SS1}$ falls below a certain value the operation of the clock becomes undefined. Thus a warning signal is required to indicate that faultless operation of the clock is not guaranteed. This information is latched in a flag called POWF (Power Fail) and remains latched after restoration of the correct supply voltage until a write procedure with EXECUTE ADDRESS has been received. The flag POWF can be set by an internally generated power fail level-discriminator signal for application with ($V_{DD}-V_{SS1}$) greater than V_{TH1} , or by an externally generated power fail signal for application with ($V_{DD}-V_{SS1}$) less than V_{TH1} . The external signal must be applied to the input PFIN. The input stage operates with signals of any slow rise and fall times. Internally or externally controlled POWF can be selected by input EXTPF as shown in Table 2.

Table 2 Power fail selection

EXTPF	PFIN	FUNCTION			
0	0	power fail is sensed internally			
0	1	test mode			
1	0	power fail is sensed externally			
1	1	no power fail sensed			

0 : connected to V_{SS1} (LOW)

1 : connected to V_{DD} (HIGH)

The external power fail control operates by absence of the $V_{DD}-V_{SS2}$ supply. Therefore the input levels applied to PFIN and EXTPF must be within the range of $V_{DD}-V_{SS1}$. A LOW level at PFIN indicates a power fail. POWF is readable via the I²C-bus. A power on reset for the I₂C-bus control is generated on-chip when the supply voltage $V_{DD}-V_{SS2}$ is less than V_{TH2} .

Interface level shifters

The level shifters adjust the 5 V operating voltage ($V_{DD}-V_{SS2}$) of the microcontroller to the internal supply voltage ($V_{DD}-V_{SS1}$) of the clock/calendar. The oscillator and counter are not influenced by the $V_{DD}-V_{SS2}$ supply voltage. If the voltage $V_{DD}-V_{SS2}$ is absent ($V_{DD} = V_{SS2}$) the output signal of the level shifter is HIGH because V_{DD} is the common node of the $V_{DD}-V_{SS2}$ and the $V_{DD}-V_{SS1}$ supplies. Because the level shifters invert the input signals, the internal circuit behaves as if a LOW signal is present on the inputs. FSET, SEC, MIN and COMP are CMOS push-pull output stages. The driving capability of these outputs is lost when the supply voltage $V_{DD}-V_{SS2} = 0$.

PCF8573

CHARACTERISTICS OF THE I²C-BUS

The I²C-bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer (see Fig.3)

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in data line at this time will be interpreted as control signals.

Start and stop conditions (see Fig.4)

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

System configuration (see Fig.5)

A device generating a message is a "transmitter", a device receiving a message is the "receiver". The device that controls the message is the "master" and the devices which are controlled by the master are the "slaves".

PCF8573

Acknowledge (see Fig.6)

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by **not** generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition. (See Fig.10 and Fig.11).

PCF8573

Timing specifications

All the timing values are valid within the operating supply voltage and ambient temperature range and refer to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD} .

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
SCL clock frequency	f _{SCL}	-	-	100	kHz
Tolerable spike width on bus	t _{SW}	-	-	100	ns
Bus free time	t _{BUF}	4.7	-	-	μs
Start condition set-up time	t _{SU; STA}	4.7	-	-	μs
Start condition hold time	t _{HD; STA}	4.0	-	-	μs
SCL LOW time	t _{LOW}	4.7	-	-	μs
SCL HIGH time	t _{HIGH}	4.0	-	-	μs
SCL and SDA rise time	t _r	-	-	1.0	μs
SCL and SDA fall time	t _f	-	-	0.3	μs
Data set-up time	t _{SU; DAT}	250	-	-	ns
Data hold time	t _{HD; DAT}	0	-	-	ns
SCL LOW to data out valid	t _{VD; DAT}	-	-	3.4	μs
Stop condition set-up time	t _{SU; STO}	4.0	-	-	μs

PCF8573

ADDRESSING

Before any data is transmitted on the I²C-bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the start procedure.

Slave address

The clock/calendar acts as a slave receiver or slave transmitter. Therefore the clock signal SCL is only an input signal, but the data signal SDA is a bidirectional line. The clock calendar slave address is shown in Fig.8.

The subaddress bits A0 and A1 correspond to the two hardware address pins A0 and A1 which allows the device to have 1 of 4 different addresses.

Clock/calendar READ/WRITE cycles

The I²C-bus configuration for different clock/calendar READ and WRITE cycles is shown in Figs 9, 10 and 11.

The write cycle is used to set the time counter, the alarm register and the flags. The transmission of the clock/calendar address is followed by the MODE-POINTER-WORD which contains a CONTROL-nibble (Table 3) and an ADDRESS-nibble (Table 4). The ADDRESS-nibble is valid only if the preceding CONTROL-nibble is set to EXECUTE ADDRESS. The third transmitted word contains the data to be written into the time counter or alarm register.

PCF8573

Table 3 CONTROL-nibble

	C2	C1	C0	FUNCTION
0	0	0	0	execute address
0	0	0	1	read control/status flags
0	0	1	0	reset prescaler, including seconds counter; without carry for minute counter
0	0	1	1	time adjust, with carry for minute counter (note 1)
0	1	0	0	reset NODA flag
0	1	0	1	set NODA flag
0	1	1	0	reset COMP flag

Note

1. If the seconds counter is below 30 there is no carry. This causes a time adjustment of max. –30 s. From the count 30 there is a carry which adjusts the time by max. +30 s.

Table 4 ADDRESS-nibble

	B2	B1	B0	ADDRESSED TO:			
0	0	0	0	time counter hours			
0	0	0	1	time counter minutes			
0	0	1	0	time counter days			
0	0	1	1	time counter months			
0	1	0	0	arm register hours			
0	1	0	1	larm register minutes			
0	1	1	0	larm register days			
0	1	1	1	alarm register months			

At the end of each data word the address bits B1, B0 will be incremented automatically provided the preceding CONTROL-nibble is set to EXECUTE ADDRESS. There is no carry to B2.

Table 5 shows the placement of the BCD upper and lower digits in the DATA byte for writing into the addressed part of the time counter and alarm register respectively.

Table 5	Placement of BCD digits in the DATA byte
---------	--

MSB			DA					
UPPER DIGIT				LOWE	R DIGIT			
UD	UC	UB	UA	LD	LC	LB	LA	ADDRESSED TO:
X	X	D	D	D	D	D	D	hours
X	D	D	D	D	D	D	D	minutes
X	X	D	D	D	D	D	D	days
X	X	Х	D	D	D	D	D	months

Where:

'X' is the don't care bit

'D' is the data bit

Acknowledgement response of the clock calendar as slave receiver is shown in Table 6.

PCF8573

Table 6	Slave	receiver	acknowledgement
---------	-------	----------	-----------------

			MODE	ACKNOWLEDGE ON BYTE						
			MODE	ADDRESS	MODE POINTER	DATA				
	C2	C1	C0		B2	B1	B0			
0	0	0	0	0	Х	Х	Х	yes	yes	yes
0	0	0	0	1	Х	Х	X	yes	no	no
0	0	0	1	X	Х	Х	X	yes	yes	no
0	0	1	0	X	Х	Х	X	yes	yes	no
0	0	1	1	X	Х	Х	X	yes	yes	no
0	1	0	0	X	Х	Х	X	yes	yes	no
0	1	0	1	X	Х	Х	X	yes	yes	no
0	1	1	0	X	Х	Х	X	yes	yes	no
0	1	1	1	X	X	X	X	yes	no	no
1	X	X	X	Х	Х	Х	Х	yes	no	no

Where:

'X' is the don't care bit.

Table 7 Organization of the BCD digits in the	DATA byte
---	-----------

MSB	DATA LSB							
	UPPE	r digit			LOV	-		
UD	UC	UB	UA	LD	LC	LB	LA	ADDRESSED TO
0	0	D	D	D	D	D	D	hours
0	D	D	D	D	D	D	D	minutes
0	0	D	D	D	D	D	D	days
0	0	0	D	D	D	D	D	months
0	0	0	*	**	NODA	COMP	POWF	control/status flags

Where:

'D' is the data bit

* = minutes

** = seconds.

PCF8573

To read the addressed part of the time counter and alarm register, plus information from specified control/status flags, the BCD digits in the DATA byte are organized as shown in Table 7.

The status of the MODE-POINTER-WORD concerning the CONTROL-nibble remains unchanged until a write to MODE POINTER condition occurs.

PCF8573

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

PARAMETER	CONDITION	SYMBOL	MIN.	MAX.	UNIT
Supply voltage range					
pin 16 to pin 15		V _{DD} -V _{SS1}	-0.3	8.0	V
pin 16 to pin 8		V _{DD} -V _{SS2}	-0.3	8.0	V
Voltage input					
pins 4 and 5	note 1	VI	V _{SS2} -0.8	V _{DD} +0.8	V
pins 6, 7, 13 and 14		VI	V _{SS1} -0.6	V _{DD} +0.6	V
any other pin		VI	V _{SS2} -0.6	V _{DD} +0.6	V
Input current		l _l	_	10	mA
Output current		Io	_	10	mA
Power dissipation					
per output		Po	_	100	mW
Total power dissipation		P _{tot}	_	200	mW
Operating ambient					
temperature range		T _{amb}	-40	+85	°C
Storage temperature range		T _{stg}	-55	+125	°C

Note to the Ratings

1. With input impedance of minimum 500 Ω .

HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS devices').

PCF8573

CHARACTERISTICS

 V_{SS2} = 0 V; T_{amb} = –40 to + 85 °C unless otherwise specified. Typical values at T_{amb} = +25 °C

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply						
Supply voltage						
I ² C interface		V _{DD} -V _{SS2}	2.5	5.0	6.0	V
clock	t _{HD; DAT} ≥					
	300 ns	V _{DD} -V _{SS1}	1.1	1.5	$V_{DD}-V_{SS2}$	V
Supply current						
V _{SS1} (pin 15)	$V_{DD} - V_{SS1} = 1.5 V$	-I _{SS1}	-	3	10	μA
	$V_{DD}-V_{SS1} = 5 V$	-I _{SS1}	-	12	50	μA
V _{SS2} (pin 8)	$V_{DD}-V_{SS2} = 5 V;$					
	$I_{O} = 0$ all outputs	-I _{SS2}	-	-	50	μA
Input SCL;						
input/output SDA						
Input voltage LOW		V _{IL}	-	-	0.3 V _{DD}	V
Input voltage HIGH		V _{IH}	0.7 V _{DD}	-	-	V
Leakage current	$V_{I} = V_{SS2} \text{ or } V_{DD}$	_	-	-	1	μA
Input capacitance		CI	-	-	7	pF
Inputs A0, A1, TEST						
Input voltage LOW		VIL	_	_	0.2 V _{DD}	V
Input voltage HIGH		VIH	0.7 V _{DD}	-	-	V
Input leakage current	$V_{I} = V_{SS2}$ or V_{DD}	±ILI	-	-	250	nA
Inputs EXTPF, PFIN						
Input voltage LOW		VIL	0	-	0.2 V _{DD} -V _{SS1}	V
Input voltage HIGH		VIH	0.7 V _{DD} –V _{SS1}	-	-	V
Input leakage current	$V_I = V_{SS1}$ to V_{DD}	±l _{LI}	-	-	1.0	μA
	T _{amb} = 25 °C;					
	$V_I = V_{SS1}$ to V_{DD}	±lLI	-	-	0.1	μA
Output SDA						
(n channel open drain)						
Output "ON"	I _O = 3 mA;					
	$V_{DD}-V_{SS2} = 2.5$ to					
	to 6 V	V _{OL}	-	-	0.4	V
Leakage current	$V_{DD}-V_{SS2} = 6 V;$					
	$V_0 = 6 V$	I _L	-	-	1	μA

PCF8573

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Outputs						
Output SEC. MIN. COMP. FSET						
(normal buffer outputs)						
Output voltage LOW	$V_{DD} - V_{SS2} = 2.5 V;$					
	$I_0 = 0.3 \text{ mA}$	V _{OL}	_	_	0.4	v
	$V_{DD} - V_{SS2} = 4$ to 6 V;	-				
	l _O = 1.6 mA	V _{OL}	_	_	0.4	v
Output voltage HIGH	V _{DD} –V _{SS2} = 2.5 V;					
	–I _O = 0.1 mA	V _{OH}	V _{DD} -0.4	-	_	V
	$V_{DD}-V_{SS2} = 4 \text{ to } 6 \text{ V};$					
	–I _O = 0.5 mA;	V _{OH}	V _{DD} -0.4	-	-	V
Internal threshold voltage						
Power failure detection		V _{TH1}	1	1.2	1.4	v
Power "ON" reset		V _{TH2}	1.5	2.0	2.5	v
Rise and fall times of						
input signals						
Input EXTPF		t _{r,} t _f	_	_	1	μs
Input PFIN		t _{r,} t _f	_	-	∞	μs
Input signals except EXTPF						
and PFIN between V_{IL} and						
V _{IH} levels						
rise time		tr	_	-	1	μs
fall time		t _f	-	-	0.3	μs
Oscillator						
Integrated oscillator						
capacitance		C _{OUT}	_	40	-	pF
Oscillator feedback						
resistance		R _f	_	3	-	MΩ
Oscillator stability	$\Delta(V_{DD}-V_{SS1})$					
	= 100 mV; at					
	V _{DD} –V _{SS1} = 1.55 V;					
	T _{amb} = 25 °C	f/f _{osc}	-	2×10 ⁻⁷	-	-
Quartz crystal parameters	f = 32.768 kHz					
Series resistance		R _S	-	-	40	kΩ
Parallel capacitance		CL	-	10	-	pF
Trimmer capacitance		CT	5	-	25	pF

PCF8573

APPLICATION INFORMATION

PCF8573

PACKAGE OUTLINES

DIP16: plastic dual in-line package; 16 leads (300 mil); long body

OUTLINE		REFER	EUROPEAN				
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT38-1	050G09	MO-001AE				92-10-02 95-01-19	

PCF8573

SOT38-1

SO16: plastic small outline package; 16 leads; body width 7.5 mm SOT162-1 D Α E X H_{E} = v 🕅 A ____у Ζ g Q 4 (A₃) A₁ pin 1 index -p L 1 Ħ H Г Π Г П 8 detail X е < ⊕ w M bp 10 mm 0 5 scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) Α D⁽¹⁾ E⁽¹⁾ z⁽¹⁾ UNIT bp с H_{E} L Q θ **A**₁ A_2 A_3 е Lp v w у max. 0.30 2.45 0.49 0.32 10.5 7.6 10.65 1.1 1.1 0.9 2.65 mm 0.25 1.27 1.4 0.25 0.25 0.1 0.10 2.25 0.36 0.23 10.1 7.4 10.00 0.4 1.0 0.4 8° 0° 0.043 0.016 0.012 0.013 0.096 0.019 0.41 0.30 0.42 0.043 0.035 inches 0.10 0.01 0.050 0.055 0.01 0.01 0.004 0.40 0.004 0.089 0.014 0.009 0.29 0.39 0.039 0.016 Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. REFERENCES OUTLINE EUROPEAN **ISSUE DATE** VERSION PROJECTION IEC JEDEC EIAJ 92-11-17 \bigcirc SOT162-1 075E03 MS-013AA 95-01-24

PCF8573

PCF8573

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

DIP

SOLDERING BY DIPPING OR BY WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

REPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

SO

REFLOW SOLDERING

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

WAVE SOLDERING

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

REPAIRING SOLDERED JOINTS

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

Product specification

PCF8573

DEFINITIONS

Data sheet status						
Objective specification	This data sheet contains target or goal specifications for product development.					
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.					
Product specification	This data sheet contains final product specifications.					
Limiting values						
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.						
Application information						

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.