MEMORY

LOW POWER SRAM CARD PCMCIA Rel.2/JEIDA Ver. 4 conformable

MB98A9061x/9071x-20

LOW POWER STATIC RANDOM ACCESS MEMORY CARD 64 K/128 K-BYTE

DESCRIPTION

The Fujitsu MB98A9061x and MB98A9071x are Static Random Access Memory (SRAM) cards capable of storing and retrieving large amounts of data. The memory circuits are housed in a credit-card sized 68 -pin package. Internal circuitry is protected by two metal panels, one at the top and the bottom of the card, that help to reduce chip damage from electrostatic discharge.
When the SRAM card is not powered by its system, an on-board, replaceable lithium battery (coin-type) is used to retain data. When the lithium battery must be replaced, rechargeable battery that are built into the SRAM card, maintain data. (See the BLOCK DIAGRAM for location of batteries.)
A unique feature of the Fujitsu memory cards allows the user to organize the card into either an 8-bit or a 16-bit bus configuration. All cards are portable and operate on low power at high speed.
In accordance with the Personal Computer Memory Card International Association (PCMCIA) and Japan Electrical Industry Development Association (JEIDA) industry standard specification, SRAM cards offer additional EEPROM memory that is used to store attribute data. The attribute memory is an SRAM card option. (See page 3 for a description of the three available options.)

- Credit card size: 85.6 mm (length) $\times 54.0 \mathrm{~mm}$ (width) $\times 3.3 \mathrm{~mm}$ (thick).
- PCMCIA/JEIDA conformed two-piece 68-pin connector (with a two-row built-in 68-pin receptacle)
- Low operating and standby power consumption
- Built-in, rechargeable batteries for data retention during lithium battery replacement
- Battery voltage detect and write protect function

PACKAGE

CRD-68P-M04

ATTRIBUTE MEMORY OPTIONS

PCMCIA and JEIDA standard memory cards from Fujitsu provide a separate EEPROM memory address space for recording fundamental card information. It is used by the card manufacturers to record basic configuration information such as device type, size, speed, etc.
The attribute memory is selected by asserting the REG pin on the card interface. Option descriptions as follows:
OPTION 1: Attribute memory is not supported.

REG Pin: Not Contacted

(JEIDA Ver. 3 conformable)

Part Number	Main Memory		Attribute Memory		Memory Organization*
	Memory Device	Access Time	Memory Device	Access Time	
MB98A90611	256 K SRAM $\times 2 \mathrm{pcs}$	200 ns	-	-	$64 \mathrm{~K} \times 8$ bits $/ 32 \mathrm{~K} \times 16$ bits
MB98A90711	$256 \mathrm{~K} \mathrm{SRAM} \times 4$ pcs	200 ns	-	-	$128 \mathrm{~K} \times 8$ bits $/ 64 \mathrm{~K} \times 16$ bits

OPTION 2: Attribute memory in a separate location is not supported.
When the REG line is asserted, "FF" is output to the data bus to indicate that attribute data may be stored in main memory.
(PCMCIA Rel.2/JEIDA Ver. 4 conformable)

Part Number	Main Memory		Attribute Memory		Memory Organization *
	Memory Device	Access Time	Memory Device	Access Time	
MB98A90612	256 K SRAM $\times 2 \mathrm{pcs}$	200 ns	-	-	$64 \mathrm{~K} \times 8$ bits/32 $\mathrm{K} \times 16$ bits
MB98A90712	256 K SRAM $\times 4 \mathrm{pcs}$	200 ns	-	-	$128 \mathrm{~K} \times 8$ bits $/ 64 \mathrm{~K} \times 16$ bits

OPTION 3: Attribute memory is supported. The data is stored in an 16K-bit EEPROM.
When the REG line is asserted, data stored in EEPROM is output to the data bus.
(PCMCIA Rel.2/JEIDA Ver. 4 conformable)

Part Number	Main Memory		Attribute Memory		Memory Organization*
	Memory Device	Access Time	Memory Device	Access Time	
MB98A90613	256 K SRAM $\times 2 \mathrm{pcs}$	200 ns	EEPROM $\times 1 \mathrm{pcs}$	300 ns	$64 \mathrm{~K} \times 8$ bits $/ 32 \mathrm{~K} \times 16$ bits
MB98A90713	256 K SRAM $\times 4 \mathrm{pcs}$	200 ns	EEPROM $\times 1 \mathrm{pcs}$	300 ns	$128 \mathrm{~K} \times 8 \mathrm{bits} / 64 \mathrm{~K} \times 16$ bits

Note: * To be configured by user.

Fig. 1 - MB98A9061x/9071x BLOCK DIAGRAM

■ PIN ASSIGNMENTS

MB98A9061x	MB98A9071x	Pin No.		MB98A9061x	MB98A9071x
GND	GND	1	35	GND	GND
D3	D3	2	36	$\overline{C D} 1$	$\overline{C D} 1$
D4	D4	3	37	D_{11}	D_{11}
D5	D5	4	38	D12	D12
D6	D6	5	39	D_{13}	D_{13}
D_{7}	D_{7}	6	40	D14	D_{14}
$\overline{\mathrm{CE}} 1$	CE_{1}	7	41	D15	D_{15}
A_{10}	A_{10}	8	42	$\overline{C E} 2$	$\overline{C E} 2$
OE	OE	9	43	N.C.	N.C.
A_{11}	A_{11}	10	44	N.C.	N.C.
A9	A9	11	45	N.C.	N.C.
A_{8}	A_{8}	12	46	N.C.	N.C.
A_{13}	A_{13}	13	47	N.C.	N.C.
A_{14}	A_{14}	14	48	N.C.	N.C.
WE	WE	15	49	N.C.	N.C.
N.C.	N.C.	16	50	N.C.	N.C.
Vcc	Vcc	17	51	Vcc	Vcc
N.C.	N.C.	18	52	N.C.	N.C.
N.C.	A_{16}	19	53	N.C.	N.C.
A_{15}	A_{15}	20	54	N.C.	N.C.
A_{12}	A_{12}	21	55	N.C.	N.C.
A_{7}	A_{7}	22	56	N.C.	N.C.
A_{6}	A_{6}	23	57	N.C.	N.C.
A_{5}	A_{5}	24	58	N.C.	N.C.
A_{4}	A_{4}	25	59	N.C.	N.C.
A_{3}	A_{3}	26	60	N.C.	N.C.
A_{2}	A_{2}	27	61	REG/N.C.*	REG/N.C.*
A_{1}	A_{1}	28	62	BVD2	BVD2
A0	A_{0}	29	63	BVD1	BVD1
Do	Do	30	64	D8	D8
D1	D1	31	65	D9	D9
D_{2}	D2	32	66	D10	D10
WP	WP	33	67	$\overline{\mathrm{CD}} 2$	$\overline{C D} 2$
GND	GND	34	68	GND	GND

* : N.C. terminal in MB98A9XX11 series.

- PIN DESCRIPTIONS

Symbol	Pin Name	Input/Output	Function
A_{0} to A_{16}	Address Input	Input	Address Inputs, A_{0} to A_{16}.
Do to D_{15}	Data Input/Output	Input/Output	Data Inputs/Outputs. The data bus size (8-bit or 16 -bit) selected with CE1 and CE2.
CE_{1}	Card Enable for Lower Byte	Input	Active Low - Lower byte (D_{0} to D_{7}) is selected for read/ write function of SRAM cards.
CE_{2}	Card Enable for Upper Byte	Input	Active Low - Upper byte (D_{8} to D_{15}) is selected for read/ write function of SRAM cards.
REG	Attribute Memory Select	Input	Active Low - Attribute memory is selected for read/write function of identification data of SRAM cards. (N.C. or "FF" data or attribute data.)
OE	Output Enable	Input	Active Low - Output enable for SRAM cards.
WE	Write Enable	Input	Active Low - Write enable for SRAM cards.
$\mathrm{CD}_{1}, \mathrm{CD}_{2}$	Card Detect	Output	These pins detect if the card has been correctly inserted. Both pins are tied to GND internally.
WP	Write Protect	Output	Write controller for SRAM cards This pin outputs the On/Off status of "WP Switch".
BVD1	Battery Voltage Detect 1	Output	These pins indicate the battery condition of the SRAM cards. a) BVD1 $=$ BVD2 $=$ Vон -Battery voltage is a safe level. b) BVD2 = VoL, BVD1 $=$ Vон
BVD2	Battery Voltage Detect 2	Output	-Battery voltage is lower than 2.65 V . Battery should be replaced. c) BVD1 $=$ BVD2 $=$ VoL -Battery voltage is lower than 2.37 V , or battery is not present.
Vcc	Power Supply	-	Power Supply Voltage (+5.0 V $\pm 5 \%$)
GND	Ground	-	System Ground
N.C.	No Connection	-	

PIN LOCATIONS

Fig. 2 - BOTTOM VIEW (CONNECTOR SIDE)

FUNCTIONAL TRUTH TABLE

MAIN MEMORY FUNCTION *1 (REG = ViH)

CE_{2}	CE_{1}	$\begin{gathered} A_{0} \\ \text { (Byte) } \end{gathered}$	OE	WE	WP	Mode	Data Input/Output		WP SW
							D_{15} to D_{8}	D_{7} to D_{0}	
H	H	X	X	X	L	Standby	High-Z		NP
H	L	L	L	H	L	Read ($\times 8$)	High-Z	$\begin{gathered} \text { Dout } \\ \text { (Lower Byte) } \end{gathered}$	NP
H	L	H	L	H	L	Read ($\times 8$)	High-Z	Dout (Upper Byte)	NP
H	L	L	H*2	L	L	Write ($\times 8$)	High-Z	$\begin{gathered} \text { Din } \\ \text { (Lower Byte) } \end{gathered}$	NP
H	L	H	H*2	L	L	Write ($\times 8$)	High-Z	$\begin{gathered} \text { Din } \\ \text { (Upper Byte) } \end{gathered}$	NP
L	H	X	L	H	L	Read ($\times 8$)	$\begin{gathered} \text { Dout } \\ \text { (Upper Byte) } \end{gathered}$	High-Z	NP
L	H	X	$\mathrm{H}^{*} 2$	L	L	Write ($\times 8$)	$\begin{gathered} \text { Din } \\ \text { (Upper Byte) } \end{gathered}$	High-Z	NP
L	L	X	L	H	L	Read ($\times 16$)	Dout		NP
L	L	X	H	L	L	Write ($\times 16$)	Din		NP
X	X	X	H	H	L	Output Disable	High-Z		NP

H	H	X	X	X	H	Standby	High-Z		P
H	L	L	L	H	H	Read ($\times 8$)	High-Z	$\begin{gathered} \text { Dout } \\ \text { (Lower Byte) } \end{gathered}$	P
H	L	H	L	H	H	Read ($\times 8$)	High-Z	Dout (Upper Byte)	P
H	L	L	$\mathrm{H}^{*} 2$	L	H	Output Disable	High-Z		P
H	L	H	$\mathrm{H}^{*} 2$	L	H	Output Disable	High-Z		P
L	H	X	L	H	H	Read ($\times 8$)	Dout (Upper Byte)	High-Z	P
L	H	X	$\mathrm{H}^{*} 2$	L	H	Output Disable	High-Z		P
L	L	X	L	H	H	Read (×16)	Dout		P
L	L	X	H	L	H	Output Disable	High-Z		P
X	X	X	H	H	H	Output Disable	High-Z		P

Notes: *1. $\mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{X}=$ Either V_{IL} or $\mathrm{V}_{\mathrm{IH}}, \mathrm{WP}$ SW = Write Protect Switch, NP = Non Protect, $\mathrm{P}=$ Protect *2. H-level is recommended though it is functionable at L-level.

ATTRIBUTE MEMORY FUNCTION *1 (REG = Vil) *2

CE ${ }_{2}$	CE_{1}	$\begin{gathered} A_{0} \\ \text { (Byte) } \end{gathered}$	OE	WE	WP	Mode	Data Input/Output		WP SW
							D_{15} to D_{8}	D_{7} to D_{0}	
H	H	X	X	X	L	Standby	High-Z		NP
H	L	L	L	H	L	Read ($\times 8$)	High-Z	$\begin{gathered} \text { Dout *3 } \\ \text { (Lower Byte) } \end{gathered}$	NP
H	L	H	L	H	L	Read ($\times 8$)	High-Z	H	NP
H	L	L	H	L	L	Write ($\times 8$)	High-Z	Din (Lower Byte)	NP
H	L	H	H	L	L	Write ($\times 8$)	High-Z	X	NP
L	H	X	L	H	L	Read ($\times 8$)	H	High-Z	NP
L	H	X	H	L	L	Write ($\times 8$)	High-Z	High-Z	NP
L	L	X	L	H	L	Read ($\times 16$)	H	$\begin{gathered} \text { Dout *3 } \\ \text { (Lower Byte) } \end{gathered}$	NP
L	L	X	H	L	L	Write ($\times 16$)	X	$\begin{gathered} \text { Din } \\ \text { (Lower Byte) } \end{gathered}$	NP
X	X	X	H	H	L	Output Disable	High-Z		NP

H	H	X	X	X	H	Standby	High-Z		P
H	L	L	L	H	H	Read ($\times 8$)	High-Z	$\begin{gathered} \text { Dout *3 } \\ \text { (Lower Byte) } \end{gathered}$	P
H	L	H	L	H	H	Read ($\times 8$)	High-Z	H	P
H	L	L	H	L	H	Output Disable	High-Z		P
H	L	H	H	L	H	Output Disable	High-Z		P
L	H	X	L	H	H	Read ($\times 8$)	H	High-Z	P
L	H	X	H	L	H	Output Disable	High-Z		P
L	L	X	L	H	H	Read (×16)		$\begin{gathered} \text { Dout *3 } \\ \text { (Lower Byte) } \end{gathered}$	P
L	L	X	H	L	H	Output Disable	High-Z		P
X	X	X	H	H	H	Output Disable	High-Z		P

Notes: *1. $\mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{X}=$ Either V_{IL} or $\mathrm{V}_{\mathrm{IH}}, \mathrm{WP} \operatorname{SW}=$ Write Protect Switch, NP = Non Protect, $\mathrm{P}=$ Protect *2. N.C. for MB98A90611 and 90711.
*3. H-level is output for MB98A90612 and 90712.

ADDRESS CONFIGURATIONS * (MAIN MEMORY)

8-BIT BUS ORGANIZATION (CE ${ }_{1}=\mathrm{V}_{\mathrm{L}}, \mathrm{CE}_{2}=\mathrm{V}_{\text {нн }}$)

A_{16} to A_{0}					$\overline{\mathrm{CE}}{ }_{2}$	$\overline{C E} 1$	D_{15} to D_{8}	D_{7} to D_{0}
000	0000	0000	0000	0000	H	L	-----	0 Add.
000	0000	0000	0000	0001	H	L	-----	1 Add.
000	0000	0000	0000	0010	H	L	-----	2 Add.
000	0000	0000	0000	0011	H	L	-----	3 Add.
\downarrow	$\downarrow \quad \downarrow$	\downarrow 砍						
111	1111	1111	1111	1100	H	L	-----	524284 Add.
111	1111	1111	1111	1101	H	L	-----	524285 Add.
111	1111	1111	1111	1110	H	L	-----	524286 Add.
111	1111	1111	1111	1111	H	L	-----	524287 Add.

8-BIT BUS ORGANIZATION (CE $\left.{ }_{1}=\mathrm{V}_{\mathrm{IH}}, \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IL}}\right)$ *2

\mathbf{A}_{16} to $\mathbf{A}_{\mathbf{0}}$				$\mathbf{C E}_{2}$	$\mathbf{C E}_{\mathbf{1}}$	\mathbf{D}_{15} to $\mathbf{D}_{\mathbf{8}}$	\mathbf{D}_{7} to $\mathbf{D}_{\mathbf{0}}$	
000	0000	0000	0000	000 X	L	H	1 Add.	-----
000	0000	0000	0000	001 X	L	H	3 Add.	-----
000	0000	0000	0000	010 X	L	H	5 Add.	-----
000	0000	0000	0000	011 X	L	H	7 Add.	----
\downarrow								
111	1111	1111	1111	100 X	L	H	524281 Add.	\downarrow
111	1111	1111	1111	101 X	L	-----		
111	1111	1111	1111	110 X	L	H	524283 Add.	-----
111	1111	1111	1111	111 X	L	H	524285 Add.	-----

16-BIT BUS ORGANIZATION (CE $\left.1=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IL}}\right)$

A $_{16}$ to $\mathbf{A}_{\mathbf{0}}$				CE $_{2}$	$\mathbf{C E}_{1}$	\mathbf{D}_{15} to \mathbf{D}_{8}	D $_{7}$ to \mathbf{D}_{0}	
000	0000	0000	0000	000 X	L	L	1 Add.	0 Add.
000	0000	0000	0000	001 X	L	L	3 Add.	2 Add.
000	0000	0000	0000	010 X	L	L	5 Add.	4 Add.
000	0000	0000	0000	011 X	L	L	7 Add.	6 Add.
\downarrow								
111	1111	1111	1111	100 X	L	L	524281 Add.	524280 Add.
111	1111	1111	1111	101 X	L	L	524283 Add.	524282 Add.
111	1111	1111	1111	110 X	L	L	524285 Add.	524284 Add.
111	1111	1111	1111	111 X	L	L	524287 Add.	524286 Add.

Notes: *1. $\mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{L}=\mathrm{V}_{\mathrm{L}}, \mathrm{X}=$ Either 0 or 1 .
*2. Even addresses are not available in this mode.

- ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\text {cc }}$	-0.5 to +6.0	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	-0.5 to $\mathrm{Vcc}+0.5$	V
Output Voltage	Vout	-0.5 to $\mathrm{Vcc}+0.5$	V
Ambient Temperature	$\mathrm{T}_{\text {A }}$	-10 to $+60{ }^{*} 1$	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tsta	-20 to $+65{ }^{*} 2$	${ }^{\circ} \mathrm{C}$

Notes: *1. This value does not apply to the replaceable battery.
*2. This value does not apply to the replaceable battery and data retention.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS
(Referenced to GND)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Supply Voltage	V_{cc}	4.75	5.0	5.25	V
Ground	GND	-	0	-	V
Input High Voltage	V_{H}	2.4	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V
Input Low Voltage	V_{IL}	-0.3	-	0.8	V
Ambient Temperature ${ }^{*}$	$\mathrm{~T}_{\mathrm{A}}$	0	-	+55	${ }^{\circ} \mathrm{C}$

Note: * This value does not apply to the replaceable lithium battery. See $\mathrm{V}_{\text {bat }}$ in Fig. 1.
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

■ CAPACITANCE

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{/ 0}=\mathrm{GND}\right)$								
Parameter	Notes	Symbol	Min.	Typ.	Max.	Unit		
Input Capacitance	${ }^{*} 1$	C_{IN}	-	-	50	pF		
I / O Capacitance	${ }^{2} 2$	C / o	-	-	50	pF		

Notes: *1. This value does not apply to $\mathrm{CE}_{1}, \overline{C E}, \mathrm{REG}$ and $W E$.
${ }^{*} 2$. This value does not apply to BVD1, BVD2, $\overline{C D}_{1}$ and CD_{2}.

DC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)

Parameter	Notes	Symbol	Condition	Min.	Typ.	Max.	Unit
Standby Supply Current	*1	Isb1	$\overline{C E}_{1}, \mathrm{CE}_{2} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$	-	-	0.5	mA
		IsB2	$\mathrm{CE}_{1}, \mathrm{CE}_{2}=\mathrm{V}_{\mathbf{H}}$	-	-	5.0	mA
Active Supply Current		Icc1	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{HH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{CE}_{1}, \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IL}}, \text { lout }=0 \mathrm{~mA} \end{aligned}$	-	-	110	mA
Operating Supply Current		Icc2	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}, Cycle $=\mathrm{Min}$ Duty $=100 \%$, lout $=0 \mathrm{~mA}$ OE $=\mathrm{V}_{\mathrm{IH}}$ during Write Cycle	-	-	190	mA
Input Leakage Current	*2	1 l	$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$ to V cc	-10	-	10	$\mu \mathrm{A}$
Output Leakage Current	*3	ILıo	Vout $=0 \mathrm{~V}$ to Vcc , $\mathrm{CE}_{1}, \mathrm{CE}_{2}=\mathrm{V}_{\mathbf{H}}$ or $\overline{O E}=\mathrm{V}_{\mathrm{H}}$ or $\mathrm{WE}=\mathrm{V}_{\mathrm{IL}}$	-10	-	10	$\mu \mathrm{A}$
Output High Voltage	*4	Vor	$\mathrm{IOH}=-1.0 \mathrm{~mA}$	2.4	-	-	V
Output Low Voltage		Vol	$\mathrm{loL}=2.1 \mathrm{~mA}$	-	-	0.4	V

Notes: *1. This value does not apply to recharge current from system or replaceable lithium battery to rechargeable battery.
*2. This value does not apply to $\mathrm{CE}_{1}, \mathrm{CE} 2, \mathrm{REG}$ and WE .
*3. This value does not apply to BVD1, BVD2, CD $1, \mathrm{CD}_{2}$ and WP.
*4. This value does not apply to BVD1, BVD2, CD1 and CD2.

- Output Dout (l/O)	$0-$	$+5 \mathrm{~V}$		3 - AC TEST CONDITIONS ut Pulse Levels: 0.6 V to 2.6 V ut Pulse Rise and Fall Times: 5 ns (Transition between 0.8 V and 2.4 V) ing Reference Levels Input: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=2.4 \mathrm{~V}$ Output: V оL $=0.8 \mathrm{~V}, \mathrm{~V}$ он $=2.0 \mathrm{~V}$
	R1	R2	CL	Parameters Mesured
Load I	$1.8 \mathrm{k} \Omega$	990Ω	100 pF	All parameters except tclz, tolz, tchz, tohz, trclz, trolz, trchz, trohz, twlz and twhz
Load II	$1.8 \mathrm{k} \Omega$	990Ω	5 pF	tclz, tolz, tchz, tohz, trclz, trolz, trchz, trohz, twlz and twhz

AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)

MAIN MEMORY READ CYCLE

Parameter	Notes	Symbol	Min.	Max.	Unit
Read Cycle Time		trc	200	-	ns
Address Access Time		taA	-	200	ns
Card Enable Access Time	tce	-	200	ns	
Output Enable Access Time		toe	-	100	ns
Output Hold from Address Change	toh	5	-	ns	
Card Enable to Output Low-Z	${ }^{*} 1,2$	tclz	5	-	ns
Output Enable to Output Low-Z	${ }^{*} 1,2$	tolz	5	-	ns
Card Enable to Output High-Z	${ }^{*} 1,2$	tchz	-	50	ns
Output Enable to Output High-Z	${ }^{*} 1,2$	tohz	-	50	ns

ATTRIBUTE MEMORY READ CYCLE *3

Parameter	Notes	Symbol	Min.	Max.	Unit
Read Cycle Time		trRC	300	-	ns
Address Access Time		traA	-	300	ns
Card Enable Access Time		trce	-	300	ns
Output Enable Access Time		troe	-	150	ns
Output Hold from Address Change		troh	5	-	ns
Card Enable to Output Low-Z	*1, 2	trclz	5	-	ns
Output Enable to Output Low-Z	*1, 2	trolz	5	-	ns
Card Enable to Output High-Z	*1, 2	trchz	-	60	ns
Output Enable to Output High-Z	*1, 2	trohz	-	60	ns

Notes: *1. Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*2. This parameter is specified using Load II in Fig.3.
*3. This parameter is for MB98A90613 and 90713.

MAIN MEMORY READ CYCLE TIMING DIAGRAM (WE = $\mathrm{V}_{\mathrm{ı}}$, REG $=\mathrm{V}_{\mathrm{ı}}$)

READ CYCLE 1: $\mathrm{CE}_{1}=\mathrm{OE}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IH}}: \times 8$-bit Bus Organization

READ CYCLE 2: $\overline{C E}_{1}=\mathrm{V}_{\mathrm{I}}, \overline{C E}_{2}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}: \times 8$-bit Bus Organization $C E_{1}=C E_{2}=\overline{O E}=V_{\mathrm{IL}}: \times 16$-bit Bus Organization

: Undefined

Note: * $A_{0}=$ Either V_{IH} or V_{IL}.

MAIN MEMORY READ CYCLE TIMING DIAGRAM（WE＝ $\mathrm{V}_{\mathbf{⿺ 𠃊}}$, REG $=\mathrm{V}_{\mathrm{⿺}}$ ）

READ CYCLE 3： $\mathrm{CE}_{2}=\mathrm{V}_{1 н}: \times 8$－bit Bus Organization

MAIN MEMORY READ CYCLE TIMING DIAGRAM (WE = Viн, $^{\text {REG }}=\mathrm{V}_{\text {нн }}$)

READ CYCLE 5: $\mathrm{CE}_{1}=\mathrm{CE}_{2}: \times 16$-bit Bus Organization

: Undefined

Note: * $\mathrm{A}_{0}=$ Either $\mathrm{VIH}_{\mathrm{H}}$ or VIL^{2}.

ATTRIBUTE MEMORY READ CYCLE TIMING DIAGRAM (WE = Vін, REG = Vı) *1

Notes: *1. This timing diagram is for MB98A90613 and 90713. "FF" data is available on MB98A90612 and 90712 only.
*2. $\mathrm{A}_{0}=$ Either V_{IH} or V_{IL} for a 16-bit bus organization.
*3. H-level is output from D8 to D15.

READ CYCLE 3: $\overline{C E}_{1}=\overline{C E}_{2}: \times 16$-bit Bus Organization

$\sum \sum$: Undefined

Notes: *1. This timing diagram is for MB98A90613 and 90713. "FF" data is available on MB98A90612 and 90712 only.
*2. $\mathrm{A}_{0}=$ Either V_{H} or V_{L}.
*3. H -level is output from D_{8} to D_{15}.

MAIN MEMORY WRITE CYCLE *1

Parameter	Notes	Symbol	Min.	Max.	Unit
Write Cycle Time		twc	200	-	ns
Address Valid to End of Write		taw	140	-	ns
Chip Select to End of Write		tcw	140	-	ns
Data Valid to End of Write		tow	60	-	ns
Data Hold Time		toh	30	-	ns
Write Pulse Width		twp	120	-	ns
Address Set Up Time		$t_{\text {AS }}$	20	-	ns
Write Recovery Time		twr	30	-	ns
Output Enable to Output Low-Z	*2	tolz	5	-	ns
Output Enable to Output High-Z	*2	tohz	-	50	ns
Write Enable to Output Low-Z	*2, 3	twlz	5	-	ns
Write Enable to Output High-Z	*2, 3	twhz	-	50	ns
Output Enable Set Up Time		toes	10	-	ns
Output Enable Hold Time		toen	10	-	ns

ATTRIBUTE MEMORY WRITE CYCLE *4

Parameter	Symbol	Min.	Max.	Unit
Byte Write Cycle Time	trwr	-	10	ms
Address Set Up Time	tras	20	-	ns
Chip Enable Set Up Time	trics	0	-	ns
Output Enable Set Up Time	troes	20	-	ns
Write Pulse Width	trwp	100	-	ns
Address Hold Time	trah	50	-	ns
Data Set Up Time	trds	50	-	ns
Data Hold Time	troh	20	-	ns
Chip Enable Hold Time	trach	0	-	ns
Output Enable Hold Time	troen	20	-	ns
Write Recovery Time	trre	50	-	ns
End of Write to Output Time	trRbo	-	100	ns
Number of Write per Byte	N	10000	-	Times
Write Enable Hold Time	trwer	10	-	ns

Notes: *1. If $O E, \mathrm{CE}_{1}$, and CE_{2} are in the Read Mode during this period, then the I/O pins are in the output state and the input signals of the phase opposite to the outputs must be applied.
*2. Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*3. This parameter is specified only during write cycle with $\mathrm{OE}=\mathrm{V}_{\text {IL }}$ and specified using Load II in Fig.3.
*4. This parameter is for MB98A90613 and 90713.

MAIN MEMORY WRITE CYCLE TIMING DIAGRAM (WE = CONTROLLED, REG = Vıі)

WRITE CYCLE 1: $\overline{C E}_{2}=\mathrm{V}_{\mathrm{H}}: \times 8$-bit Bus Organization

: Undefined

MAIN MEMORY WRITE CYCLE TIMING DIAGRAM (WE = CONTROLLED, REG = Vıн)

WRITE CYCLE 2: $\mathrm{CE}_{1}=\mathrm{V}_{\mathrm{H}}: \times 8$-bit Bus Organization

: Undefined

Note: * $\mathrm{A}_{0}=$ Either $\mathrm{VIH}_{\mathrm{H}}$ or VIL.

MAIN MEMORY WRITE CYCLE TIMING DIAGRAM (WE = CONTROLLED, REG = ViH)

Note: * $\mathrm{A}_{0}=$ Either V_{H} or V_{IL}.

MAIN MEMORY WRITE CYCLE TIMING DIAGRAM (CE = CONTROLLED, REG = Vוн)

WRITE CYCLE 4: $\mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IL}}: \times 8$-bit Bus Organization

Note: * H-level is recommended for stable operation though the card is operable at L-level.

MAIN MEMORY WRITE CYCLE TIMING DIAGRAM (CE = CONTROLLED, REG = V_{I})

Notes: *1. $\mathrm{A}_{0}=$ Either V_{L} or V_{L}.
*2. H-level is recommended for stable operation though the card is operable at L-level.

MAIN MEMORY WRITE CYCLE TIMING DIAGRAM (CE = CONTROLLED, REG = VIH)

Notes: *1. $\mathrm{A}_{0}=$ Either V_{L} or V_{L}.
*2. H-level is recommended for stable operation though the card is operable at L-level.

ATTRIBUTE MEMORY WRITE CYCLE TIMING DIAGRAM (WE = CONTROLLED, REG = Vı) *1

WRITE CYCLE 1: $\mathrm{CE}_{2}=\mathrm{V}_{\mathrm{H}}: \times 8$-bit Bus Organization

: Undefined

Notes: *1. This timing diagram is for MB98A90613 and 90713. "FF" data is available on MB98A90612 and 90712 only.
*2. Data polling operation.

ATTRIBUTE MEMORY WRITE CYCLE TIMING DIAGRAM (WE = CONTROLLED, REG = Vı) *1

WRITE CYCLE 2: $\mathrm{CE}_{1}=\mathrm{CE}_{2}: \times 16$-bit Bus Organization

: Undefined

Notes: *1. This timing diagram is for MB98A90613 and 90713. "FF" data is available on MB98A90612 and 90712 only.
*2. Input levels of terminals D_{8} to D_{15} are not specified.
*3. Data polling operation.

ATTRIBUTE MEMORY WRITE CYCLE TIMING DIAGRAM (CE=CONTROLLED, REG = VIL) *1

WRITE CYCLE 3: $\mathrm{CE}_{2}=\mathrm{V}_{\mathrm{H}}: \times 8$-bit Bus Organization

: Undefined

Notes: *1. This timing diagram is for MB98A90613 and 90713. "FF" data is available on MB98A90612 and 90712 only.
*2. Data polling operation.

ATTRIBUTE MEMORY WRITE CYCLE TIMING DIAGRAM (CE = CONTROLLED, REG = Vı) *

WRITE CYCLE 4: $\mathrm{CE}_{1}=\mathrm{CE}_{2}: \times 16$-bit Bus Organization

Undefined

Notes: *1. This timing diagram is for MB98A90613 and 90713. "FF" data is available on MB98A90612 and 90712 only.
*2. Input levels of terminals D_{8} to D_{15} are not specified.
*3. Data polling operation.

■ POWER SUPPLY SEQUENCE CHARACTERISTICS

Parameter	Symbol	Min.	Typ.	Max.	Unit
Detection Rising Voltage	VINH $^{\prime}$	4.2	4.3	4.4	V
Detection Falling Voltage	VINL	4.1	4.2	4.3	V
Battery Backup Recovery Time	tBR	3.0	-	-	ms
Data Retention Rising Time	toRsu	-	-	0.5	ms
Battery Backup Set up Time	tBS	10	-	-	$\mu \mathrm{s}$
Data Retention Falling Time	tDRSF	0	-	-	ns

POWER-ON TIMING DIAGRAM

Note: * Insertion or removal of the card is not recommended when Vcc is greater than 0 V .

POWER-OFF TIMING DIAGRAM

\square

UNIQUE FEATURES FOR SRAM CARD

1. REPLACEABLE BATTERIES FOR THE SRAM CARD

The battery used in the SRAM Card is a 3.0 V Lithium battery (coin type) with the following specifications:

Diameter	$: 20.0(\mathrm{~mm})$
Thickness	$: 2.5(\mathrm{~mm})$
Weight	$: 2.5(\mathrm{~g})$ Approx.
Type	$:$ CR2025, or equivalent

2. APPROXIMATE DATA RETENTION TIME WITH BATTERY SUPPORT ONLY

Part Number	Approx. Data Retention Time * $\left(\mathrm{T}_{\mathrm{A}}=20^{\circ} \mathrm{C}\right)$	
MB98A9061x	7 years min.	15 years typ.
MB98A9071x	4 years min.	8 years typ.

* Determined by the memory density of the card;
i.e., greater card density means less battery time.

3. REPLACING THE BATTERY IN THE SRAM CARD

a. Insert a slender pointed object, such as the end of a paper clip, into the hole on the upper side of the card. (See Fig. 4.)
b. Release the battery holder by pressing the paper clip against the catch and pulling the battery holder straight out from the card. (The battery cavity is located at the top of the card. See Fig. 5.) When the battery holder is free from the card the battery will fall out.
c. Replace the old battery with a fresh one. Be certain to match battery polarity to the + and - shown on the holder.
d. Place the new battery into the holder, squeeze the holder containing the new battery tightly, and reinsert it into the battery cavity.

WARNING

Battery MUST be replaced within 30 minutes* or data will be lost.
Note: *With condition that the SRAM card had been inserted into application system more than 10 minutes.

Fig. 4 - SRAM CARD DRAWING (TOP VIEW)

Fig. 5 - BATTERY CASE DRAWING (TOP VIEW)

4. SPECIAL MONITORING PINS

4.1 BVD1, BVD2: Voltage Monitoring Pins

These pins monitor the voltage of the battery which must be maintained at 2.65 V or greater for data retention. The condition of the battery is determined by reading the output signals on BVD1 and BVD2.

1. When BVD1=BVD2=Vон

Battery voltage is sufficient to guarantee data retention; i.e., $\geq 2.65 \mathrm{~V}$.
2. When BVD2=VoL, BVD1 $=$ Vон

Battery voltage is lower than 2.65 V and should be replaced to safeguard data.
3. When $B V D 1=B V D 2=V o L$

Battery voltage is less than 2.37 V : the level is dangerous. There is a possibility that data has not retained.

4.2 $\mathbf{C D}_{1}, \mathbf{C D}_{2}$: Card Detection Pins

These pins detect the insertion of the card into the system. (See Fig. 6.)
When the memory card has been correctly inserted, CD_{1} and CD_{2} are detected by the system. $\mathrm{CD}_{1}, \mathrm{CD}_{2}$ are tied to ground on the card side as shown in Fig. 6.

4.3 WP: Write Protect Pins

(A)

system side

- Fig. 6 -

This pin monitors the position of the Write Protect switch. As shown in Fig. 7, the SRAM card has a Write Protect switch at the top of the card.

To write to the card, the switch must be turned to the "Non Protect" position and the WE pin low. L-level is output on the WP pin.

To prevent writing to the card, the switch must be turned to the "Protect" position. H-level is output on

WP Switch	WP Pin
Protect	H
Non Protect	L

- Fig. 7 -

PACKAGE DIMENSIONS

68-pin PC card
Note: Dimensions confirm with "PC Card Standard "

© 1997 FUJITSU LIMITED K68004SC-6-3
Dimensions in mm (inches)

- DEVICE HANDLING PRECAUTIONS

This device in composed of fine electronic parts, so take care in handling or keeping it as below.

- The card is made fine, so do not keep it in the high temperature nor high humiditly, place line in the direct sun-shine nor near the heater.
- The card should not be bent, scratched, dropped nor be shocked violently.
- This device should never be taken a part. It could destroy the card or your personal computer hardware.
- To help you handle this device safely, request us the device specifications when purchasing this device.

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD \#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9802

© FUJITSU LIMITED Printed in Japan

