DS07-13510-2E

16-bit Proprietary Microcontroller

CMOS

F²MC-16F MB90F244 MB90F244

DESCRIPTION

The MB90F244 is a 16-bit microcontroller optimized for applications in mechatronics such as HDD units. The architecture of the MB90F244 is based on the MB90242A, and embedded with a 128-Kbyte flash memory.

The instruction set is based on the AT architecture of the F²MC* family, with additional high-level language supporting instruction, expanded addressing modes, enhanced multiplication and division instructions, and improved bit processing instructions. In addition, long-word data can now be processed due to the inclusion of a 32-bit accumulator.

The MB90F244 includes a variety of peripherals on chip, such as the device is equipped with 8-channel 8/10-bit A/D converter, UART, 3-channel 16-bit reload timers, 1-channel 16-bit timer, 4-channel 16-bit input capture and 4-channel DTP/external interrupts.

Differences between the MB90F244 and MB90F243 to meet the 3.3 V \pm 0.3 V power supply voltage are that the power consumption of the MB90F244 is about 10% less than that of the MB90F243 and the operating frequency of the MB90F244 is up to 50 MHz from 32 MHz of the MB90F243.

* : F²MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- Minimum execution time (target): 40.0 ns at 50 MHz oscillation (3.3 V ± 0.3 V)
- Instruction set optimized for controller applications
 Variety of data types: bit, byte, word, long-word
 Expanded addressing modes: 25 types
 High coding efficiency
 Improvement of high-precision arithmetic operations through use of 32-bit accumulator
 Enhanced multiplication and division instructions (signed arithmetic operations)
- Instruction set supports high-level language (C language) and multitasking Inclusion of system stack pointer Variety of pointers High instruction set symmetry Barrel shift instruction Stack check function
- Improved execution speed: 8-byte queue
- Powerful interrupt functions Interrupt processing time: 0.64 µs at 50 MHz oscillation Priority levels: 8 levels (programmable) External interrupt inputs: 4 channels
- Automatic transfer function independent of CPU Extended intelligent I/O service: Max.15 channels
- 128-Kbyte flash memory Access time (min.): 80 ns Sector structure of 16K + 512 × 2 + 7K + 8K + 32K + 64K Program/erase operations from both EPROM programmer and CPU through built-in flash memory interface circuit
 Built-in programming booster circuit for flash memory

Built-in programming booster circuit for flash memory

- Internal RAM: 1.152 kbyte According to mode settings, data stored on RAM can be executed as CPU instructions.
- General-purpose ports: Max. 63 channels (single-chip mode)
 - Max. 38 channels (external bus mode)
- 18-bit timebase timer
- Watchdog timer
- UART: 8 bits × 1 channel
- 8/16-bit I/O simple serial interface (max. 12.5 Mbps): 1 channel
- 8/10-bit A/D converter: Analog inputs: 8 channels Resolution: 10 bits (switchable to 8 bits/10 bits) Conversion time: Min. 1 μs Conversion result store register: 4 channels
- 16-bit I/O timer
 16-bit free-run timer: 1 channel (operating clock: 0.16 μs)
 16-bit input capture: 4 channels
- 16-bit reload timer: 3 channels
- Low-power consumption modes Sleep mode Stop mode Hardware standby mode
- Packages: TQFP-80 (FPT-80P-M15) (For more information about the package, see section "■ Package Dimensions.")

- (Continued)

 PLL clock multiple function
 - CMOS technology
 - Power supply voltage: 3.3 V ± 0.3 V or 5.0 V ± 0.5 V
 - (Varies with conditions such as the operating frequency. See section
 - "■ Electrical Characteristics.")

PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin no. TQFP-80*	Pin name	Circuit type	Function			
62	X0	А	Crystal oscillator pins (50 MHz)			
63	X1	-				
39 to 41	MD0 to MD2	С	Operating mode selection input pins Connect directly to Vcc5 or Vss. In the flash memory mode, these pins are set to be V _{ID} (= 12.0 V) input pins by performing a proper operation.			
60	RST	В	External reset request input pin			
42	HST	D	Hardware standby input pin			
65 to 72	P00 to P07	E	General-purpose I/O port			
	D00 to D07		I/O pins for the lower 8 bits of the external data bus			
	DQ0 to DQ7		Data I/O pins for each operation command This function is valid in the flash memory mode.			
73 to 80	P10 to P17	E	General-purpose I/O port This function is valid when the external bus 8-bit mode.			
	D08 to D15		I/O pins for the upper 8 bits of the external data bus This function is valid when 16-bit bus mode.			
	DQ8 to DQ15		Data I/O pins for each operation command This function is valid in the flash memory mode.			
1 to 8	P20 to P27	F	General-purpose I/O port			
	A00 to A07	-	Output pins for the medium 8 bits of the external address bus			
	AQ0 to AQ7		Address input pins for each operation command This function is valid in the flash memory mode.			
10 to 17	P30 to P37	F	General-purpose I/O port This function is valid when the corresponding bit of the middle address control register specification is "port".			
	A08 to A15		Output pins for the medium 8 bits of the external address bus This function is valid when the corresponding bit of the middle address control register specification is "port".			
	AQ8 to AQ15		Address input pins for each operation command This function is valid in the flash memory mode.			
18	P40	F	General-purpose I/O port This function is valid when the corresponding bit of the upper address control register specification is "port".			
	A16		External address bus output pin of the bit 16 This function is valid when the corresponding bit of the upper address control register specification is "address".			
	AQ16		Address input pin for each operation command This function is valid in the flash memory mode.			

*: FPT-80P-M15

Pin no. TQFP-80*	Pin name	Circuit type	Function			
19	P41	F	General-purpose I/O port This function is valid when the upper address control register specification is "port".			
	A17		External address bus output pin of the bit 17 This function is valid when the corresponding bit of the upper address control register specification is "address".			
	AQ17		Address input pin for each operation command This function is valid in the flash memory mode.			
20	P42	F	General-purpose I/O port This function is valid when the corresponding bit of the upper address control register specification is "port".			
	A18		External address bus output pin of the bit 18 This function is valid when the corresponding bit of the upper address control register specification is "address".			
	SID0	_	UART #0 data input pin During UART #0 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately.			
	AQ18		Address input pin for each operation command This function is valid in the flash memory mode.			
21	P43	G	General-purpose I/O port This function is valid when the UART #0 data output is disabled and the corresponding bit of the upper address control register specification is "port".			
	A19	_	External address bus output pin of the bit 19 This function is valid when the UART #0 data output is disabled and the corresponding bit of the upper address control register specification is "address".			
	SOD0	_	UART #0 data output pin This function is valid when the UART #0 data output is enabled.			
22 P44 G General-purpose I/O por This function is valid whe disabled and the corresp register specification is "		General-purpose I/O port This function is valid when the UART #0 clock output is disabled and the corresponding bit of the upper address control register specification is "port".				
	A20		External address bus output pin of the bit 20 This function is valid when the UART #0 clock output is disabled and the corresponding bit of the upper address control register specification is "address".			
	SCK0	1	UART #0 clock I/O pin			

*: FPT-80P-M15

To Top / Lineup / Index

MB90F244

Pin no. TQFP-80*	Pin name	Circuit type	Function
23	P45	G	General-purpose I/O port This function is valid when the corresponding bit of the upper address control register specification is "port".
	A21		External address bus output pin of the bit 21 This function is valid when the corresponding bit of the upper address control register specification is "address".
	ASR0		16-bit input capture #0 data input pin During 16-bit input capture #0 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately.
	TINO		16-bit timer #0 data input pin During 16-bit timer #0 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately.
24	P46	G	General-purpose I/O port This function is valid when the corresponding bit of the upper address control register specification is "port".
	A22		External address bus output pin of the bit 22 This function is valid when the corresponding bit of the upper address control register specification is "address".
	ASR1		16-bit input capture #1 data input pin During 16-bit input capture #1 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately.
	TIN1		16-bit timer #1 data input pin During 16-bit timer #1 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately.
25	P47	G	General-purpose I/O port This function is valid when the corresponding bit of the upper address control register specification is "port".
	A23		External address bus output pin for the bit 23 This function is valid when the corresponding bit of the upper address control register specification is "address".
	ASR2		16-bit input capture #2 data input pin During 16-bit input capture #2 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately.
	TIN2		16-bit timer #2 data input pin During 16-bit timer #2 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately.

Pin no. TQFP-80*	Pin name	Circuit type	Function			
53	P51	Н	General-purpose I/O port This function is valid when the ready function is disabled.			
	RDY		Ready input pin This function is valid when the ready function is enabled.			
54	P52	Н	General-purpose I/O port This function is valid when the hold function is disabled.			
	HAK		Hold acknowledge output pin This function is valid when the hold function is enabled.			
55	P53	Н	General-purpose I/O port This function is valid when the hold function is disabled.			
	HRQ		Hold request input pin This function is valid and when the hold function is enabled.			
56	P54	F	General-purpose I/O port This function is valid in external bus 8-bit mode, or when \overline{W} pin output is disabled.			
	WRH		Write strobe output pin for the upper 8 bits of the data bus This function is valid in modes where the external bus 16-bit mode is enabled, and WRH pin output is enabled.			
	WE	_	Write enable input pin This function is valid in the flash memory mode.			
57	P55	F	General-purpose I/O port This function is valid when $\overline{\text{WRL}}$ pin output is disabled.			
	WRL / WR		Write strobe output pin for the lower 8 bits of the data bus This function is valid \overline{WRL} pin output is enabled.			
	ŌĒ		Output enable input pin for each operation command This function is valid in the flash memory mode.			
58	P56	F	General-purpose I/O port			
	RD		Read strobe output pin for the data bus			
	CE		Chip enable input pin for each operation command This function is valid in the flash memory mode.			
59	P57	F	General-purpose I/O port			
	ASR3		16-bit input capture #3 data input pin During 16-bit input capture #3 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately.			
	INT3		DTP/external interrupt #3 data input pin During DTP/external interrupt #3 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately.			
	BYTE		Byte access control input pin This function is valid in the flash memory mode.			

*: FPT-80P-M15

To Top / Lineup / Index

MB90F244

Pin no. TQFP-80*	Pin name	Circuit type	Function
30, 31, 33, 34, 35, 36, 37	P60, P61, P62, P63, P66, P67, P65	Ι	N-ch open-drain type I/O ports When bits corresponding to the ADER are set to "0", reading instructions other than the read-modify-write group returns the pin level. The value written on the data register is output to this pin directly.
	AN0, AN1, AN2, AN3, AN6, AN7, AN5		8/10-bit A/D converter analog input pins Use this function after setting bits corresponding to the ADER to "1" and setting corresponding bits of the data register to "1".
43	P70	J	General-purpose I/O port This function is valid when the bit corresponded to ADER is set to "0" and also the output of 16-bit timer #0 is disabled.
	TOT0		16-bit timer output pin This function is valid when the bit corresponded to ADER is set to "0" and also the output of 16-bit timer #0 is enabled.
	AN4		8/10-bit AD converter analog input pin This function can be used when the bit corresponded to ADER is set to "1" and also the bit correponded to the data resister is set to "1".
44, 45	P70, P72	G	General-purpose I/O port This function is valid when the reload timer #1, and #2 output is disabled.
	TOT1, TOT2		16-bit timer output pins This function is valid when the 16-bit timer #1, and #2 output is enabled.
46	P73	G	General-purpose I/O port This function is valid when the SSI #1 clock output is disabled.
	SCK1		SSI #1 clock output I/O pin
47	P74	G	General-purpose I/O port This function is always valid.
	SID1		SSI #1 data input pin During SSI #1 input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately.
48	P75	G	General-purpose I/O port This function is valid when the SSI #1 data output is disabled.
	SOD1		SSI #1 data output pin This function is valid when the SSI #1 data output is disabled.

*: FPT-80P-M15

(Continued)

Pin no. TQFP-80*	Pin name	Circuit type	Function
49, 50	P80, P81	G	General-purpose I/O port This function is always valid.
	INTO, INT1		DTP/external interrupt input pin When external interrupts are enabled, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately.
51	P82	G	General-purpose I/O port This function is always valid.
	INT2		DTP/external interrupt input pin When external interrupts are enabled, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using them for output deliberately. Because an input to this pin is clamped to Low when the CPU stops, use INT0 or INT1 to wake up the system from the stop mode.
	ĀTG		8/10-bit A/D converter trigger input pin When 8/10-bit A/D converter is waiting for activation, this input may be used at any time; therefore, it is necessary to stop output by other functions on this pin, except when using it for output deliberately.
52	CLK	G	CLK output pin
	RY/BY		Open-drain pin output ready/busy signal in the program deleting operation This function is valid in the flash memory mode.
38	Vcc	Power supply	Digital circuit power supply pin
64	Vcc5	Power supply	Power supply voltage (5.0 V) input pin for flash memory
9, 32, 61	Vss	Power supply	Digital circuit power supply (GND) pin
26	AVcc	Power supply	Analog circuit power supply pin This power supply must only be turned on or off when electric potential of AV $_{\rm CC}$ or greater is applied to V $_{\rm CC}$.
27	AVRH	Power supply	8/10-bit A/D converter external reference voltage input pin This pin must only be turned on or off when electric potential of AVRH or greater is applied to AV_{CC} .
28	AVRL	Power supply	8/10-bit A/D converter external reference voltage input pin
29	AVss	Power supply	Analog circuit power supply (GND) pin

*: FPT-80P-M15

■ I/O CIRCUIT TYPE

(Continued)

Туре	Circuit	Remarks
E	Diffusion resistor Flash memory mode Standby control Standby control TTL TTL TTL TTL TTL TTL TTL TT	 CMOS-level output TTL-level input (with standby control)
F	Diffusion resistor Flash memory mode Standby control Standby control Standby control	 CMOS-level output CMOS-level hysteresis input TTL-level input (flash memory mode) (with standby control)
G	Diffusion resistor Standby control Signal	 CMOS-level output CMOS-level hysteresis input (with standby control)
Н	Diffused resistor	 CMOS-level output TTL-level input (with standby control)

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to the input or output pins other than medium-and high-voltage pins or if higher than the voltage which shown on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

In addition, for the same reasons take care to prevent the analog power supply from exceeding the digital power supply.

2. Treatment of Unused Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistors.

3. Precautions when Using an External Clock

When an external clock is used, drive X0 only.

4. Power Supply Pins

When there are several V_{cc} and V_{ss} pins, those pins that should have the same electric potential are connected within the device when the device is designed in order to prevent misoperation, such as latch-up. However, all of those pins must be connected to the power supply and ground externally in order to reduce unnecessary emissions, prevent misoperation of strobe signals due to an increase in the ground level, and to observe the total output current standards.

In addition, give a due consideration to the connection in that current supply be connected to V_{cc} and V_{ss} with the lowest possible impedance.

Finally, it is recommended to connect a capacitor of about 0.1 μ F between V_{cc} and V_{ss} near this device as a bypass capacitor.

5. Crystal Oscillation Circuit

Noise in the vicinity of the X0 and X1 pins will cause this device to operate incorrectly. Design the printed circuit board so that the bypass capacitor connecting X0 and X1 pins and the crystal oscillator (or ceramic oscillator) to ground is located as close to the device as possible.

In addition, because printed circuit board artwork in which the area around the X0 and X1 pins is surrounded by ground provides stable operation, such an arrangement is strongly recommended.

6. Sequence for Applying the A/D Converter Power Supply and the Analog Inputs

Always be sure to apply the digital power supply (Vcc) before applying the A/D converter power supply (AVcc, AVRH, and AVRL) and the analog inputs (AN0 to AN7).

In addition, when the power is turned off, turn off the A/D converter power supply and the analog inputs first, and then turn off the digital power supply. (Turning on or off the analog and digital power supplies simultaneously will not cause any problems.)

Whether applying or cutting off the power, be certain that AVRH does not exceed AVcc.

7. External Reset Input

To reliably reset the controller by inputting an "L" level to the RST pin, ensure that the "L" level is applied for at least five machine cycles.

8. HST Pin

When turning on the system, be sure to set the $\overline{\text{HST}}$ pin to "H" level. Never set the $\overline{\text{HST}}$ pin to "L" level while the $\overline{\text{RST}}$ pin is in "L" level.

9. CLK Pin

10.Specifed Interrupt Sequence

When the interrupt stack area is allocated to the external memory, even if the higher priority level interrupt may generate while the former interrupt is waiting in the stack area, the latter higher priority level interrupt routine has to wait untill the former interrupt routine is excuted. In this case the former interrupt routine is excuted in the latter higher priority level.

To Top / Lineup / Index

MB90F244

BLOCK DIAGRAM

■ F²MC-16L CPU PROGRAMMING MODEL

■ MEMORY MAP

■ I/O MAP

Address	Register name	Register	Read/ write	Resource name	Initial value
00000н	PDR0	Port 0 data register	R/W	Port 0	XXXXXXXXB
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXXB
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXXB
000003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXXB
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXXB
000005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXX-B
000006н	PDR6	Port 6 data register	R/W	Port 6	111-1111в
000007н	PDR7	Port 7 data register	R/W	Port 7	——XXXXXX в
000008 _H	PDR8	Port 8 data register	R/W	Port 8	ХХХв
000009н to 00000Fн		(Vacancy)		·	
000010н	DDR0	Port 0 data direction register	R/W	Port 0	00000000в
000011 н	DDR1	Port 1 data direction register	R/W	Port 1	0000000в
000012 н	DDR2	Port 2 data direction register	R/W	Port 2	0000000в
000013 н	DDR3	Port 3 data direction register	R/W	Port 3	0000000в
000014н	DDR4	Port 4 data direction register	R/W	Port 4	0000000в
000015 н	DDR5	Port 5 data direction register	R/W	Port 5	000000-в
000016н	ADER	Analog input enable register	R/W	Analog input enabled	11111111в
000017 н	DDR7	Port 7 data direction register	R/W	Port 7	000000в
000018 _H	DDR8	Port 8 data direction register	R/W	Port 8	000в
000019н to 00001Fн		(Vacancy)			
000020н	SCR1	Serial control status register 1	R/W	1	1000000в
000021 н	SSR1	Serial status register 1	R/W	8/16-bit I/O	00 в
000022н	SDR1L	Serial data register 1 (L)	R/W	 simple serial interface ch 1 	XXXXXXXX
000023н	SDR1H	Serial data register 1 (H)	R/W		XXXXXXXX
000024н to		(Vacancy)		<u></u>	
		Made control register 0	Ρ /\//	1	00000100
		Status register 0		-	
000023H		Status register 0/	Γ./ ν ν	UART ch, 0	
00002Ан	UODR0	output data register 0/	R/W	-	XXXXXXXXB
00002Вн	URD0	Rate and data register 0	R/W		0000000 в
00002Сн to 00002Ен		(Vacancy)			

Address	Register name	Register	Read/ write	Resource name	Initial value				
00002Fн	CKSCR	Clock selection register	R/W	PLL	1100в				
000030н	ENIR	DTP/interrupt enable register	R/W		0000в				
000031н	EIRR	DTP/interrupt source register	R/W	DIP/external	0000в				
000032н	ELVR	Request level setting register	R/W	monupt	0000000в				
000033н to 00003Fн		(Vacancy)							
000040н	TMCSPO	Timer control status register #0	R/W		0000000в				
000041н	TWOSING		R/W		0000в				
000042н	TMDO	16 hit timer register #0	R	16 bit timor #0	XXXXXXXXB				
000043н	TIVIKU	To-bit timer register #0	R		XXXXXXXXB				
000044н			W		XXXXXXXXB				
000045н	IWKLKU		W	†	XXXXXXXXB				
000046н		()/222223)							
000047н		(vacancy)							
000048н		Timer control status register #1	R/W		0000000в				
000049н	TNICSKI		R/W		0000в				
00004Ан		10 hit times register #4	R	10 bit time on #1	XXXXXXXXB				
00004Вн			R	10-bit timer #1	XXXXXXXXB				
00004Сн		16 hit relead register #1	W		XXXXXXXXB				
00004Dн			W	*	XXXXXXXXB				
00004Ен									
00004Fн		(vacancy)							
000050н	TMCSD2	Timor control status register #2	R/W		0000000в				
000051н	TWOSKZ		R/W	*	0000в				
000052н	TMD2	16 hit timor register #2	R	16 bit timor #2	XXXXXXXXB				
000053н			R	10-bit timer #2	XXXXXXXXB				
000054н		16 hit relead register #2	W		XXXXXXXXB				
000055н	TWIRLRZ	To-bit reload register #2	W		XXXXXXXXB				
000056н									
to 00005Fн		(Vacancy)							
000060н	ICP0	Input capture register 0	R	-	XXXXXXXXB				
000061н			R	16 bit innut	XXXXXXXXB				
000062н		Input capture register 1	R	capture 0 and 1	XXXXXXXXB				
000063н			R		XXXXXXXXB				
000064н	ICS0	Input capture control status register 0 and 1	R/W		00000000в				
000065н	(Vacancy)								

Address	Register name	Register	Read/ write	Resource name	Initial value
000066н		Input conture register 2	D		XXXXXXXXB
000067н	ICF2		ĸ		XXXXXXXXB
000068н		Input conturo register 2	Р	16-bit input	XXXXXXXXB
000069н	ICF 3			capture 2 and 3	XXXXXXXXB
00006Ан	ICS1	Input capture control status register 2 and 3	R/W		0000000в
00006Вн		(Vacancy)			
00006Сн	терт	Timor data register	R		0000000в
00006D ^H	ICDI		R	16-bit freerun timer	0000000в
00006Ен	TCCS	Timer control status register	R/W		0000000в
00006Fн		(Vacancy)			
000070н	ADCS 1	A/D control status register 1	R/W		000-0000в
000071 н	ADCS 2	A/D control status register 2	R/W		-00000в
000072н	ADCT 1	Conversion time setting register 1	R/W		XXXXXXXXB
000073н	ADCT 2	Conversion time setting register 2	R/W		XXXXXXXXB
000074н	ADTL0	A/D data register 0 (L)	R	8/10-bit A/D converter	XXXXXXXXB
000075н	ADTH0	A/D data register 0 (H)	R		ХХв
000076н	ADTL1	A/D data register 1 (L)	R		XXXXXXXXB
000077н	ADTH1	A/D data register 1 (H)	R		ХХв
000078 н	ADTL2	A/D data register 2 (L)	R		XXXXXXXXB
000079 н	ADTH2	A/D data register 2 (H)	R		ХХв
00007Ан	ADTL3	A/D data register 3 (L)	R		XXXXXXXXB
00007Вн	ADTH3	A/D data register 3 (H)	R		ХХв
00007Сн to 00008Fн		(Vacancy)			
000090н to		(System reserved a	rea)*1		
00009Eн					
00009Fн	DIRR	Delayed interrupt source generation/ release register	R/W	Delayed interrupt generation module	Ов
0000A0н	STBYC	Standby control register	R/W	Low-power consumption mode	0001XXXX _в
0000АЗн	MACR	Middle address control register	W		*2
0000А4н	HACR	High address control register	W	External pin	*2
0000А5н	EPCR	External pin control register	W		*2

(Continuo	ភា
ICONUNUE	u

Address	Register name	Register	Read/ write	Resource name	Initial value	
0000A8н	WTC	Watchdog timer control register	R/W	Watchdog timer	XXXXXXXX	
0000A9н	TBTC	Timebase timer control register	R/W	Timebase timer	0ХХ0000в	
0000AEн	FMCS	Control status register	R/W	Flash memory	000Х00в	
0000В0н	ICR00	Interrupt control register 00	R/W*3		00000111в	
0000B1н	ICR01	Interrupt control register 01	R/W*3		00000111в	
0000В2н	ICR02	Interrupt control register 02	R/W*3		00000111в	
0000ВЗн	ICR03	Interrupt control register 03	R/W*3		00000111в	
0000B4н	ICR04	Interrupt control register 04	R/W*3	Interrupt	00000111в	
0000В5н	ICR05	Interrupt control register 05	R/W*3		00000111в	
0000В6н	ICR06	Interrupt control register 06	R/W*3		00000111в	
0000 B7 н	ICR07	Interrupt control register 07	R/W*3		00000111в	
0000B8н	ICR08	Interrupt control register 08	R/W*3	controller	00000111в	
0000В9н	ICR09	Interrupt control register 09	R/W*3		00000111в	
0000ВАн	ICR10	Interrupt control register 10	R/W*3		00000111в	
0000ВВн	ICR11	Interrupt control register 11	R/W*3		00000111в	
0000ВСн	ICR12	Interrupt control register 12	R/W*3		00000111в	
0000BDн	ICR13	Interrupt control register 13	R/W*3	-	00000111в	
0000BEH	ICR14	Interrupt control register 14	R/W*3		00000111в	
0000BFн	ICR15	Interrupt control register 15	R/W*3		00000111в	
0000C0н to 0000FFн	(External area)*3					

Explanation of read/write

R/W : Readable and writable

- R : Read only
- W : Write only

Explanation of initial values

- 0: The initial value of this bit is "0".
- 1: The initial value of this bit is "1".
- X: The initial value of this bit is undefined.
- -: This bit is unused. No initial value is defined.
- *1: Access prohibited.
- *2: The initial values are changed depending on a bus mode.
- *3: The only area available for the external access below address 0000FF_H is this area. Addresses not explained in the table are "(reserved area)"; accesses to these areas are handled accesses to internal areas. No access signal is generated for the external bus.

Note: Do not use any "(vacancy)".

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

	1			,,,,	00 100 0.0 1)
Parameter	Symbol	Va	lue	Unit	Bomarka
Farameter	Symbol	Min.	Max.	Onit	Remarks
	Vcc	Vss-0.3	Vss + 4.0	V	
	Vcc5	Vss-0.3	Vss + 7.0	V	*1
Power supply voltage	AVcc	Vss-0.3	Vss + 4.0	V	*2
	AVRH	Vss-0.3	Vss + 4.0	V	*2
	AVRL	Vss-0.3	Vss + 4.0	V	*2
	VI1	Vss-0.3	Vcc + 0.3	V	*3
Input voltage	V _{I2}	Vss-0.3	Vcc5+0.3	V	*4
Output voltage	Vo	Vss-0.3	Vcc + 0.3	V	*3
"L" level maximum output current	Iol		10	mA	
"L" level average output current	Iolav		3	mA	
"L" level total maximum output current	ΣΙοι		60	mA	
"L" level total average output current	ΣΙΟLAV		30	mA	
"H" level maximum output current	Іон		-10	mA	
"H" level average output current	Іонач		-3	mA	
"H" level total maximum output current	ΣІон		-60	mA	
"H" level total average output current	ΣΙοήαν		-30	mA	
Power consumption	PD		350	mW	
Operating temperature	TA	0	+70	°C	
Storage temperature	Tstg	-55	+125	°C	

(AVss = Vss = 0.0 V)

*1: Vcc5 must always exceed Vcc.

*2: AVcc, AVRH and AVRL must not exceed Vcc. Also AVRL must not exceed AVRH.

*3: V₁₁ and V₀ must not exceed V_{cc} + 0.3 V.

*4: V_{12} must not exceed Vcc5 + 0.3 V.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V	V)

Parameter	Symbol	Va	lue	Unit	Remarks	
Falameter	Symbol	Min.	Max.	Unit		
Power supply voltage	Vcc	3.0	3.6	V	Normal operation	
	Vcc	3.0	3.6	V	Maintaining the stop status	
	Vcc5	4.5	5.5	V		
Operating temperature	TA	0	+70	°C		

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

Demonster	Cumb al	Din manua	Q a maliti a m	Va	lue	11	Demente	
Parameter	Symbol	Pin name	Condition	Min.	Max.	Unit	Remarks	
	VIH2			0.7 Vcc	Vcc5 + 0.3	V	TTL input	
"H" level input	VIH1S	P60 to P63, P65 to P67, P70		0.8 Vcc	Vcc + 0.3	V	CMOS hysteresis input	
voltage	VIH2S			0.8 Vcc	Vcc5 + 0.3	V	CMOS hysteresis input	
	VIH2S5	RST, HST		0.8 Vcc5	Vcc5 + 0.3	V	CMOS hysteresis input	
	VIHM	MD0 to MD2		0.7 Vcc5	Vcc5 + 0.3	V	CMOS input	
	VIL2			Vss - 0.3	0.2 Vcc	V	TTL input	
"L" level input	VIL1S	P60 to P63, P65 to P67, P70		Vss – 0.3	0.3 0.2 Vcc		CMOS hysteresis input	
voltage	VIL2S			Vss - 0.3	0.2 Vcc	V	CMOS hysteresis input	
	VIL2S5	RST, HST		Vss – 0.3	0.2 Vcc5	V	CMOS hysteresis input	
	VILM	MD0 to MD2		Vss - 0.3	0.2 Vcc5	V	CMOS input	
"H" level output voltage	Vон	All ports except port 6	Vcc = 3.0 V Іон = –1.6 mA	Vcc - 0.3	_	V		
"L" level output voltage	Vol	All ports	Vcc = 3.0 V IoL = 2.0 mA		0.4	V		
voltage	Іін1	MD0 to MD2	Vcc = 3.6 V Vcc5 = 5.5 V VIH = 0.7 Vcc5	_	-10	μA	CMOS input	
"H" level input	Іін2	_	Vcc = 3.6 V Vcc5 = 5.5 V VIH = 2.2 V	_	-10	μΑ	TTL input	
current	Іінз	Except port 6, RST, HST	Vcc = 3.6 V Vcc5 = 5.5 V VIH = 0.8 Vcc	_	-10	μA	CMOS hysteresis input	
	Іін4	P60 to P63, P65 to P67	Vcc = 3.6 V Vcc5 = 5.5 V VIH = 0.7 Vcc		-10	μΑ	CMOS hysteresis input Only port 6	
	lı∟ı	MD0 to MD2	Vcc = 3.6 V Vcc5 = 5.5 V VIL = 0.3 Vcc5		10	μΑ	CMOS input	
"L" level input	IIL2	_	Vcc = 3.6 V Vcc5 = 5.5 V VIL = 0.8 V		10	μΑ	TTL input	
current	li∟3	Except port 6, RST, HST	Vcc = 3.6 V Vcc5 = 5.5 V VIL = 0.2 Vcc	_	10	μΑ	CMOS hysteresis input	
	I 1L4	P60 to P63, P65 to P67	Vcc = 3.6 V Vcc5 = 5.5 V VIL = 0.3 Vcc	_	10	μA	CMOS hysteresis input Only port 6	

$(V_{CC}5 = 5.0 \text{ V} \pm 0.5 \text{ V}, V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{AVss} = \text{Vss} = 0.0 \text{ V}, \text{T}_{\text{A}} = 0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C})$

(Continued)

Demonster	O week al	Din nome		Value			11	Demeriles	
Parameter	Symbol	Pin name	C	ondition	Min.	Тур.	Max.	Unit	Remarks
	Icc1	Vcc	CPU	Vcc = 3.15 V to 3.6 V	_		50	mA	Flash memory read state
	Icc1	Vcc	normal mode at	Vcc = 3.3 V ±0.15 V	_		45	mA	Flash memory read state
	ICC51	Vcc5	25 MHz		_		33	mA	Flash memory read state
	Icc2	Vcc	0.511	Vcc = 3.15 V to 3.6 V	_		50	mA	Flash memory program/erase state
Power supply current*1	Icc2	Vcc	normal mode at 25 MHz	Vcc = 3.3 V ±0.15 V	_		45	mA	Flash memory program/erase state
	Icc52	Vcc5		_	_		53	mA	Flash memory program/erase state
	Iccs	Vcc	CPU sleep mode		—		20	mA	
	Icc5s	Vcc5	At 25 MH	Z	—		5	mA	
	Іссн	Vcc	CPU stop	mode	—		100	μA	
	Ісс5н	Vcc5	$T_{A} = +25^{\circ}$	С	—		100	μA	
Input capacitance	CIN	Except Vcc, Vcc5, Vss		_	_	10		pF	
Pull-up resistor	Rpull	RST	Vcc = 3.3 Vcc5 = 5.0	V D V	22	—	220	kΩ	
Open-drain output leakage voltage	ILEAK	Port 6	_		_	_	10	μΑ	
Low Vcc5 lock	Vlko			_	TBD	_	3.6	V	

$(V_{CC}5 = 5.0 \text{ V} \pm 0.5 \text{ V}, V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{AVss} = \text{Vss} = 0.0 \text{ V}, \text{T}_{\text{A}} = 0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C})$

*1: Because the current values are tentative values, they are subject to change without notice due to our efforts to improve the characteristics of these devices.

*2: To prevent improper commands from being activated during rise and fall of Vcc5, the internal Vcc5 detection circuit of the flash memory allows only read accesses and ignores write accesses while Vcc5 is lower than VLKO.

4. Flash Memory Programming/Eraseing Characteristics

 $(V_{CC}5 = 5.0 \text{ V} \pm 0.5 \text{ V}, V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{AVss} = \text{Vss} = 0.0 \text{ V}, \text{T}_{\text{A}} = 0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C})$

Baramatar	Condition		Value		Unit	Remarks	
Farameter	Condition	Min.	Тур.	Max.	Unit		
Sector eraseing time		—	1.5	13.5	sec	Except for the write time before internal erase operation	
Chip eraseing time	$T_{A} = +25^{\circ}C,$	_	—	27.0	sec	Except for the write time before internal erase operation	
Byte programmimg time	Vcc = 3.3 V, Vcc5 = 5.0 V	_	16	_	μs	Except for the over head time of the system	
Chip programming time			2.1	—	sec	Except for the over head time of the system	
Erase/program cycle	—	100	—	—	cycles		

*: The internal automatic algorithm continues operations for up to 48 ms, for each 1-byte writing operation.

5. AC Characteristics

(1) Clock Timing

Paramatar	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Farameter	Symbol	Fininame	Condition	Min.	Max.	Unit	Nellia NS
Clock frequency	Fc	X0, X1	Vcc = 3.15 V to 3.6 V	_	50	MHz	
	Fc	X0, X1	Vcc = 3.3 V ±0.3 V		40	MHz	
Clock cycle time	tc	X0, X1		1/Fc	—	ns	
Input clock pulse width	Р _{WH} , Р _{WL}	X0	_	10	_	ns	
Input clock rising/falling time	tcr, tcf	X0		_	8	ns	

(2) Clock Output Timing

(Vcc =	: 3.3 V ±0	0.3 V, Vo	cc5 = 5.0	V ±0.5	V, AVss =	$V_{SS} = C$).0 V,	$T_A = 0^\circ$	C to	+70°C	;)
											_

Baramatar	Symbol Pin name		Condition	Va	Unit	Pomarke	
Parameter	Symbol		Condition	Min.	Max.	Unit	IVEIIIdi KS
Cycle time	tcyc	CLK		2 tc*	—	ns	
$CLK \uparrow \rightarrow CLK \downarrow$	t CHCL	CLK		1 tcyc/2 – 15	1 tcyc/2 + 15	ns	

* : For information on tc (clock cycle time), see "(1) Clock Timing."

(3) Reset and Hardware Standby Input

(Vcc = 3.3 V ±0.3 V, Vcc5 = 5.0 V ±0.5 V, AVss = Vss = 0.0 V, T_A = 0°C to +70°C)

Baramatar	Symbol	Din namo	in name Condition		lue	Unit	Pomarke
Farameter	Symbol	Fininame	Condition	Min.	Max.	Unit	Remarks
Reset input time	t rstl	RST		5 t cyc*	—	ns	
Hardware standby input time	t HSTL	HST		5 t cyc*	—	ns	

* : For information on tcvc (cycle time), see "(2) Clock Output Timing."

Note: When hardware standby input is given, the machine cycle is simultaneously selected to be divide-by-32.

(4) Power-on Reset

				(A	Vss = Vss	= 0.0 V, T/	$A = 0^{\circ}C$ to $+70^{\circ}C$)
Deremeter	Symbol	Pin name	Condition	Value		Unit	Domorko
Parameter	Symbol			Min.	Max.	Unit	Relliarks
Power supply rising time	tR	Vcc, Vcc5		—	30	ms	*
Power supply cut-off time	t off	Vcc, Vcc5		1		ms	

* : Before the power supply rising, Vcc must be lower than 0.2 V.

Note: The above standards are the values needed in order to activate a power-on reset.

(5) Bus Read Timing

	``			-		r	
Baramatar	Symbol	Din namo	Condition	Va	lue	Unit	Pomarka
Falameter	Symbol	Finnanie	Condition	Min.	Max.	Unit	IVEIIIai KS
Address cycle time	t ACYC	AN23 to AN00		2 tcyc* – 10	—	ns	
Valid address $\rightarrow \overline{RD} \downarrow$ time	tavrl	AN23 to AN00		1 tcyc*/2 - 13	—	ns	
RD pulse width	t rlrh	RD		1 tcyc* – 20	—	ns	
$\overline{RD} \downarrow \rightarrow data \ read \ time$	t rldv	D15 to D00			1 tcyc* – 30	ns	
Valid address \rightarrow data read time	tavdv	D15 to D00			3 tcyc*/2 – 30	ns	
$\overline{RD} \uparrow \rightarrow data hold time$	t RHDX	D15 to D00		0	—	ns	
$\overline{RD} \uparrow \rightarrow address valid time$	t RHAX	AN23 to AN00		1 tcrc*/2 - 20	—	ns	
Valid address \rightarrow CLK \uparrow time	tavch	AN23 to AN00, CLK	1	1 tcyc*/2 – 20	_	ns	
$\overline{RD} \downarrow \rightarrow CLK \downarrow time$	t rlcl	RD, CLK		1 tcyc*/2 - 20	—	ns	

(Vcc = 3.3 V \pm 0.3 V, Vcc5 = 5.0 V \pm 0.5 V, AVss = Vss = 0.0 V, TA = 0°C to +70°C)

* : For information on tcyc (cycle time), see "(2) Clock Output Timing."

(6) Bus Write Timing

	,						,
Poromotor	Symbol	Pin name	Condition	Val	ue	Unit	Remarks
Falameter	Symbol	Fininame	Condition	Min.	Max.	Unit	
Valid address $\rightarrow \overline{\text{WR}} \downarrow \text{time}$	tavwl	AN23 to AN00		1 tcyc*/2 – 13	—	ns	
WR pulse width	t wlwh	WRL, WRH		1 tcrc* – 20		ns	
Write data $\rightarrow \overline{\text{WR}} \uparrow$ time	tovwн	D15 to D00		1 tcyc* – 33		ns	
$\overline{WR} \uparrow \rightarrow Data$ hold time	t whdx	D15 to D00		1 tcyc*/2 – 15	—	ns	
$\overline{WR} \uparrow \rightarrow Address$ valid time	t whax	AN23 to AN00		1 tcyc*/2 – 15		ns	
$\overline{WR} \uparrow \rightarrow CLK \downarrow time$	twlcl	WRL, WRH, CLK		1 tcyc*/2 – 20	—	ns	

(Vcc = 3.3 V \pm 0.3 V, Vcc5 = 5.0 V \pm 0.5 V, AVss = Vss = 0.0 V, T_A = 0°C to +70°C)

* : For information on tcvc (cycle time), see "(2) Clock Output Timing."

(7) Ready Input Timing

$(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{CC}5 = 5.0 \text{ V} \pm 0.5 \text{ V}, \text{AV}_{SS} = \text{V}_{SS} = 0.0 \text{ V}, \text{T}_{A} = 0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C})$							
Parameter	Symbol	Din namo	Condition	Va	lue	Unit	Remarks
Parameter	Symbol	Fill liame	Condition	Min.	Max.	Unit	
RDY setup time	t RYHS	RDY	Source oscillation	15	38	ns	
RDY hold time	t ryhh	RDY	50 MHz	0	38	ns	

Note: If the RDY setup time is insufficient, use the auto ready function.

(8) Hold Timing

(Vcc = 3.0 V ± 0.3 V, Vcc5 = 5.0 V ± 0.5 V, AVss = Vss = 0.0 V, T_A = 0°C to +70°C)

Parameter	Symbol Bin nam		Condition	Va	lue	Unit	Pomarks
Parameter	Symbol		Condition	Min.	Max.	Unit	itemaiks
Pin floating $\rightarrow \overline{HAK} \downarrow$ time	t xhal	HAK		30	1 t cyc*	ns	
$\overline{\text{HAK}}$ time $\uparrow \rightarrow \text{Pin}$ valid time	tнан∨	HAK		1 t cyc*	2 t cyc*	ns	

* : For information on texe (cycle time), see "(2) Clock Output Timing."

Note: At least one cycle is required from the time when HRQ is fetched until HAK changes.

(9) UART Timing

Deremeter	Symbol	Din nomo	Condition	Va	lue	Unit	Pomarks
Parameter	Symbol	Fin name	Condition	Min.	Max.	Unit	Remarks
Serial clock cycle time	tscyc	_		8 tcyc*	_	ns	
$\begin{array}{l} SCK \downarrow \to SOD \text{ delay} \\ time \end{array}$	tslov	—	For internal shift clock	-80	80	ns	
$Valid\;SID\toSCK\;\uparrow$	tıvsн		CL = 80 pF	100		ns	
$SCK \uparrow \rightarrow Valid$ SID hold time	tsнıx	_		60	—	ns	
Serial clock "H" pulse width	tshsl	_		4 t cyc*	—	ns	
Serial clock "L" pulse width	t slsh	—	For external shift clock	4 t cyc*	—	ns	
$\begin{array}{l} SCK \downarrow \to SOD \text{ delay} \\ time \text{ delay time} \end{array}$	tslov	—	mode output pin, C∟ = 80 pF	—	150	ns	
$Valid\;SID\toSCK\;\uparrow$	tıvsн			60		ns	
$\begin{array}{l} SCK \uparrow \to Valid \; SID \\ hold \; time \end{array}$	tsнıx	—		60	—	ns	

(Vcc = 3.3 V \pm 0.3 V, Vcc5 = 5.0 V \pm 0.5 V, AVss = Vss = 0.0 V, T_A = 0°C to +70°C)

* : For information on tcvc (cycle time), see "(2) Clock Output Timing."

Notes: • These are the AC characteristics for CLK synchronous mode.

 \bullet CL is the load capacitance added to pins during testing.

(10) Serial I/O Timing

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{CC}5 = 5.0 \text{ V} \pm 0.5 \text{ V}, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = 0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C})$

Baramotor	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Falameter	Symbol		Condition	Min.	Max.	Om	
Serial clock cycle time	tscyc	—		2 t cyc*	—	ns	
SCK $\uparrow \rightarrow$ SOD delay time	t slov	_	For internal shift clock		1 tcyc*/2	ns	
$Valid\ SID\toSCK\ \uparrow$	t ivsh	—	C∟ = 80 pF	-15	—	ns	
SCK $\uparrow \rightarrow Valid$ SID hold time	tsнıx	—		1/2 tcyc*	_	ns	

* : For information on teve (cycle time), see "(2) Clock Output Timing."

Note: C_L is the load capacitance added to pins during testing.

(11) Timer Input Timing

	(V	$fcc = 3.0 \text{ V} \pm 0.3 \text{ V},$	$Vcc5 = 5.0 V \pm$	0.5 V, AVs	s = Vss = 0	.0 V, Ta	$= 0^{\circ}C$ to $+70^{\circ}C$	
Parameter	Symbol		Condition	Value		Unit	Domorko	
	Symbol Fi	Fill lidille	Condition	Min.	Max.	Unit	Remarks	
Input pulse width	tтıwн, tтıw∟	ASR0 to ASR3, TIN0 to TIN2	_	4 t cyc*	_	ns		

* : For information on tcvc (cycle time), see "(2) Clock Output Timing."

(12) Timer Output Timing

(Vcc = 3.0 V ±0.3 V, Vcc5 = 5.0 V ±0.5 V, AVss = Vss = 0.0 V, T_A = 0°C to +70°C)

Paramotor	Symbol	Pin name	name Condition		Pin name Condition		lue	Unit	Romarks
Parameter	Symbol Fill hame		Condition	Min.	Max.	Unit	Nellial N3		
$CLK \uparrow \rightarrow Change$ time	tто	TOT0 to TOT2	Vcc = 3.3 V ±0.3 V	_	40	ns			

(13) Trigger Input Timing

	(V	$fcc = 3.0 \text{ V} \pm 0.3 \text{ V},$	$Vcc5 = 5.0 V \pm$	0.5 V, AVs	s = Vss = 0	.0 V, Ta	$ = 0^{\circ}C \text{ to } +70^{\circ}C $
Parameter	Symbol	Pin name	Condition	Value		Unit	Domorko
	Symbol		Condition	Min.	Max.	Unit	Remarks
Input pulse width	tтrgн, ttrgl	ATG, INT0 to INT3		5 t cyc*	—	ns	

* : For information on tcvc (cycle time), see "(2) Clock Output Timing."

6. A/D Converter Electrical Characteristics

Demonster	Cumb al	Din nomo	Condition		Value		11	Bomorko	
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks	
Resolution		AN0 to AN3, AN5 to AN7		_	8, 10	10	bit		
		AN4			8	8	bit		
Total error		_			_	T.B.D	LSB	Target: ±4.0	
Linearity error						T.B.D	LSB	Target: ±2.0	
Differential linearity error	_	—		_		T.B.D	LSB	Target: ±1.9	
Zero transition	Vот	AN0 to AN3, AN5 to AN7		AVRL -1.0 LSB	AVRL +1.0 LSB	AVRL +4.0 LSB	mV		
voltage	Vот	AN4		AVRL -1.0 LSB	AVRL +1.0 LSB	AVRL +1.5 LSB	mV	8-bit precision in calculation	
Full-scale transition	Vfst	AN0 to AN3, AN5 to AN7		AVRH -4.0 LSB	AVRH -1.0 LSB	AVRH +1.0 LSB	mV		
voltage	Vfst	AN4		AVRH -2.0 LSB	AVRH -1.0 LSB	AVRH +1.0 LSB	mV	8-bit precision in calculation	
Conversion time				1.00		—	μs		
Sampling period	—	_	Setup by ADCT register	440		—	ns		
Conversion period a		_		120		—	ns		
Conversion period b		_	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}^{*1}$	120		—	ns		
Conversion period c		_		200		—	ns		
Analog port input current	lain	AN0 to AN7	_	_	0.1	3	μA		
Analog input voltage		AN0 to AN7		AVRL	_	AVRH	V		
Poforonco voltago		AVRH		AVRL + 2.7	_	AVcc	V		
Reference voltage	_	AVRL	AVRH – AVRL ≤ 2.7	0	_	AVRH – 2.7	V		
	L		AVcc = 3.3 V ±0.3 V	_	7	9	mA		
Power supply	IA	AVCC	AVcc = 3.3 V ±0.15 V	_	7	8	mA		
current	As*2		AVcc = 3.3 V Stop mode			5	μA		
Reference voltage	IR	AVRH	AVcc = 3.3 V		1.0	1.5	mA		
supply current	Rs*2	AVRH	Stop mode		_	5	μΑ		
Interchannel disparity		AN0 to AN3, AN5 to AN7		_	_	4	LSB	No rating for AN4 because of calculated by 8-bit precision	

(Vcc = 3.3 V ± 0.3 V, Vcc5 = 5.0 V ± 0.5 V, AVss = Vss = 0.0 V, TA = 0°C to +70°C)

*1: When $F_c = 50$ MHz (frequency), and the machine cycle is 4.0 ns.

The minimum value of the ADCT resister is #A224, differs from that of the MB90F243.

*2: Current when the A/D converter is not operating and the CPU is stopped.

Notes: • The smaller | AVRH – AVRL |, the greater the error would become relatively.

• If the output impedance of the external circuit for the analog input is high, sampling period might be insufficient. When the sampling period set at near the minimum value, the output impedance of the external circuit should be less than approximately 300Ω .

To Top / Lineup / Index

MB90F244

6. A/D Converter Glossary

Resolution

Analog changes that are identifiable with the A/D converter. When the number of bits is 10, analog voltage can be divide into 2^{10} .

• Linearity error (unit: LSB)

The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics

• Differential linearity error

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

• Total error (unit: LSB)

The difference between theoretical and actual conversion values caused by the zero transition error, full-scale transition error, non-linearity error, differential linearity error, and noise

■ INSTRUCTIONS (412 INSTRUCTIONS)

Table 1 Explanation of Items in Table of Instructions

ltem	Explanation
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction.
#	Indicates the number of bytes.
~	Indicates the number of cycles. See Table 4 for details about meanings of letters in items.
В	Indicates the correction value for calculating the number of actual cycles during execution of instruction. The number of actual cycles during execution of instruction is summed with the value in the "cycles" column.
Operation	Indicates operation of instruction.
LH	Indicates special operations involving the bits 15 through 08 of the accumulator. Z: Transfers "0". X: Extends before transferring. —: Transfers nothing.
АН	Indicates special operations involving the high-order 16 bits in the accumulator. *: Transfers from AL to AH. —: No transfer. Z: Transfers 00H to AH. X: Transfers 00H or FFH to AH by extending AL.
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky
S	bit), N (negative), Z (zero), V (overflow), and C (carry). *: Changes due to execution of instruction.
Т	—: No change.
Ν	R: Reset by execution of instruction.
Z	
V	
С	
RMW	Indicates whether the instruction is a read-modify-write instruction (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.). *: Instruction is a read-modify-write instruction —: Instruction is not a read-modify-write instruction Note: Cannot be used for addresses that have different meanings depending on whether they are read or written.

Symbol	Explanation
A	32-bit accumulator The number of bits used varies according to the instruction. Byte: Low order 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL, AH
AH	High-order 16 bits of A
AL	Low-order 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
SPCU	Stack pointer upper limit register
SPCL	Stack pointer lower limit register
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir addr16 addr24 addr24 0 to 15 addr24 16 to 23	Compact direct addressing Direct addressing Physical direct addressing Bits 0 to 15 of addr24 Bits 16 to 23 of addr24
io	I/O area (000000н to 0000FFн)

 Table 2
 Explanation of Symbols in Table of Instructions

Symbol	Explanation
#imm4	4-bit immediate data
#imm8	8-bit immediate data
#imm16	16-bit immediate data
#imm32	32-bit immediate data
ext (imm8)	16-bit data signed and extended from 8-bit immediate data
disp8	8-bit displacement
disp16	16-bit displacement
bp	Bit offset value
vct4	Vector number (0 to 15)
vct8	Vector number (0 to 255)
()b	Bit address
rel	Branch specification relative to PC
ear	Effective addressing (codes 00 to 07)
eam	Effective addressing (codes 08 to 1F)
rlst	Register list

Code	Notation	Address format	Number of bytes in address extemsion*
00 01 02 03 04 05 06 07	R0 RW0 RL0 R1 RW1 (RL0) R2 RW2 RL1 R3 RW3 (RL1) R4 RW4 RL2 R5 RW5 (RL2) R6 RW6 RL3 R7 RW7 (RL3)	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	
08 09 0A 0B	@RW0 @RW1 @RW2 @RW3	Register indirect	0
0C 0D 0E 0F	@RW0 + @RW1 + @RW2 + @RW3 +	Register indirect with post-increment	0
10 11 12 13 14 15 16 17	 @RW0 + disp8 @RW1 + disp8 @RW2 + disp8 @RW3 + disp8 @RW4 + disp8 @RW5 + disp8 @RW6 + disp8 @RW7 + disp8 	Register indirect with 8-bit displacement	1
18 19 1A 1B	@RW0 + disp16 @RW1 + disp16 @RW2 + disp16 @RW3 + disp16	Register indirect with 16-bit displacemen	2
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + dip16 addr16	Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	0 0 2 2

Table 3 Effective Address Fields

* : The number of bytes for address extension is indicated by the "+" symbol in the "#" (number of bytes) column in the Table of Instructions.

Codo	Operand	(a)*
Code	Operand	Number of execution cycles for each from of addressing
00 to 07	Ri RWi RLi	Listed in Table of Instructions
08 to 0B	@RWj	1
0C to 0F	@RWj +	4
10 to 17	@RWi + disp8	1
18 to 1B	@RWj + disp16	1
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + dip16 @addr16	2 2 2 1

Table 4 Number of Execution Cycles for Each Form of Addressing

*: "(a)" is used in the "cycles" (number of cycles) column and column B (correction value) in the Table of Instructions.

Table 5	Correction V	Values for	Number of	Cycles Used to	Calculate I	Number of	Actual Cycles
---------	--------------	------------	-----------	----------------	-------------	-----------	---------------

Operand	(k)*	(c	:)*	(0	<u>*(</u> ل
Operand	by	/te	wo	ord	lo	ng
Internal register	+	0	+	0	+	0
Internal RAM even address	+	0	+	0	+	0
Internal RAM odd address	+	0	+	1	+	2
Even address not in internal RAM	+	1	+	1	+	2
Odd address not in internal RAM	+	1	+	3	+	6
External data bus (8 bits)	+	1	+	3	+	6

* : "(b)", "(c)", and "(d)" are used in the "cycles" (number of cycles) column and column B (correction value) in the Table of Instructions.

Μ	nemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Z	۷	С	RMW
MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV	A, dir A, addr16 A, Ri A, ear A, eam A, io A, #imm8 A, @A A, @A A, @RLi+disp8 A, @CSP+disp8 A, addr24 A, @A A, #imm4	2 3 1 2 2 2 2 3 3 5 2 1	2 2 1 2+(a) 2 2 6 3 2 1	(b) (b) 0 (b) (b) (b) (b) (b) (b) (b) 0	byte (A) \leftarrow (dir) byte (A) \leftarrow (addr16) byte (A) \leftarrow (Ri) byte (A) \leftarrow (ear) byte (A) \leftarrow (ear) byte (A) \leftarrow (io) byte (A) \leftarrow (io) byte (A) \leftarrow (i(A)) byte (A) \leftarrow (((A)) byte (A) \leftarrow ((SP)+disp8) byte (A) \leftarrow ((A)) byte (A) \leftarrow ((A)) byte (A) \leftarrow (imm4	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	* * * * * * _ * * _ *	- - - - - - - -		- - - - - -	* * * * * * * * * * R	* * * * * * * * * * *	- - - - - - - - -		
MOVX MOVX MOVX MOVX MOVX MOVX MOVX MOVX	A, dir A, addr16 A, Ri A, ear A, eam A, io A, #imm8 A, @A A, @RWi+disp8 A, @RLi+disp8 A, @SP+disp8 A, addr24 A, @A	2 3 2 2 2 2 2 2 2 3 3 5 2	2 2 1 2+(a) 2 2 3 6 3 2 2	(b) (b) 0 (b) (b) (b) (b) (b) (b) (b)	byte (A) \leftarrow (dir) byte (A) \leftarrow (addr16) byte (A) \leftarrow (Ri) byte (A) \leftarrow (ear) byte (A) \leftarrow (ear) byte (A) \leftarrow (io) byte (A) \leftarrow (io) byte (A) \leftarrow (i(A)) byte (A) \leftarrow (((A)) byte (A) \leftarrow ((RUi))+disp8) byte (A) \leftarrow ((SP)+disp8) byte (A) \leftarrow (addr24) byte (A) \leftarrow ((A))	X X X X X X X X X X X X X X X X X X X	* * * * * * _ * * * _				* * * * * * * * * * *	* * * * * * * * * * *			
MOV MOV MOV MOV MOV MOV MOV MOVP	dir, A addr16, A Ri, A ear, A eam, A io, A @RLi+disp8, A @SP+disp8, A addr24, A	2 3 1 2 2+ 2 3 3 5	2 2 1 2 2+ (a) 2 6 3 3	(b) (b) 0 (b) (b) (b) (b) (b)	byte (dir) \leftarrow (A) byte (addr16) \leftarrow (A) byte (Ri) \leftarrow (A) byte (ear) \leftarrow (A) byte (ear) \leftarrow (A) byte (io) \leftarrow (A) byte (i(RLi)) +disp8) \leftarrow (A) byte ((SP)+disp8) \leftarrow (A) byte (addr24) \leftarrow (A)						* * * * * * *	* * * * * * * *			
MOV MOV MOV MOV MOV MOV MOV MOV MOV	Ri, ear Ri, eam @A, Ri ear, Ri eam, Ri Ri, #imm8 io, #imm8 dir, #imm8 ear, #imm8 eam, #imm8	2 2+ 2 2+ 2 3 3 3 3+ 2	23+ (a)33+ (a)2322+ (a)2	0 (b) (b) 0 (b) (b) (b) (b)	byte (Ri) \leftarrow (ear) byte (Ri) \leftarrow (eam) byte ((A)) \leftarrow (Ri) byte (ear) \leftarrow (Ri) byte (eam) \leftarrow (Ri) byte (eam) \leftarrow imm8 byte (io) \leftarrow imm8 byte (dir) \leftarrow imm8 byte (ear) \leftarrow imm8 byte (eam) \leftarrow imm8 byte ((A)) \leftarrow (AH)						* * * * * * *	* * * * * * - *			

Table 6 Transfer Instructions (Byte) [50 Instructions]

(Continued)

	Mnemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Z	۷	С	RMW
XCH	A, ear	2	3	0	byte (A) \leftrightarrow (ear)	Ζ	-	-	-	-	_	-	-	_	-
XCH	A, eam	2+	3+ (a)	2× (b)	byte $(A) \leftrightarrow (eam)$	Z	-	_	-	-	_	_	-	—	-
XCH	Ri, ear	2	4	0	byte (Ri) \leftrightarrow (ear)	—	—	—	-	-	—	—	-	—	-
XCH	Ri, eam	2+	5+ (a)	2× (b)	byte (Ri) \leftrightarrow (eam)	-	-	-	-	-	-	-	-	-	-

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mnemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
MOVW A, dir	2	2	(C)	word (A) \leftarrow (dir)	—	*	-	-	_	*	*	_	_	_
MOVW A, addr16	3	2	(c)	word (A) \leftarrow (addr16)	—	*	—	-	-	*	*	-	—	—
MOVW A, SP	1	2	0	word (A) \leftarrow (SP)	—	*	—	-	—	*	*	—	—	—
MOVW A, RWi	1	1	0	word (A) \leftarrow (RWi)	-	*	-	-	-	*	*	-	—	-
MOVW A, ear	2	1	0	word (A) \leftarrow (ear)	—	*	-	-	—	*	*	—	—	-
MOVW A, eam	2+	2+ (a)	(c)	word (A) \leftarrow (eam)	-	*	-	-	-	*	*	-	—	-
MOVW A, io	2	2	(c)	word (A) \leftarrow (io)	—	*	—	-	—	*	*	—	—	—
MOVW A, @A	2	2	(c)	word (A) \leftarrow ((A))	—	-	—	-	—	*	*	—	—	—
MOVW A, #imm16	3	2	0	word (A) \leftarrow imm16	—	*	-	-	-	*	*	-	—	—
MOVW A, @RWI+disp8	2	3	(C)	word (A) \leftarrow ((RWi) +disp8)	—		-	-	-			-	-	—
MOVW A, @RLi+disp8	3	6	(C)	word (A) \leftarrow ((RLi) +disp8)	—	*	—	-	—	*	*	—	—	—
MOVW A, @SP+disp8	3	3	(C)	word (A) \leftarrow ((SP) +disp8	—	*	—	-	—	*	*	—	—	—
MOVPWA, addr24	5	3	(C)	word (A) \leftarrow (addr24)	-	*	-	-	-	*	*	-	-	_
MOVPWA, @A	2	2	(c)	word (A) \leftarrow ((A))	-	-	-	-	-	*	*	-	-	-
MOVW dir. A	2	2	(c)	word (dir) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW addr16. A	3	2	(c)	word (addr16) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW SP. # imm16	4	2	Ó	word (SP) ← imm16	_	_	_	_	_	*	*	_	_	_
MOVW SP. A	1	2	0	word $(SP) \leftarrow (A)$	_	_	_	_	_	*	*	_	_	_
MOVW RWI. A	1	1	0	word (RWi) ← (Á)	_	_	_	_	_	*	*	_	_	_
MOVW ear. A	2	2	0	word (ear) \leftarrow (Å)	_	_	_	_	_	*	*	_	_	_
MOVW eam, A	2+	2+ (a)	(c)	word (eam) \leftarrow (Å)	_	_	_	_	_	*	*	_	_	_
MOVW io, A	2	2 ′	(c)	word (io) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW @RWi+disp8, A	2	3	(c)	word ((RWi) +disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW @RLi+disp8, A	3	6	(c)	word ((RLi) +disp8) ← (À)	_	_	_	_	_	*	*	_	_	_
MOVW @SP+disp8, A	3	3	(c)	word $((SP) + disp8) \leftarrow (A)$	_	_	_	_	_	*	*	_	_	_
MOVPWaddr24, A	5	3	(c)	word (addr24) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVPW @A, RWi	2	3	(c)	word $(A) \leftarrow (RWi)$	_	_	_	—	_	*	*	_	_	_
MOVW RWi, ear	2	2	Ó	word (RŴi) ← (ear)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, eam	2+	3+ (a)	(c)	word (RWi) ← (eam)	_	_	_	—	_	*	*	_	_	_
MOVW ear, RWi	2	3 ์) O	word (ear) ← (RWi)	_	_	_	—	_	*	*	_	_	_
MOVW eam, RWi	2+	3+ (a)	(c)	word (eam) \leftarrow (RWi)	_	—	_	—	_	*	*	_	_	_
MOVW RWi, #imm16	3	2) O	word (RWi) ← imm16	_	_	_	—	_	*	*	_	_	_
MOVW io, #imm16	4	3	(C)	word (io) — imm16	_	—	_	—	_	_	_	_	_	_
MOVW ear, #imm16	4	2	0	word (ear) \leftarrow imm16	_	—	_	—	_	*	*	_	_	_
MOVW eam, #imm16	4+	2+ (a)	(c)	word (eam) \leftarrow imm16	—	-	—	-	—	—	—	—	—	-
MOVW @AL, AH	2	2	(c)	word ((A)) \leftarrow (AH)	_	_	_	–	_	*	*	_	_	_
XCHW A, ear	2	3	0	word (A) \leftrightarrow (ear)	_	_	_	_	_	_	_	_	_	_
XCHW A, eam	2+	3+ (a)	2× (c)	word $(A) \leftrightarrow (eam)$	_	_	_	_	_	_	_	_	_	_
XCHW RWi, ear	2	4	0	word (RWi) \leftrightarrow (ear)	_	_	_	_	_	_	_	_	_	_
XCHW RWi, eam	2+	5+ (a)	2× (c)	word (RWi) \leftrightarrow (eam)	–	-	-	-	–	-	-	–	-	—

Table 7 Transfer Instructions (Word) [40 Instructions]

Note: For an explanation of "(a)" and "(c)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mnemonic	#	~	В	Operation	LH	AH	I	S	т	Ν	Z	۷	С	RMW
MOVL A, ear	2	1	0	long (A) \leftarrow (ear)	-	-	_	-	-	*	*	-	_	_
MOVL A, eam	2+	3+ (a)	(d)	long (A) \leftarrow (eam)	—	_	_	—	_	*	*	_	_	_
MOVL A, # imm32	5	3	0	long $(A) \leftarrow imm32$	-	_	—	-	_	*	*	_	_	_
MOVL A, @SP + disp8	3	4	(d)	long (A) \leftarrow ((SP) +disp8)	—	—	_	—	—	*	*	—	—	—
MOVPL A, addr24	5	4	(d)	long (A) \leftarrow (addr24)	-	—	—	-	_	*	*	_	_	—
MOVPL A, @A	2	3	(d)	$long(A) \leftarrow ((A))$	-	-	-	-	-	*	*	—	—	_
MOVPL@A, RLi	2	5	(d)	$long\;((A)) \gets (RLi)$	_	-	-	_	_	*	*	-	_	_
MOVL @SP + disp8, A	3	4	(d)	long ((SP) + disp8) \leftarrow (A)	-	_	_	-	_	*	*	_	_	_
MOVPL addr24, A	5	4	(d)	long (addr24) \leftarrow (A)	-	_	—	-	_	*	*	_	_	_
MOVL ear, A	2	2	0	long (ear) \leftarrow (A)	-	—	—	-	—	*	*	—	—	-
MOVL eam, A	2+	3+ (a)	(d)	long (eam) \leftarrow (A)	-	-	-	-	-	*	*	—	—	—

Table 8 Transfer Instructions (Long Word) [11 Instructions]

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mnemonic	#	~	В	Operation	LH	AH	I	S	т	Ν	Z	۷	С	RMW
ADD A, #imm8 ADD A, dir ADD A, ear ADD A, eam ADD ear, A ADD eam, A ADD eam, A ADDC A ADDC A, ear ADDC A, eam	2 2 2+ 2 2+ 1 2 2+ 1 2 2+ 1	2 3 2 3+ (a) 2 3+ (a) 3 3+ (a)	0 (b) 0 (b) 0 2×(b) 0 (b) 0	byte (A) \leftarrow (A) + imm8 byte (A) \leftarrow (A) + (dir) byte (A) \leftarrow (A) + (ear) byte (A) \leftarrow (A) + (ear) byte (ear) \leftarrow (ear) + (A) byte (ear) \leftarrow (ear) + (A) byte (a) \leftarrow (AH) + (AL) + (C) byte (A) \leftarrow (A) + (ear) + (C) byte (A) \leftarrow (AH) + (AL) + (C) (Decimal)	Z Z Z Z Z Z Z Z Z Z Z	- - - - - - -				* * * * * * * *	* * * * * * * *	* * * * * * * *	* * * * * * *	
SUB A, #imm8 SUB A, dir SUB A, ear SUB A, eam SUB ear, A SUB eam, A SUBC A SUBC A, ear SUBC A, eam SUBC A	2 2 2+ 2 2+ 1 2+ 1 2 2+ 1	2 3 3+ (a) 2 3+ (a) 2 3+ (a) 3	0 (b) 0 (b) 0 2×(b) 0 (b) 0	byte (A) \leftarrow (A) – imm8 byte (A) \leftarrow (A) – (dir) byte (A) \leftarrow (A) – (ear) byte (A) \leftarrow (A) – (ear) byte (ear) \leftarrow (ear) – (A) byte (ear) \leftarrow (ear) – (A) byte (ear) \leftarrow (AH) – (AL) – (C) byte (A) \leftarrow (A) – (ear) – (C) byte (A) \leftarrow (AH) – (AL) – (C) (Decimal)	Z Z Z Z Z Z Z Z Z Z					* * * * * * * *	* * * * * * * *	* * * * * * * *	* * * * * * * *	
ADDW A ADDW A, ear ADDW A, eam ADDW A, #imm16 ADDW ear, A ADDW eam, A ADDCW A, ear ADDCW A, eam	1 2+ 3 2 2+ 2 2+ 2 2+	2 2 3+ (a) 2 3+ (a) 2 3+ (a)	0 0 (c) 0 2×(c) 0 (c)	word (A) \leftarrow (AH) + (AL) word (A) \leftarrow (A) + (ear) word (A) \leftarrow (A) + (eam) word (A) \leftarrow (A) + imm16 word (ear) \leftarrow (ear) + (A) word (eam) \leftarrow (eam) + (A) word (A) \leftarrow (A) + (ear) + (C) word (A) \leftarrow (A) + (eam) + (C)	- - - - -	- - - - -				* * * * * *	* * * * * *	* * * * * *	* * * * * *	 * *
SUBW A SUBW A, ear SUBW A, eam SUBW A, #imm16 SUBW ear, A SUBW eam, A SUBCW A, ear SUBCW A, eam	1 2+ 3 2+ 2+ 2+ 2+	2 2 3+ (a) 2 3+ (a) 2 3+ (a)	0 0 0 2×(c) 0 (c)	word (A) \leftarrow (AH) – (AL) word (A) \leftarrow (A) – (ear) word (A) \leftarrow (A) – (eam) word (A) \leftarrow (A) – imm16 word (ear) \leftarrow (ear) – (A) word (eam) \leftarrow (eam) – (A) word (A) \leftarrow (A) – (ear) – (C) word (A) \leftarrow (A) – (eam) – (C)	- - - - -	- - - -				* * * * * * *	* * * * * * *	* * * * * *	* * * * * *	
ADDL A, ear ADDL A, eam ADDL A, #imm32	2 2+ 5	5 6+ (a) 4	0 (d) 0	$\begin{array}{l} \text{long (A)} \leftarrow (A) + (\text{ear}) \\ \text{long (A)} \leftarrow (A) + (\text{eam}) \\ \text{long (A)} \leftarrow (A) + \text{imm32} \end{array}$						* *	* *	* * *	* *	
SUBL A, ear SUBL A, eam SUBL A, #imm32	2 2+ 5	5 6+ (a) 4	0 (d) 0	$\begin{array}{l} \text{long (A)} \leftarrow (\text{A}) - (\text{ear}) \\ \text{long (A)} \leftarrow (\text{A}) - (\text{eam}) \\ \text{long (A)} \leftarrow (\text{A}) - \text{imm32} \end{array}$		_ _ _	_ _ _			* *	* *	* * *	* *	_ _ _

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mn	emonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Z	۷	С	RMW
INC	ear	2	2	0	byte (ear) \leftarrow (ear) +1	-	-	-	1	-	*	*	*	Ι	*
INC	eam	2+	3+ (a)	2× (b)	byte (eam) \leftarrow (eam) +1	-	-	-	-	-	*	*	*	-	*
DEC	ear	2	2	0	byte (ear) ← (ear) –1	_	_	_	_	_	*	*	*	_	*
DEC	eam	2+	3+ (a)	2×(b)	byte (eam) ← (eam) −1	-	-	_	-	_	*	*	*	-	*
INCW	ear	2	2	0	word (ear) \leftarrow (ear) +1	-	-	-		-	*	*	*		*
INCW	eam	2+	3+ (a)	2× (c)	word (eam) ← (eam) +1	-	-	-	-	-	*	*	*	-	*
DECW	ear	2	2	0	word (ear) \leftarrow (ear) –1	_	_	_	_	_	*	*	*	_	*
DECW	eam	2+	3+ (a)	2× (c)	word (eam) \leftarrow (eam) –1	-	-	—	-	_	*	*	*	-	*
INCL	ear	2	4	0	long (ear) \leftarrow (ear) +1	-	_	_	_	_	*	*	*	_	*
INCL	eam	2+	5+ (a)	2× (d)	long (eam) \leftarrow (eam) +1	-	-	-	-	-	*	*	*	-	*
DECL	ear	2	4	0	long (ear) ← (ear) –1	_	_	_	_	_	*	*	*	_	*
DECL	eam	2+	5+ (a)	2× (d)	long (eam) \leftarrow (eam) –1	-	-	—	-	—	*	*	*	-	*

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11	Compare Instructions	(Byte/Word/Long Word)	[11 Instructions]
----------	----------------------	-----------------------	-------------------

Mnemonic	#	~	В	Operation	LH	AH	I	S	т	Ν	z	۷	С	RMW
CMP A	1	2	0	byte (AH) – (AL)	_	-	_	-	-	*	*	*	*	-
CMP A, ear	2	2	0	byte (A) – (ear)	_	_	_	_	_	*	*	*	*	_
CMP A, eam	2+	2+ (a)	(b)	byte (A) – (eam)	_	_	_	_	_	*	*	*	*	_
CMP A, #imm8	2	2	0	byte (A) – imm8	-	—	—	-	-	*	*	*	*	-
CMPW A	1	2	0	word (AH) – (AL)	_	_	_	_	-	*	*	*	*	_
CMPW A, ear	2	2	0	word (A) – (ear)	-	—	_	—	—	*	*	*	*	_
CMPW A, eam	2+	2+ (a)	(c)	word (A) – (eam)	-	—	_	—	—	*	*	*	*	_
CMPW A, #imm16	3	2	0	word (A) – imm16	-	-	-	-	-	*	*	*	*	-
CMPL A, ear	2	3	0	long (A) – (ear)	_	-	_	_	-	*	*	*	*	_
CMPL A, eam	2+	4+ (a)	(d)	long (A) – (eam)	—	—	—	—	—	*	*	*	*	-
CMPL A, #imm32	5	3	0	long (A) – imm32	-	-	—	—	-	*	*	*	*	—

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

-															
Mnem	nonic	#	~	В	Operation	LH	AH	Ι	S	Т	Ν	z	۷	С	RMW
DIVU	А	1	*1	0	word (AH) /byte (AL)	-	-	-	_	_	_	_	*	*	_
DIVU	A, ear	2	*2	0	Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH) word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	_	_	_	_	_	_	_	*	*	_
DIVU	A, eam	2+	*3	*6	word (A)/byte (eam)	_	_	_	_	_	_	_	*	*	_
DIVUW DIVUW	A, ear A, eam	2 2+	*4 *5	0 *7	Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam) long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear) long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	_	_	-	-	-	-	_	*	*	-
MULU MULU MULUW MULUW MULUW	A A, ear A, eam A A, ear A, eam	1 2+ 1 2 2+	*8 *9 *10 *11 *12 *13	0 0 (b) 0 0 (c)	byte (AH) × byte (AL) \rightarrow word (A) byte (A) × byte (ear) \rightarrow word (A) byte (A) × byte (eam) \rightarrow word (A) word (AH) × word (AL) \rightarrow long (A) word (A) × word (ear) \rightarrow long (A) word (A) × word (eam) \rightarrow long (A)	- - - -			_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	- - - -	- - - -

Table 12 Unsigned Multiplication and Division Instructions (Word/Long Word) [11 Instructions]

For an explanation of "(b)" and "(c), refer to Table 5, "Correction Values for Number of Cycle Used to Calculate Number of Actual Cycles."

- *1: 3 when dividing into zero, 6 when an overflow occurs, and 14 normally.
- *2: 3 when dividing into zero, 5 when an overflow occurs, and 13 normally.
- *3: 5 + (a) when dividing into zero, 7 + (a) when an overflow occurs, and 17 + (a) normally.
- *4: 3 when dividing into zero, 5 when an overflow occurs, and 21 normally.
- *5: 4 + (a) when dividing into zero, 7 + (a) when an overflow occurs, and 25 + (a) normally.
- *6: (b) when dividing into zero or when an overflow occurs, and $2 \times$ (b) normally.
- *7: (c) when dividing into zero or when an overflow occurs, and $2 \times (c)$ normally.
- *8: 3 when byte (AH) is zero, and 7 when byte (AH) is not 0.
- *9: 3 when byte (ear) is zero, and 7 when byte (ear) is not 0.
- *10: 4 + (a) when byte (eam) is zero, and 8 + (a) when byte (eam) is not 0.
- *11: 3 when word (AH) is zero, and 11 when word (AH) is not 0.
- *12: 3 when word (ear) is zero, and 11 when word (ear) is not 0.
- *13: 4 + (a) when word (eam) is zero, and 12 + (a) when word (eam) is not 0.

Mner	nonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
DIV	А	2	*1	0	word (AH) /byte (AL)	Ζ	_	_	-	-	-	-	*	*	—
DIV	A, ear	2	*2	0	Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH) word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	Z	_	_	_	_	_	_	*	*	_
DIV	A, eam	2+	*3	*6	word (A)/byte (eam)	Ζ	_	_	_	_	_	_	*	*	_
DIVW DIVW	A, ear A, eam	2 2+	*4 *5	0 *7	Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam) long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear) long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	_		*	*	_
N 41 11	•	0	*0	•											
MUL	A	2	*8	0	byte (AH) \times byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
		2	*10	(b)	byte (A) \times byte (ear) \rightarrow word (A)		_	_	_	_		_	_		_
MULW	A, cam A	2	*11	(0)	word $(AH) \times word (AI) \rightarrow \log (A)$		_	_		_	_	_	_		
MULW	A. ear	2	*12	0	word (A) \times word (ear) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_
MULW	A, eam	2+	*13	(b)	word (A) × word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	–	-

Table 13 Signed Multiplication and Division Instructions (Word/Long Word) [11 Insturctions]

For an explanation of "(b)" and "(c)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

- *1: 3 when dividing into zero, 8 or 18 when an overflow occurs, and 18 normally.
- *2: 3 when dividing into zero, 10 or 21 when an overflow occurs, and 22 normally.
- *3: 4 + (a) when dividing into zero, 11 + (a) or 22 + (a) when an overflow occurs, and 23 + (a) normally.
- *4: When the dividend is positive: 4 when dividing into zero, 10 or 29 when an overflow occurs, and 30 normally. When the dividend is negative: 4 when dividing into zero, 11 or 30 when an overflow occurs, and 31 normally.
- *5: When the dividend is positive: 4 + (a) when dividing into zero, 11 + (a) or 30 + (a) when an overflow occurs, and 31 + (a) normally.
 When the dividend is negative: 4 + (a) when dividing into zero, 12 + (a) or 31 + (a) when an overflow occurs, and 32 + (a) normally.
- *6: (b) when dividing into zero or when an overflow occurs, and $2 \times (b)$ normally.
- *7: (c) when dividing into zero or when an overflow occurs, and $2 \times$ (c) normally.
- *8: 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *9: 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.

*10: 4 + (a) when byte (eam) is zero, 13 + (a) when the result is positive, and 14 + (a) when the result is negative.

- *11: 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *12: 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
- *13: 4 + (a) when word (eam) is zero, 17 + (a) when the result is positive, and 20 + (a) when the result is negative.
- Note: Which of the two values given for the number of execution cycles applies when an overflow error occurs in a DIV or DIVW instruction depends on whether the overflow was detected before or after the operation.

Mn	emonic	#	~	В	Operation	LH	AH	I	S	т	Ν	Z	v	С	RMW
AND AND AND AND AND	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 2 3+ (a) 3 3+ (a)	0 0 (b) 0 2× (b)	byte (A) \leftarrow (A) and imm8 byte (A) \leftarrow (A) and (ear) byte (A) \leftarrow (A) and (eam) byte (ear) \leftarrow (ear) and (A) byte (eam) \leftarrow (eam) and (A)	_ _ _ _	 		_ _ _ _		* * * *	* * * *	R R R R R	 	 *
OR OR OR OR OR	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 2 3+ (a) 3 3+ (a)	0 (b) 0 2× (b)	byte (A) \leftarrow (A) or imm8 byte (A) \leftarrow (A) or (ear) byte (A) \leftarrow (A) or (eam) byte (ear) \leftarrow (ear) or (A) byte (eam) \leftarrow (eam) or (A)	 	_ _ _ _		- - - -		* * * *	* * * *	R R R R R	_ _ _ _	 *
XOR XOR XOR XOR NOT NOT NOT	A, #imm8 A, ear A, eam ear, A eam, A A ear eam	2 2+ 2 2+ 1 2 2+ 1 2+	2 2 3+ (a) 3 3+ (a) 2 3+ (a)	0 (b) 0 2× (b) 0 2× (b)	byte (A) \leftarrow (A) xor imm8 byte (A) \leftarrow (A) xor (ear) byte (A) \leftarrow (A) xor (eam) byte (ear) \leftarrow (ear) xor (A) byte (eam) \leftarrow (eam) xor (A) byte (A) \leftarrow not (A) byte (ear) \leftarrow not (ear) byte (eam) \leftarrow not (eam)	- - - - -	- - - -		- - - -		* * * * * *	* * * * * * *	R R R R R R R R	- - - -	* * *
ANDW ANDW ANDW ANDW ANDW ANDW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2 2+ 2 2+	2 2 3+ (a) 3 3+ (a)	0 0 (c) 0 2× (c)	word (A) \leftarrow (AH) and (A) word (A) \leftarrow (A) and imm16 word (A) \leftarrow (A) and (ear) word (A) \leftarrow (A) and (eam) word (ear) \leftarrow (ear) and (A) word (eam) \leftarrow (eam) and (A)	- - - -	- - - -		- - - -		* * * * *	* * * * *	R R R R R R	- - - -	 * *
ORW ORW ORW ORW ORW ORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2+ 2 2+	2 2 3+ (a) 3 3+ (a)	0 0 (c) 0 2× (c)	word (A) \leftarrow (AH) or (A) word (A) \leftarrow (A) or imm16 word (A) \leftarrow (A) or (ear) word (A) \leftarrow (A) or (eam) word (ear) \leftarrow (ear) or (A) word (eam) \leftarrow (eam) or (A)	- - - -	- - - -		- - - -		* * * * *	* * * * *	R R R R R R	- - - -	 *
XORW XORW XORW XORW XORW NOTW NOTW	A A, #imm16 A, ear A, eam ear, A eam, A A ear eam	1 3 2+ 2+ 2+ 1 2+ 2+	2 2 3+ (a) 3 3+ (a) 2 3+ (a)	0 0 (c) 0 2× (c) 0 2× (c)	word (A) \leftarrow (AH) xor (A) word (A) \leftarrow (A) xor imm16 word (A) \leftarrow (A) xor (ear) word (A) \leftarrow (A) xor (ear) word (ear) \leftarrow (ear) xor (A) word (eam) \leftarrow (eam) xor (A) word (A) \leftarrow not (A) word (ear) \leftarrow not (ear) word (eam) \leftarrow not (eam)	- - - - - -	- - - - -				* * * * * * *	* * * * * * *	R R R R R R R R R		

 Table 14
 Logical 1
 Instructions (Byte, Word)
 [39 Instructions]

For an explanation of "(a)", "(b)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mn	emonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
ANDL ANDL	A, ear A, eam	2 2+	5 6+ (a)	0 (d)	long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)	-		-	-	-	*	*	R R	-	_
ORL ORL	A, ear A, eam	2 2+	5 6+ (a)	0 (d)	long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)	-	-			-	*	*	R R	_	_ _
XORL XORL	A, ear A, eam	2 2+	5 6+ (a)	0 (d)	long (A) \leftarrow (A) xor (ear) long (A) \leftarrow (A) xor (eam)	-	-	-	_ _	-	*	*	R R	_ _	_ _

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

For an explanation of "(a)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

 Table 16
 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mn	emonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Z	۷	С	RMW
NEG	А	1	2	0	byte (A) \leftarrow 0 – (A)	Х	-	-	-	-	*	*	*	*	-
NEG	ear	2	2	0	byte (ear) \leftarrow 0 – (ear)	-	_	_	-	_	*	*	*	*	*
NEG	eam	2+	3+ (a)	2× (b)	byte (eam) $\leftarrow 0 - (eam)$	-	-	-	-	-	*	*	*	*	*
NEGW	А	1	2	0	word (A) \leftarrow 0 – (A)	-	-	Ι	-	-	*	*	*	*	-
NEGW	ear	2	2	0	word (ear) \leftarrow 0 – (ear)	-	-	_	-	_	*	*	*	*	*
NEGW	eam	2+	3+ (a)	2× (c)	word (eam) $\leftarrow 0 - (eam)$	-	-	—	-	-	*	*	*	*	*

For an explanation of "(a)", "(b)" and "(c)" and refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Mnemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	V	С	RMW
ABS A	2	2	0	byte (A) \leftarrow absolute value (A)	Ζ	Ι	-	-	-	*	*	*	-	_
ABSW A	2	2	0	word $(A) \leftarrow absolute value (A)$	—	—	_	—	_	*	*	*	_	_
ABSL A	2	4	0	long $(A) \leftarrow$ absolute value (A)	-	-	—	-	—	*	*	*	_	-

Table 18	Normalize Instructions	(Long	Word) [1 Instruction]
----------	------------------------	-------	---------	----------------

Mnemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Z	۷	С	RMW
NRML A, RO	2	*	0	long (A) \leftarrow Shifts to the position at which "1" was set first byte (R0) \leftarrow current shift count	-		-		*	_		-	-	-

*: 5 when the contents of the accumulator are all zeroes, 5 + (R0) in all other cases.

Mnemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Z	V	С	RMW
RORC A ROLC A	2 2	2 2	0 0	byte (A) \leftarrow Right rotation with carry byte (A) \leftarrow Left rotation with carry	_	_	_			*	* *		* *	-
RORC ear RORC eam ROLC ear ROLC eam	2 2+ 2 2+	2 3+ (a) 2 3+ (a)	0 2× (b) 0 2× (b)	byte (ear) \leftarrow Right rotation with carry byte (eam) \leftarrow Right rotation with carry byte (ear) \leftarrow Left rotation with carry byte (eam) \leftarrow Left rotation with carry	_ _ _ _	_ _ _	- - -			* * *	* * *	 	* * *	* * *
ASR A, R0 LSR A, R0 LSL A, R0	2 2 2	*1 *1 *1	0 0 0	byte (A) \leftarrow Arithmetic right barrel shift (A, R0) byte (A) \leftarrow Logical right barrel shift (A, R0) byte (A) \leftarrow Logical left barrel shift (A, R0)	_ _ _	_ _ _	_ _ _		*	* *	* *		* *	
ASR A, #imm8 LSR A, #imm8 LSL A, #imm8	3 3 3	*3 *3 *3	0 0 0	byte (A) \leftarrow Arithmetic right barrel shift (A, imm8) byte (A) \leftarrow Logical right barrel shift (A, imm8) byte (A) \leftarrow Logical left barrel shift (A, imm8)	_ _ _	_ _ _	- - -		*	* * *	* *		* * *	
ASRW A LSRW A/SHRW A LSLW A/SHLW A	1 1 1	2 2 2	0 0 0	word (A) \leftarrow Arithmetic right shift (A, 1 bit) word (A) \leftarrow Logical right shift (A, 1 bit) word (A) \leftarrow Logical left shift (A, 1 bit)	_ _ _	_ _ _	- - -		*	* R *	* * *	 	* *	
ASRW A, R0 LSRW A, R0 LSLW A, R0	2 2 2	*1 *1 *1	0 0 0	word (A) \leftarrow Arithmetic right barrel shift (A, R0) word (A) \leftarrow Logical right barrel shift (A, R0) word (A) \leftarrow Logical left barrel shift (A, R0)	_ _ _	_ _ _	- - -		*	* *	* *	- - -	* *	
ASRW A, #imm8 LSRW A, #imm8 LSLW A, #imm8	3 3 3	*3 *3 *3	0 0 0	word (A) \leftarrow Arithmetic right barrel shift (A, imm8) word (A) \leftarrow Logical right barrel shift (A, imm8) word (A) \leftarrow Logical left barrel shift (A, imm8)	_ _ _	_ _ _	_ _ _		*	* *	* *		* *	
ASRL A, R0 LSRL A, R0 LSLL A, R0	2 2 2	*2 *2 *2	0 0 0	$\begin{array}{l} \text{long (A)} \leftarrow \text{Arithmetic right shift (A, R0)} \\ \text{long (A)} \leftarrow \text{Logical right barrel shift (A, R0)} \\ \text{long (A)} \leftarrow \text{Logical left barrel shift (A, R0)} \end{array}$	_ _ _	_ _ _	_ _ _		*	* * *	* * *	_ _ _	* *	
ASRL A, #imm8 LSRL A, #imm8 LSLL A, #imm8	3 3 3	*4 *4 *4	0 0 0	$\begin{array}{l} \text{long (A)} \leftarrow \text{Arithmetic right shift (A, imm8)} \\ \text{long (A)} \leftarrow \text{Logical right barrel shift (A, imm8)} \\ \text{long (A)} \leftarrow \text{Logical left barrel shift (A, imm8)} \end{array}$	- - -	_ _ _	- - -		*	* *	* *	- - -	* * *	

Table 19 Shift Instructions (Byte/Word/Long Word) [27 Instructions]

For an explanation of "(a)" and "(b)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

*1: 3 when R0 is 0, 3 + (R0) in all other cases.

*2: 3 when R0 is 0, 4 + (R0) in all other cases.

*3: 3 when imm8 is 0, 3 + (imm8) in all other cases.

*4: 3 when imm8 is 0, 4 + (imm8) in all other cases.

Mnemonic	#	~	В	Operation	LH	AH	I	S	т	Ν	Z	۷	С	RMW
BZ/BEQ rel	2	*1	0	Branch when (Z) = 1	-	_	_	_	_	_	-	-	_	_
BNZ/BNE rel	2	*1	0	Branch when $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BC/BLO rel	2	*1	0	Branch when $(C) = 1$	_	_	_	_	_	_	_	_	_	_
BNC/BHS rel	2	*1	0	Branch when $(C) = 0$	_	_	_	_	_	_	_	_	_	_
BN rel	2	*1	0	Branch when $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BP rel	2	*1	0	Branch when $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BV rel	2	*1	0	Branch when $(V) = 1$	_	_	_	_	_	_	_	_	_	_
BNV rel	2	*1	0	Branch when $(V) = 0$	_	_	_	_	_	_	_	_	_	_
BT rel	2	*1	0	Branch when $(T) = 1$	_	_	_	_	_	_	_	_	_	_
BNT rel	2	*1	0	Branch when $(T) = 0$	_	_	_	_	_	_	_	_	_	_
BLT rel	2	*1	0	Branch when (V) xor $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BGE rel	2	*1	0	Branch when (V) xor $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BLE rel	2	*1	0	((V) xor (N)) or (Z) = 1	_	_	_	—	_	—	_	_	—	_
BGT rel	2	*1	0	(\dot{V}) xor \dot{N} \dot{V} or \dot{Z} = 0	_	_	_	_	_	_	_	_	_	_
BLS rel	2	*1	0	Branch when (C) or $(Z) = 1$	_	_	_	_	_	_	_	_	_	_
BHI rel	2	*1	0	Branch when (C) or $(Z) = 0$	_	_	_	—	_	—	_	_	—	_
BRA rel	2	*1	0	Branch unconditionally	—	-	-	-	_	-	—	—	—	-
JMP @A	1	2	0	word (PC) \leftarrow (A)	_	_	_	_	_	_	_	_	_	_
JMP addr16	3	2	0	word (PC) \leftarrow addr16	_	_	_	_	_	_	_	_	_	_
JMP @ear	2	3	Õ	word (PC) \leftarrow (ear)	_	_	_	_	_	_	_	_	_	_
JMP @eam	2+	4+ (a)	(c)	word (PC) \leftarrow (eam)	_	_	_	_	_	_	_	_	_	_
JMPP @ear *3	2	3	0	word (PC) \leftarrow (ear). (PCB) \leftarrow (ear +2)	_	_	_	_	_	_	_	_	_	_
JMPP @eam *3	2+	4+ (a)	(d)	word (PC) \leftarrow (eam), (PCB) \leftarrow (eam +2)	_	_	_	_	_	_	_	_	_	_
JMPP addr24	4	3 ์) O	word (PC) \leftarrow ad24 0 to 15	_	_	_	_	_	_	_	_	_	_
				$(PCB) \leftarrow ad24 \ 16 \ to \ 23$										
CALL @ear *4	2	4	(c)	word (PC) \leftarrow (ear)	_	_	_	_	_	_	_	_	_	_
CALL @eam *4	2+	5+ (a)	$2 \times (c)$	word $(PC) \leftarrow (eam)$	_	_	_	—	_	—	_	_	—	_
CALL addr16 *5	3	5	(c)	word $(PC) \leftarrow addr16$	_	_	_	_	_	_	_	_	_	_
CALLV #vct4 *5	1	5	$2 \times (c)$	Vector call linstruction	_	_	_	_	_	_	_	_	_	_
CALLP @ear *6	2	7	2× (c)	word (PC) \leftarrow (ear) 0 to 15,	_	—	_	-	-	-	_	_	-	-
			. ,	$(PCB) \leftarrow (ear) 16 \text{ to } 23$										
CALLP @eam *6	2+	8+ (a)	*2	word (PC) \leftarrow (eam) 0 to 15,	_	—	_	-	_	-	_	_	_	-
-				(PCB) ← (eam) 16 to 23										
CALLP addr24 *7	4	7	2× (c)	word (PC) \leftarrow addr 0 to 15,	-	-	-	–	–	-	-	-	–	-
				$(PCB) \leftarrow addr 16 to 23$										

Table 20	Branch 1 Instructions	[31 Instructions]
----------	------------------------------	-------------------

For an explanation of "(a)", "(c)" and "(d)", refer to Table 4, "Number of Execution Cycles for Each Form of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

*1: 3 when branching, 2 when not branching.

*2: 3 × (c) + (b)

- *3: Read (word) branch address.
- *4: W: Save (word) to stack; R: Read (word) branch address.
- *5: Save (word) to stack.
- *6: W: Save (long word) to W stack; R: Read (long word) branch address.
- *7: Save (long word) to stack.

Mnemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Z	۷	С	RMW
CBNE A, #imm8, re CWBNE A, #imm16, re	3 4	*1 *1	0 0	Branch when byte (A) ≠ imm8 Branch when byte (A) ≠ imm16	-	-	_	-	_ _	*	*	*	*	-
CBNE ear, #imm8, rel CBNE eam, #imm8, re CWBNE ear, #imm16, re CWBNE eam, #imm16, r	4 4+ 5 5+	*1 *3 *1 *3	0 (b) 0 (c)	Branch when byte (ear) \neq imm8 Branch when byte (eam) \neq imm8 Branch when word (ear) \neq imm16 Branch when word (eam) \neq imm16			_ _ _		_ _ _	* * *	* * *	* * *	* * *	- - -
DBNZ ear, rel	3	*4	0	Branch when byte (ear) = $(ear) - 1$, and $(ear) \neq 0$	_	_	_	_	_	*	*	*	_	_
DBNZ eam, rel	3+	*2	2× (b)	Branch when byte (ear) = $(ear) - 1$ and $(ear) \neq 0$	_	-	-	_	_	*	*	*	-	*
DWBNZ ear, rel	3	*4	0	Branch when word (ear) = $(ear) - 1$ and $(ear) \neq 0$	_	-	-	_	_	*	*	*	-	-
DWBNZ eam, rel	3+	14	2× (c)	Branch when word (eam) = $(eam) - 1$, and $(eam) \neq 0$	-	_	_	-	_	*	*	*	_	*
INT #vct8 INT addr16 INTP addr24 INT9 RETI RETIQ *6	2 3 4 1 1 2	12 13 14 9 11 6	$\begin{array}{c} 8\times ({\rm c}) \\ 6\times ({\rm c}) \\ 6\times ({\rm c}) \\ 8\times ({\rm c}) \\ 8\times ({\rm c}) \\ * 5 \end{array}$	Software interrupt Software interrupt Software interrupt Software interrupt Return from interrupt Return from interrupt			R R R R *	S S S S * *	 *	 *	* *	* *	 *	
LINK #imm8 UNLINK	2	5	(c) (c)	At constant entry, save old frame pointer to stack, set new frame pointer, and allocate local pointer area At constant entry, retrieve old frame pointer from stack.	-	-	_	-	_	_	-		_	-
RET * ⁷ RETP * ⁸	1 1	5	(c) (d)	Return from subroutine Return from subroutine	_ _	_ _	_ _	_ _	_ _	_ _	_ _	_ _	_ _	_ _

Table 21	Branch 2 Instructions	[20 Instructions]

For an explanation of "(b)", "(c)" and "(d)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

- *1: 4 when branching, 3 when not branching
- *2: 5 when branching, 4 when not branching
- *3: 5 + (a) when branching, 4 + (a) when not branching
- *4: 6 + (a) when branching, 5 + (a) when not branching
- *5: $3 \times (b) + 2 \times (c)$ when an interrupt request is generated, $6 \times (c)$ when returning from the interrupt.
- *6: High-speed interrupt return instruction. When an interrupt request is detected during this instruction, the instruction branches to the interrupt vector without performing stack operations when the interrupt is generated.
- *7: Return from stack (word)
- *8: Return from stack (long word)

To Top / Lineup / Index

MB90F244

Mnemonic	#	~	В	Operation	LH	AH	I	S	т	Ν	Z	v	С	RMW
PUSHW A PUSHW AH PUSHW PS PUSHW rist	1 1 1 2	3 3 3 * ³	(C) (C) (C) *4	word (SP) \leftarrow (SP) -2, ((SP)) \leftarrow (A) word (SP) \leftarrow (SP) -2, ((SP)) \leftarrow (AH) word (SP) \leftarrow (SP) -2, ((SP)) \leftarrow (PS) (SP) \leftarrow (SP) -2n, ((SP)) \leftarrow (rlst)	- - -	- - -		 				- - -	_ _ _	
POPW A POPW AH POPW PS POPW rlst	1 1 1 2	3 3 3 *2	(C) (C) (C) *4	word (A) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 word (AH) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 word (PS) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 (rlst) \leftarrow ((SP)) , (SP) \leftarrow (SP)	_ _ _	* _ _	_ _ * _	_ * _	 * 	*	_ _ * _	_ * _	_ * _	
JCTX @A	1	9	6× (c)	Context switch instruction	_	-	*	*	*	*	*	*	*	_
AND CCR, #imm8 OR CCR, #imm8	2 2	3 3	0 0	byte (CCR) \leftarrow (CCR) and imm8 byte (CCR) \leftarrow (CCR) or imm8	-	-	*	*	*	*	*	*	*	_
MOV RP, #imm8 MOV ILM, #imm8	2 2	2 2	0 0	byte (RP) ← imm8 byte (ILM) ← imm8	-	-	-	_ _	-	-	-	-	-	-
MOVEA RWi, ear MOVEA RWi, eam MOVEA A, ear MOVEA A, eam	2 2+ 2 2+	3 2+ (a) 2 1+ (a)	0 0 0 0	word (RWi) \leftarrow ear word (RWi) \leftarrow eam word(A) \leftarrow ear word (A) \leftarrow eam	_ _ _			_ _ _				_ _ _	_ _ _	
ADDSP #imm8 ADDSP #imm16	2 3	3 3	0 0	word (SP) \leftarrow ext (imm8) word (SP) \leftarrow imm16	_	_	_	_ _	-	-	-	-	-	_
MOV A, brgl MOV brg2, A MOV brg2, #imm8	2 2 3	*1 1 2	0 0 0	byte (A) ← (brgl) byte (brg2) ← (A) byte (brg2) ← imm8	Z - -	*		_ _ _		* *	* * *	- - -	- - -	- - -
NOP ADB DTB PCB SPB NCC CMR	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0	No operation Prefix code for AD space access Prefix code for DT space access Prefix code for PC space access Prefix code for SP space access Prefix code for no flag change Prefix code for the common register bank	- - - -	- - - -						- - - -	- - - -	
MOVW SPCU, #imm16 MOVW SPCL, #imm16 SETSPC CLRSPC	4 4 2 2	2 2 2 2	0 0 0 0	word (SPCU) \leftarrow (imm16) word (SPCL) \leftarrow (imm16) Stack check operation enable Stack check operation disable	_ _ _	_ _ _	 		 		 	_ _ _	_ _ _	
BTSCN A BTSCNSA BTSCNDA	2 2 2	*5 *6 *7	0 0 0	byte (A) \leftarrow position of "1" bit in word (A) byte (A) \leftarrow position of "1" bit in word (A) $\times 2$ byte (A) \leftarrow position of "1" bit in word (A) $\times 4$	Z Z Z	- - -	_ _ _	_ _ _	_ _ _		* * *	- - -	_ _ _	

Table 22 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

For an explanation of "(a)" and "(c)", refer to Tables 4 and 5.

*1: PCB, ADB, SSB, USB, and SPB: 1 cycle

- DTB: 2 cycles
- DPR: 3 cycles
- *2: $3 + 4 \times (pop count)$

*3: $3 + 4 \times (push count)$

- *4: Pop count \times (c), or push count \times (c)
- *5: 3 when AL is 0, 5 when AL is not 0.
- *6: 4 when AL is 0, 6 when AL is not 0.
- *7: 5 when AL is 0, 7 when AL is not 0.

М	nemonic	#	~	В	Operation	LH	AH	I	S	т	Ν	Z	۷	С	RMW
MOVB MOVB MOVB	A, dir:bp A, addr16:bp A, io:bp	3 4 3	3 3 3	(b) (b) (b)	byte (A) \leftarrow (dir:bp) b byte (A) \leftarrow (addr16:bp) b byte (A) \leftarrow (io:bp) b	Z Z Z	* * *		_ _ _	_ _ _	* *	* *	_ _ _	_ _ _	-
MOVB MOVB MOVB	dir:bp, A addr16:bp, A io:bp, A	3 4 3	4 4 4	2× (b) 2× (b) 2× (b)	bit (dir:bp) $b \leftarrow (A)$ bit (addr16:bp) $b \leftarrow (A)$ bit (io:bp) $b \leftarrow (A)$	- - -	_ _ _		_ _ _	_ _ _	* * *	* * *	_ _ _	_ _ _	* * *
SETB SETB SETB	dir:bp addr16:bp io:bp	3 4 3	4 4 4	$2 \times (b)$ $2 \times (b)$ $2 \times (b)$	bit (dir:bp) b \leftarrow 1 bit (addr16:bp) b \leftarrow 1 bit (io:bp) b \leftarrow 1	- - -	_ _ _		_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	* *
CLRB CLRB CLRB	dir:bp addr16:bp io:bp	3 4 3	4 4 4	$2 \times$ (b) $2 \times$ (b) $2 \times$ (b)	bit (dir:bp) $b \leftarrow 0$ bit (addr16:bp) $b \leftarrow 0$ bit (io:bp) $b \leftarrow 0$	- - -	_ _ _		_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	* * *
BBC BBC BBC	dir:bp, rel addr16:bp, rel io:bp, rel	4 5 4	*1 *1 *1	(b) (b) (b)	Branch when (dir:bp) $b = 0$ Branch when (addr16:bp) $b = 0$ Branch when (io:bp) $b = 0$	- - -	_ _ _		_ _ _	- - -	_ _ _	* * *	- - -	_ _ _	
BBS BBS BBS	dir:bp, rel addr16:bp, rel io:bp, rel	4 5 4	*1 *1 *1	(b) (b) (b)	Branch when (dir:bp) $b = 1$ Branch when (addr16:bp) $b = 1$ Branch when (io:bp) $b = 1$	- - -	_ _ _		_ _ _	- - -	_ _ _	* * *	- - -	_ _ _	
SBBS	addr16:bp, rel	5	*2	2× (b)	Branch when (addr16:bp) $b = 1$, bit = 1	-	_	_	-	-	_	*	-	-	*
WBTS	io:bp	3	*3	*4	Wait until (io:bp) b = 1	-	_	_	_	_	-	_	_	-	-
WBTC	io:bp	3	*3	*4	Wait until (io:bp) b = 0	-	_	-	_	_	-	_	_	-	_

Table 23	Bit Manipulation	Instructions [21	Instructions1
	Bit manipulation	mon aono [= .	mon aononoj

For an explanation of "(b)", refer to Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

*1: 5 when branching, 4 when not branching

*2: 7 when condition is satisfied, 6 when not satisfied

- *3: Undefined count
- *4: Until condition is satisfied

Mnemonic	#	~	В	Operation	LH	AH	I	S	Т	Ν	Ζ	۷	С	RMW
SWAP	1	3	0	byte (A) 0 to 7 $\leftarrow \rightarrow$ (A) 8 to 15	_	-	-	-	-	-	-	-	-	-
SWAPW	1	2	0	word (AH) $\leftarrow \rightarrow$ (AL)	_	*	_	_	—	—	_	_	—	-
EXT	1	1	0	Byte code extension	Х	—	_	_	-	*	*	_	-	—
EXTW	1	2	0	Word code extension	—	Х	—	—	-	*	*	—	-	—
ZEXT	1	1	0	Byte zero extension	Ζ	—	_	_	-	R	*	—	-	-
ZEXTW	1	2	0	Word zero extension	-	Ζ	-	-	-	R	*	-	-	-

Table 24 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Table 25 String Instructions [10 Instructions]

Mnemonic	#	~	В	Operation	LH	AH	I	s	Т	Ν	z	v	С	RMW
MOVS/MOVSI	2	*2	*3	Byte transfer $@AH+ \leftarrow @AL+$, counter = RW0	-	-	-	-	-	—	_	-	-	_
MOVSD	2	*2	*3	Byte transfer @AH– \leftarrow @AL–, counter = RW0	_	-	-	_	_	_	_	-	-	_
SCEQ/SCEQI	2	*1	*4	Byte retrieval @AH+ – AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCEQD	2	*1	*4	Byte retrieval @AH– – AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FILS/FILSI	2	5m +3	*5	Byte filling @AH+ \leftarrow AL, counter = RW0	_	-	Ι	_	_	*	*	Ι	_	—
MOVSW/MOVSWI	2	*2	*6	Word transfer $@AH+ \leftarrow @AL+$, counter = RW0	_	Ι	Ι	_	_	_	_	-	_	_
MOVSWD	2	*2	*6	Word transfer @AH– \leftarrow @AL–, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCWEQ/SCWEQI	2	*1	*7	Word retrieval @AH+ – AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCWEQD	2	*1	*7	Word retrieval @AH- – AL, counter = RW0	-	-	-	-	-	*	*	*	*	_
FILSW/FILSWI	2	5m +3	*8	Word filling $@AH+ \leftarrow AL$, counter = RW0	-	-	Ι	-	-	*	*	-	-	—

m: RW0 value (counter value)

*1: 3 when RW0 is 0, 2 + 6 \times (RW0) for count out, and 6n + 4 when match occurs

*2: 4 when RW0 is 0, 2 + $6 \times$ (RW0) in any other case

*3: (b) × (RW0)

*4: (b) × n

*5: (b) × (RW0)

*6: (c) × (RW0)

*7: (c) × n

*8: (c) × (RW0)

I	Mnemonic	#	~	В	Operation	LH	AH	I	s	Т	Ν	Z	۷	С	RMW
MOVM	@A, @RLi, #imm8	3	*1	*3	Multiple data trasfer byte ((A)) \leftarrow ((RLi))	_	_	_	-	-	_	_	_	-	_
MOVM	@A, eam, #imm8	3+	*2	*3	Multiple data trasfer byte $((A)) \leftarrow (eam)$	_	_	_	_	_	_	_	_	_	_
MOVM	addr16, @RLi, #imm8	5	*1	*3	Multiple data trasfer byte (addr16) \leftarrow ((RLi))	_	_	_	—	_	_	_	_	—	_
MOVM	addr16, eam, #imm8	5+	*2	*3	Multiple data trasfer byte (addr16) \leftarrow (eam)	_	_	_	—	—	_	—	_	—	_
MOVMW	@A, @RLi, #imm8	3	*1	*4	Multiple data trasfer word ((A)) \leftarrow ((RLi))	_	_	_	—	_	_	_	_	—	_
MOVMW	@A, eam, #imm8	3+	*2	*4	Multiple data trasfer word ((A)) \leftarrow (eam)	_	_	_	—	_	_	_	_	—	_
MOVMW	addr16, @RLi, #imm8	5	*1	*4	Multiple data trasfer word (addr16) \leftarrow ((RLi))	—	_	—	—	—	—	—	—	—	—
MOVMW	addr16, eam, #imm8	5+	*2	*4	Multiple data trasfer word (addr16) \leftarrow (eam)	_	_	_	—	_	_	_	_	—	_
MOVM	@RLi, @A, #imm8	3	*1	*3	Multiple data trasfer byte ((RLi)) \leftarrow ((A))	_	_	_	—	—	_	—	_	—	_
MOVM	eam, @A, #imm8	3+	*2	*3	Multiple data trasfer byte (eam) \leftarrow ((A))	_	_	_	—	—	_	_	_	—	_
MOVM	@RLi, addr16, #imm8	5	*1	*3	Multiple data transfer byte ((RLi)) \leftarrow (addr16)	_	_	_	—	_	_	_	_	—	_
MOVM	eam, addr16, #imm8	5+	*2	*3	Multiple data transfer byte (eam) \leftarrow (addr16)	_	_	_	—	—	_	—	_	—	_
MOVMW	@RLi, @A, #imm8	3	*1	*4	Multiple data trasfer word ((RLi)) \leftarrow ((A))	—	_	—	—	—	—	—	—	—	—
MOVMW	eam, @A, #imm8	3+	*2	*4	Multiple data trasfer word (eam) \leftarrow ((A))	_	_	_	—	—	_	—	_	—	_
MOVMW	@RLi, addr16, #imm8	5	*1	*4	Multiple data transfer word ((RLi)) \leftarrow (addr16)	—	_	—	—	—	—	—	—	—	—
MOVMW	eam, addr16, #imm8	5+	*2	*4	Multiple data transfer word (eam) \leftarrow (addr16)	—	_	—	—	—	—	—	—	—	—
MOVM	bnk : addr16, *5	7	*1	*3	Multiple data transfer	_	_	_	—	—	_	—	_	—	_
	bnk : addr16, #imm8				byte (bnk:addr16) \leftarrow (bnk:addr16)										
MOVMW	bnk : addr16, *5	7	*1	*4	Multiple data transfer	_	_	—	-	-	_	_	_	-	—
	bnk : addr16, #imm8				word (bnk:addr16) \leftarrow (bnk:addr16)										

*1: 5 + imm8 \times 5, 256 times when imm8 is zero.

*2: $5 + \text{immb} \times 5$, 256 times when immb is zero. *2: $5 + \text{imm8} \times 5 + (a)$, 256 times when imm8 is zero. *3: Number of transfers $\times (b) \times 2$ *4: Number of transfers $\times (c) \times 2$

*5: The bank register specified by "bnk" is the same as for the MOVS instruction.

■ ORDERING IMFORMATION

Part number	Package	Remarks
MB90F244PFT-G	80-pin Plastic TQFP (FPT-80P-M15)	

■ PACKAGE DIMENSIONS

To Top / Lineup / Index

MB90F244

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: (044) 754-3763 Fax: (044) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9807 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.