DS07-13601-5E

16-bit Proprietary Microcontroller

CMOS

F²MC-16L MB90630A Series

MB90632A/634A/P634A

■ DESCRIPTION

The MB90630A series are 16-bit microcontrollers designed for high speed real-time processing in consumer product applications such as controlling video cameras, VCRs, or copiers. The series uses the F²MC*-16L CPU. The chips incorporate an eight channels 10-bit A/D converter, two channels 8-bit D/A converter, UART two channels, two channels serial interface, 8/16-bit up/down counter, 16-bit I/O timer (two channels input capture, four channels output compare, and one channel 16-bit free-run timer).

*: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

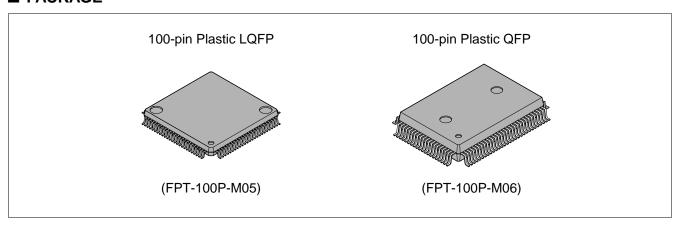
F2MC-16L CPU

- Minimum execution time: 62.5 ns/4 MHz oscillation (Uses PLL clock multiplication), maximum multiplier = 4
- Instruction set optimized for controller applications

Object code compatibility with F²MC-16(H)

Wide range of data types (bit, byte, word, and long word)

Improved instruction cycles provide increased speed


Additional addressing modes: 23 modes

High code efficiency

Access mothods (bank access, linear pointer)

(Continued)

■ PACKAGE

(Continued)

High precision operations are enhanced by use of a 32-bit accumulator Extended intelligent I/O service (access area extended to 64 KB) Maximum memory space: 16 MB

• Enhanced high level language (C) and multitasking support insturctions

Use of a system stack pointer

Enhanced pointer indirect instructions

Barrel shift instructions

- Improved execution speed: Four byte instruction queue
- Powerful interrupt function
- Automatic data transfer function that does not use insturction (IIOS)

Internal peripherals

• ROM: 32 Kbytes (MB90632A)

64 Kbytes (MB90634A)

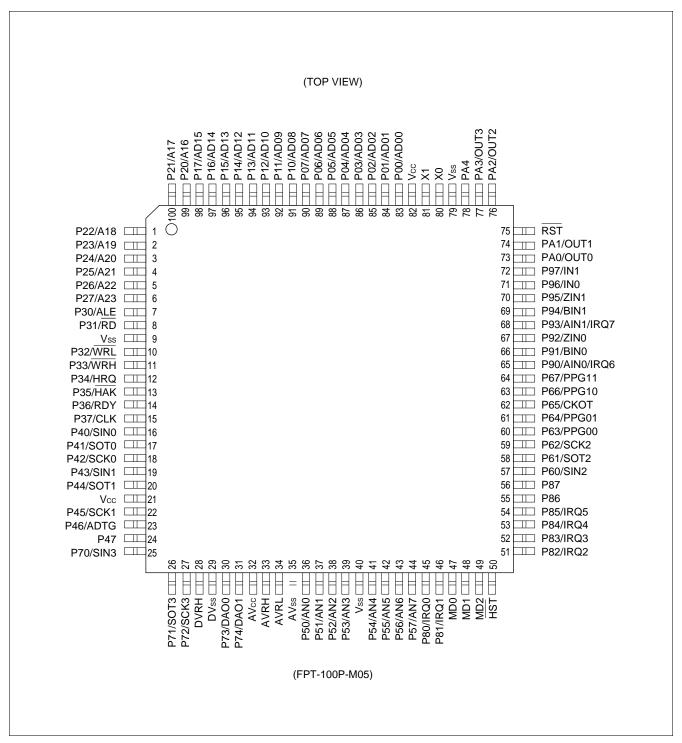
One-time PROM: 64 Kbytes (MB90P634A)

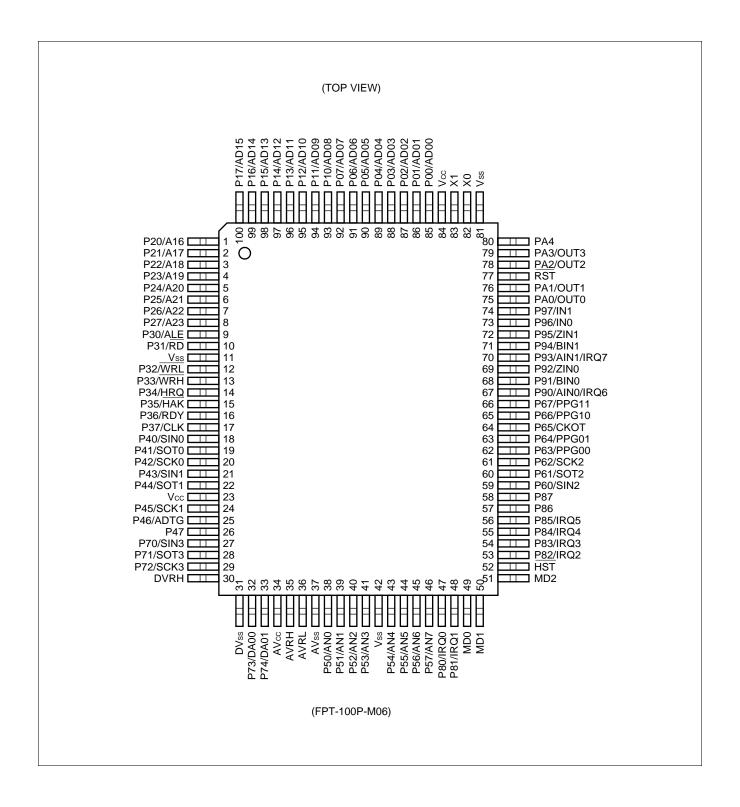
• RAM: 1 Kbytes (MB90632A)

2 Kbytes (MB90634A)

3 Kbytes (MB90P634A)

- General-purpose ports: 82 ports max.
- 10-bit A/D converter (RC successive approximation): eight channels (10-bit resolution, conversion time = 5.2 μs at 4 MHz with a × 4 multiplier)
- 8-bit D/A converter two channels (8-bit resolution)
- UART (can also be used as a serial port) two channels
- I/O expansion serial interface two channels
- 8/16-bit PPG (can be set to either 8-bit × two channels or 16-bit × one channel) one channel
- 16-bit I/O timer one channel


(two channels input capture, four channels output compare, and one channel free-run timer)


- Clock output generator
- Timebase counter/watchdog timer (18-bit)
- Low-power consumption modes
- The device types are classified by the initial value of the oscillation stabilization delay time.
 Oscillation stabilization delay time initial value = 2.05 ms: MB90630A series (MB90632A/634A/P634A)
- Package: LQFP-100 (QFP-100 planned)
- CMOS technology

■ PRODUCT LINEUP

Part number	MB90P634A	MB90632A	MB90634A			
Parameter						
Classification	OTPROM Mask ROM					
ROM size	64 Kbyte	32 Kbyte	64 Kbyte			
RAM size	3 Kbyte	1 Kbyte	2 Kbyte			
CPU functions	Number of instructio Instruction bit length Instruction length Data bit length Minimum execution t Interrupt processing	: 8/16 bits : 1/7 bytes : 1/4/8/16/32 bits :ime : 62.5 ns/4 MHz time : 1000 ns/16 MH	(PLL multiplier = 4)			
Ports	I/O ports (CMOS/TT Input pull-up resistor Can be set as open-					
Package		FPT-100P-M05 FPT-100P-M06				
A/D converter		2 μs conversion time (at 4 MHz approximation, 8 channels (mu				
D/A converter	R-2	8-bit resolution 2R type, 2 channels (independe	ent)			
UART	Full-duplex, double-buffered (8-bit), internal baud rate correction circuit that uses the operating clock NRZ-type transfer, supports MIDI frequencies, 2 channels					
Serial interface	8-bit data register. LSB-first or MSB-first operation can be selected. The transfer shift clock can be input externally. The internal shift clock includes a built-in operating clock correction circuit. 1 channel					
8/16-bit PPG	Can operate as two independent channels in 8-bit mode. Can also be used as a single-channel 16-bit PPG. 1 channel					
8/16-bit up/down counter	6 event inputs. Can operate as two independent 8-bit up/down counter channels. Can also be used as a single-channel 16-bit counter. Includes reload and compare functions. 1 channel					
16-bit I/O timer	Consists of 2 \times input capture, 4 \times output compare, and 1 \times free-run timer. 1 channel					
Timer functions	Time	ebase timer/watchdog timer (18	3-bit)			
Low-power consumption modes	Includes sle	eep, stop, and hardware standl	by functions			
Oscillation stabilization delay time	The initial value of the oscillation stabilization delay time is 64 ms. The oscillation stabilization delay time can also be set to 0 ms, 2.05 ms, 8.19 ms, or 64 ms (for an crystal oscillator). The MB90630A series are for FAR oscillators.					
External interrupt	8 inputs External interrupt mode (Interrupts can be generated from four different types of request signal)					
PLL function	Selectable multiplier: 1/2/3/4 (Set a multiplier that does not exceed the assured operation frequency range.)					
Other	V _{PP} is shared with the MD2 pin (for EPROM programming)	_	_			

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin no.			Circuit		
LQFP*1	QFP*2	Pin name	type	Function	
80	82	X0	Α	Oscillator pin	
81	83	X1	Α	Oscillator pin	
50	52	HST	С	Hardware standby input pin	
75	77	RST	В	Reset input pin	
83 to 90	85 to 92	P00 to P07	D (STBC)	General-purpose I/O ports Pull-up resistors can be set (RD07 to RD00 = "1") using the pull-up resistor setting register (RDR0). The setting does not apply for ports set as outputs (D07 to D00 = "1": invalid at the output setting).	
		AD00 to AD07		In external bus mode, the pins function as the lower data I/O or lower address outputs (AD00 to AD07).	
91 to 98	93 to 100	P10 to P17	D (STBC)	General-purpose I/O ports Pull-up resistors can be set (RD17 to RD10 = "1") using the pull-up resistor setting register (RDR1). The setting does not apply for ports set as outputs (D17 to D10 = "1": invalid at the output setting).	
		AD08 to AD15		In 16-bit external bus mode, the pins function as the upper data I/O or middle address outputs (AD08 to AD15).	
99, 100, 1 to 6	1 to 8	P20 to P27	H (STBC)	General-purpose I/O ports In external bus mode, pins for which the corresponding bit in the HACR register is "0" function as the P20 to P27 pins.	
		A16 to A23		In external bus mode, pins for which the corresponding bit in the HACR register is "1" function as the upper address output pins (A16 to A23).	
7	9	P30	H (STBC)	General-purpose I/O port Functions as the ALE pin in external bus mode.	
		ALE		Functions as the address latch enable signal.	
8	10	P31	H (STBC)	General-purpose I/O port Functions as the RD pin in external bus mode.	
		RD		Functions as the read strobe output (RD).	
10	12	P32	H (STBC)		
		WRL		Functions as the lower data write strobe output (WRL).	
11	13	P33	H (STBC)	General-purpose I/O port Functions as the WRH pin in 16-bit external bus mode if the WRE bit in the EPCR register is "1".	
		WRH		Functions as the upper data write strobe output (WRH).	

STBC: Incorporates standby control

*1: LQFP (FPT-100P-M05)
*2: QFP (FPT-100P-M06)

Pin no.		D.	Circuit	Franklan	
LQFP*1	QFP*2	Pin name	type	Function	
12	14	P34	H (STBC)	General-purpose I/O port Functions as the HRQ pin in external bus mode if the HDE bit in the EPCR register is "1".	
		HRQ		Functions as the hold request input pin (HRQ).	
13	15	P35	H (STBC)	General-purpose I/O port Functions as the HAK pin in external bus mode if the HDE bit in the EPCR register is "1".	
		HAK		Functions as the hold acknowledge output (HAK) pin.	
14	16	P36	H (STBC)	General-purpose I/O port Functions as the RDY pin in external bus mode if the RYE bit in the EPCR register is "1".	
		RDY		Functions as the external ready input (RDY) pin.	
15	15 17 P37		H (STBC)	General-purpose I/O port Functions as the CLK pin in external bus mode if the CKE bit in the EPCR register is "1".	
		CLK		Functions as the machine cycle clock output (CLK) pin.	
16	16 18 P4		G (STBC)	General-purpose I/O port When UART0 is operating, the data at the pin is used as the serial input (SIN0). Can be set as an open-drain output port (OD40 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D40 = "0": invalid at the input setting).	
		SIN0		Functions as the UART0 serial input (SIN0).	
17	19	P41	F (STBC)	General-purpose I/O port Functions as the SOT0 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD41 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D41 = "0": invalid at the input setting).	
		SOT0		Functions as the UART0 serial data output pin (SOT0).	
18	20	P42	G (STBC)	General-purpose I/O port When UART0 is operating in external shift clock mode, the data at the pin is used as the clock input (SCK0). Also, functions as the SCK0 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD42 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D42 = "0": invalid at the input setting).	
		SCK0		Functions as the UART0 serial clock I/O pin (SCK0).	

STBC: Incorporates standby control

*1: LQFP (FPT-100P-M05) *2: QFP (FPT-100P-M06)

Pin no.		Din name Circuit	Circuit	Function	
LQFP*1	QFP*2	Pin name	type	Function	
19	21	P43	G (STBC)	General-purpose I/O port When I/O expansion serial is operating, the data at the pin is used as the serial input (SIN1). Can be set as an open-drain output port (OD43 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D43 = "0": invalid at the input setting).	
		SIN1		Functions as the serial input for I/O expansion serial data.	
20	22	P44	F (STBC)	General-purpose I/O port Functions as the SOT1 pin if the SOE bit in the UMC register is "1". Can be set as an open-drain output port (OD44 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D44 = "0": invalid at the input setting).	
		SOT1		Functions as the output pin (SOT1) for I/O expansion serial data.	
22	24	P45	G (STBC) When I/O expansion serial is operating in external shift mode, the data at the pin is used as the clock input (S Also, functions as the SCK1 pin if the SOE bit in the U register is "1". Can be set as an open-drain output port (OD45 = "1") open-drain control register (ODR4). The setting does refor ports set as inputs (D45 = "0": invalid at the input setting does in the sett		
		SCK1		Functions as the I/O expansion serial clock I/O pin (SCK1).	
23	25	P46	F (STBC)	General-purpose I/O port Can be set as an open-drain output port (OD46 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D46 = "0": invalid at the input setting).	
		ADTG		Functions as the external trigger input pin for the A/D converter.	
24	26	P47	F (STBC)	General-purpose I/O port Can be set as an open-drain output port (OD47 = "1") by the open-drain control register (ODR4). The setting does not apply for ports set as inputs (D47 = "0": invalid at the input setting).	
36 to 39,	38 to 41,			General-purpose I/O ports	
41 to 44	41 to 44 43 to 46 AN0 to AN7 (STE		(STBC)	The pins are used as analog inputs (AN0 to AN7) when the A/D converter is operating.	
25	27	P70	1	General-purpose I/O port	
		SIN3	(STBC)	Functions as the UART1 serial input (SIN3).	
26	28	P71	H	General-purpose I/O port	
		SOT3	(STBC)	Functions as the UART1 serial data output pin (SOT3).	
27	29	P72	(0.775.5)	General-purpose I/O port	
		SCK3	(STBC)	Functions as the UART1 serial clock I/O pin (SCK0).	

STBC: Incorporates standby control

^{*1:} LQFP (FPT-100P-M05)

^{*2:} QFP (FPT-100P-M06)

Pin	no.		Circuit		
LQFP*1	QFP*2	Pin name	type	Function	
30	32	P73	L (STBC) General-purpose I/O port Functions as a D/A output pin when DAE0 = "1" in the D/A control register (DACR).		
		DAO0		Functions as D/A output 0 when the D/A converter is operating.	
31	33	P74	L (STBC)	General-purpose I/O port Functions as a D/A output pin when DAE1 = "1" in the D/A control register (DACR).	
		DAO1		Functions as D/A output 1 when the D/A converter is operating.	
45	47	P80		General-purpose I/O port	
		IRQ0	_ !	Functions as external interrupt request I/O 0.	
46	48	P81	I	General-purpose I/O port	
		IRQ1		Functions as external interrupt request I/O 1.	
51	53	P82	I	General-purpose I/O port	
		IRQ2		Functions as external interrupt request I/O 2.	
52	54	P83	I	General-purpose I/O port	
		IRQ3		Functions as external interrupt request I/O 3.	
53	55	P84	I	General-purpose I/O port	
		IRQ4		Functions as external interrupt request I/O 4.	
54	56	P85	I	General-purpose I/O port	
		IRQ5		Functions as external interrupt request I/O 5.	
55	57	P86	H (STBC)	General-purpose I/O port This applies in all cases.	
56	58	P87	H (STBC)	General-purpose I/O port This applies in all cases.	
57	59	P60	E (STBC)	General-purpose I/O port	
		SIN2		Functions as a data input pin (SIN2) for I/O expansion serial.	
58	60	P61	D (STBC) General-purpose I/O port Functions as the SOT2 pin if the SOE bit in the UMC regist "1". A pull-up resistor can be set (RD61 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply ports set as outputs (D61 = "1": invalid at the output setting		
		SOT2		Functions as an output pin (SOT2) for I/O expansion serial data.	

STBC: Incorporates standby control *1: LQFP (FPT-100P-M05) *2: QFP (FPT-100P-M06)

Pin	no.	D:	Circuit	
LQFP*1	QFP*2	Pin name	type	Function
59	61	P62	E (STBC)	General-purpose I/O port When I/O expansion serial is operating in external shift clock mode, the data at the pin is used as the clock input (SCK2). Also, functions as the SCK2 pin if the SOE bit in the UMC register is "1". A pull-up resistor can be set (RD62 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D62 = "1": invalid at the output setting).
		SCK2		Functions as the I/O expansion serial clock I/O pin (SCK2).
60	62	P63	D (STBC)	General-purpose I/O port A pull-up resistor can be set (RD63 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D63 = "1": invalid at the output setting).
		PPG00		Functions as the PPG00 output when PPG output is enabled.
61	63	P64	D (STBC)	General-purpose I/O port A pull-up resistor can be set (RD64 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D64 = "1": invalid at the output setting).
		PPG01		Functions as the PPG01 output when PPG output is enabled.
62	62 64 P69		D (STBC)	General-purpose I/O port A pull-up resistor can be set (RD65 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D65 = "1": invalid at the output setting).
		СКОТ		Functions as the CKOT output when CKOT is operating.
63	65	P66	D (STBC)	General-purpose I/O port A pull-up resistor can be set (RD66 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D66 = "1": invalid at the output setting).
		PPG10		Functions as the PPG10 output when PPG output is enabled.
64	66	(STBC)		General-purpose I/O port A pull-up resistor can be set (RD67 = "1") using the pull-up resistor setting register (RDR6). The setting does not apply for ports set as outputs (D67 = "1": invalid at the output setting).
		PPG11		Functions as the PPG11 output when PPG output is enabled.
65	67	P90	1	General-purpose I/O port
	AIN0			Input to channel 0 of the 8/16-bit up/down timer.
		IRQ6		Functions as an interrupt request input.
66	68	P91	(OTDC)	General-purpose I/O port
		BIN0	(STBC)	Input to channel 0 of the 8/16-bit up/down timer.

STBC: Incorporates standby control

*1: LQFP (FPT-100P-M05)

*2: QFP (FPT-100P-M06)

(Continued)

Pin no.		Din nama	Circuit	Function	
LQFP*1	QFP*2	Pin name	type	Function	
67	69	P92	1	General-purpose I/O port	
		ZIN0	(STBC)	Input to channel 0 of the 8/16-bit up/down timer.	
68	70	P93	I	General-purpose I/O port	
		AIN1		Input to channel 1 of the 8/16-bit up/down timer.	
		IRQ7		Functions as an interrupt request input.	
69	71	P94	1	General-purpose I/O port	
		BIN1	(STBC)	Input to channel 1 of the 8/16-bit up/down timer.	
70	72	P95	I	General-purpose I/O port	
		ZIN1	(STBC)	Input to channel 1 of the 8/16-bit up/down timer.	
71	73	P96	I	General-purpose I/O port	
		IN0	(STBC)	Trigger input for channel 0 of the input capture.	
72	74	P97	I	General-purpose I/O port	
		IN1	(STBC)	Trigger input for channel 1 of the input capture.	
73	75	PA0	Н	General-purpose I/O port	
		OUT0	(STBC)	Event output for channel 0 of the output compare.	
74	76	PA1	Н	General-purpose I/O port	
		OUT1	(STBC)	Event output for channel 1 of the output compare.	
76	78	PA2	Н	General-purpose I/O port	
		OUT2	(STBC)	Event output for channel 2 of the output compare.	
77	79	PA3	Н	General-purpose I/O port	
		OUT3	(STBC)	Event output for channel 3 of the output compare.	
78	80	PA4	H (STBC)	General-purpose I/O port	
32	34	AVcc	_	A/D converter power supply pin	
35	37	AVss	_	A/D converter power supply pin	
33	35	AVRH	_	A/D converter external reference power supply pin	
34	36	AVRL	_	A/D converter external reference power supply pin	
28	30	DVRH	_	D/A converter external reference power supply pin	
29	31	DVss		D/A converter power supply pin	
47 to 49	49 to 51	MD0 to MD2	С	Operating mode selection pins. Connect directly to Vcc or Vss.	
21, 82	23, 84	Vcc	_	Power supply (5.0 V) input pin	
9, 40, 79	11, 42, 81	Vss	_	Power supply (0.0 V) input pin	

STBC: Incorporates standby control *1: LQFP (FPT-100P-M05) *2: QFP (FPT-100P-M06)

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	X1 X0 X0 Standby control signal	Oscillator feedback Registance 1 MΩ (approx.)
В	₩ HYS	Hysteresis input with pull-up Registance 50 kΩ (approx.)
С		Hysteresis input port
D	CTL ————————————————————————————————————	 Incorporates pull-up resistor control (for input) Registance 50 kΩ (approx.) CMOS level I/O
E	CTL HYS	 Incorporates pull-up resistor control (for input) Registance 50 kΩ (approx.) CMOS level output Hysteresis input
F	Open-drain control signal CMOS	CMOS level I/O Open-drain control signal

Туре	Circuit	Remarks
G	Open-drain control signal HYS HYS	CMOS level output Hysteresis input Incorporates open-drain control
Н	CMOS	CMOS level I/O
I	HYS HYS	CMOS level output Hysteresis input
К	CMOS Analog input	CMOS level I/O Analog input
L	D/A output CMOS	CMOS level I/O Analog output Shared with D/A outputs
M	CTL HYS	 Incorporates pull-up resistor control (for input) Registance 50 kΩ (approx.) CMOS level output Hysteresis input

■ HANDLING DEVICES

1. Preventing Latch-up

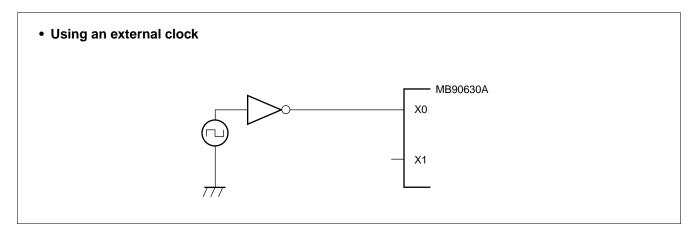
Latch-up occurs in a CMOS IC if a voltage greater than V_{CC} or less than V_{SS} is applied to an input or output pin or if the voltage applied between V_{CC} and V_{SS} exceeds the rating. If latch-up occurs, the power supply current increases rapidly resulting in thermal damage to circuit elements. Therefore, ensure that maximum ratings are not exceeded in circuit operation.

For the same reason, also ensure that the analog supply voltage does not exceed the digital supply voltage.

2. Treatment of Unused Pins

Leaving unused input pins unconnected can cause misoperation. Always pull-up or pull-down unused pins.

3. External Reset Input


To reliably reset the controller by inputting an "L" level to the RST pin, ensure that the "L" level is applied for at least five machine cycles. Take particular note when using an external clock input.

4. Vcc and Vss Pins

Ensure that all Vcc pins are at the same voltage. The same applies for the Vss pins.

5. Precautions when Using an External Clock

Drive the X0 pin only when using an external clock.

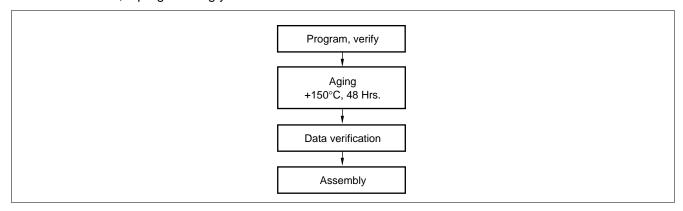
6. A/D Converter Power Supply and the Turn-on Sequence for Analog Inputs

Always turn off the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) before turning off the digital power supply (Vcc).

When turning the power on or off, ensure that AVRH does not exceed AVcc.

Also, when using the analog input pins as input ports, ensure that the input voltage does not exceed AVcc.

7. Program Mode


All bits (64 K \times 16 bits) in the MB90P634A are "1" on delivery from Fujitsu or after erasing. To write data, selectively program the desired bits to "0". The value "1" cannot be written electrically.

8. Recommended Screening Conditions

High temperature aging is recommended as the pre-assembly screening procedure.

9. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

10. Power Supply Voltage Fluctuations

Although $V_{\rm CC}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that $V_{\rm CC}$ ripple fluctuations (P-P value) will be less than 10% of the standard $V_{\rm CC}$ value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of 2 momentary fluctuation such as when power is switched.

■ PROGRAMMING THE EPROM IN THE MB90P634A

In EPROM mode, the MB90P634A function as MBM27C1000 equivalents. By using a dedicated adapter socket, the devices can be programmed using a standard EPROM programmer.

1. Pin Assignment in EPROM Mode

• Pins compatible with the MBM27C1000

MBM27	7C1000	MB90F	P634A
Pin number	Pin name	Pin number	Pin name
1	V _{PP}	49	MD2 (Vpp)
2	OE	10	P32
3	A15	98	P17
4	A12	95	P14
5	A07	6	P27
6	A06	5	P26
7	A05	4	P25
8	A04	3	P24
9	A03	2	P23
10	A02	1	P22
11	A01	100	P21
12	A00	99	P20
13	D00	83	P00
14	D01	84	P01
15	D02	85	P02
16	GND	_	_
32	Vcc	_	_
31	PGM	11	P33
30	NC	_	_
29	A14	97	P16
28	A13	96	P15
27	A08	91	P10
26	A09	92	P11
25	A11	94	P13
24	A16	7	P30
23	A10	93	P12
22	CE	8	P31
21	D07	90	P07

(Continued)

MBM2	7C1000	MB90P634A		
Pin number	Pin name	Pin number	Pin name	
20	D06	89	P06	
19	D05	88	P05	
18	D04	87	P04	
17	D03	86	P03	

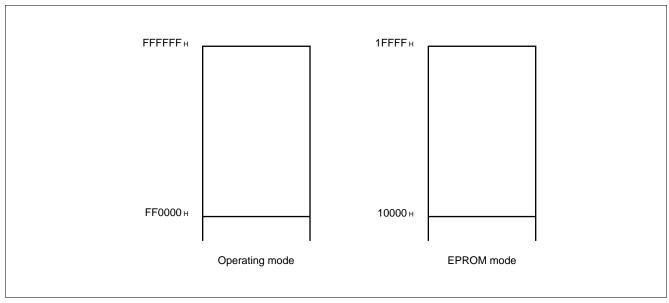
• Power supply and GND connection pins

Туре	Pin number	Pin name
Power supply (Vcc)	28 50 21, 82	DVRH HST Vcc
GND	9 34 35 40 29 75 79 12 13	Vss AVRL AVss Vss DVss RST Vss P34 P35 P36

• Pins other than MBM27C1000-compatible pins

Pin number	Pin name	Treatment
47 48 80	MD0 MD1 X0	Pull-up (4.7 kΩ)
81	X1	OPEN
15 16 to 20 22 to 24 25 to 27 30 31 36 to 39 41 to 44 45 46 51 to 56 57 to 64 65 to 72 73 74 76 77 78	P37 P40 to P44 P45 to P47 P70 to P72 P73 P74 P50 to P53 P54 to P57 P80 P81 P82 to P87 P60 to P67 P90 to P97 PA0 PA1 PA2 PA3 PA4	Connect pull-up resistors of approximately 1 $M\Omega$ to each pin

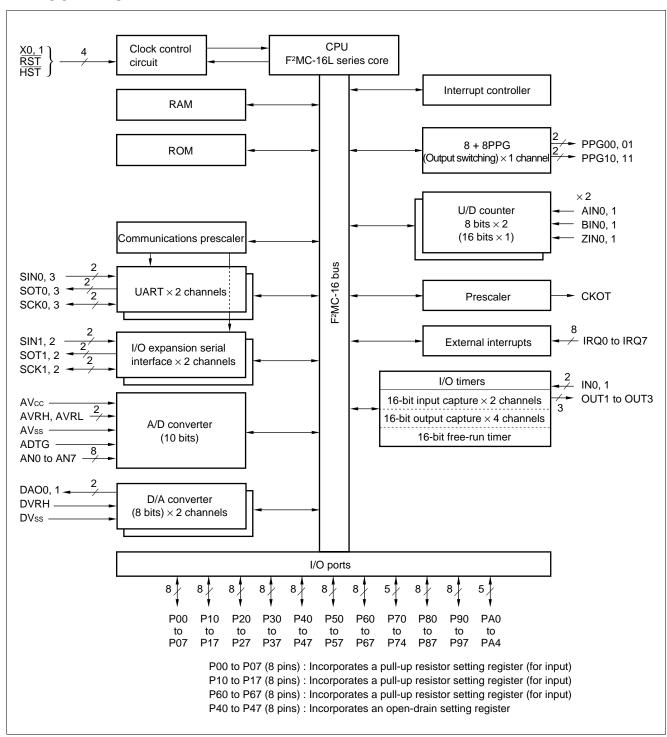
2. EPROM Programmer Socket Adapter

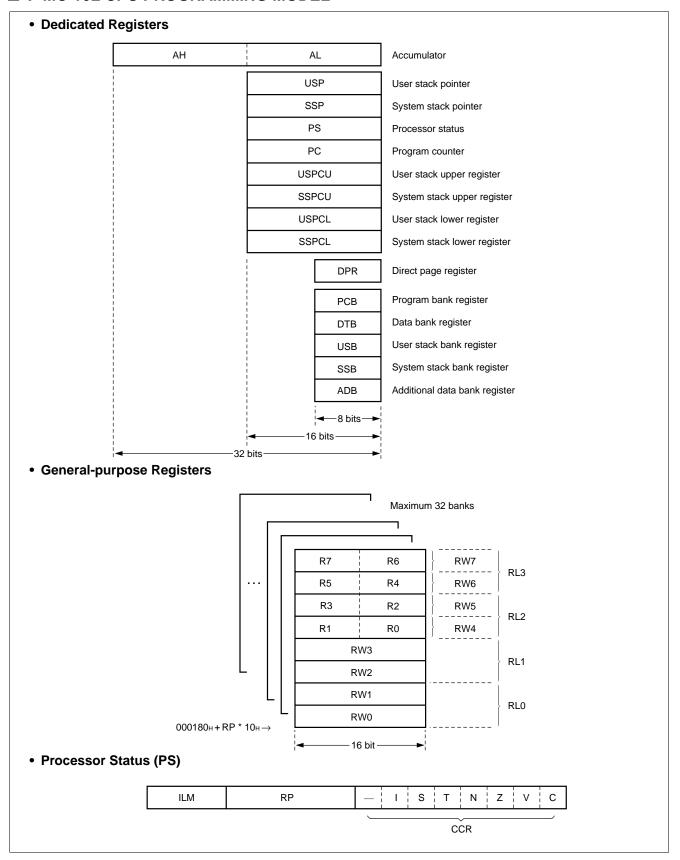

Part no.	Package	Compatible socket adapter Sun Hayato Co., Ltd.
MB90P634APFV	SQFP-100	ROM-100SQF-32DP-16L

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403 FAX: (81)-3-5396-9106

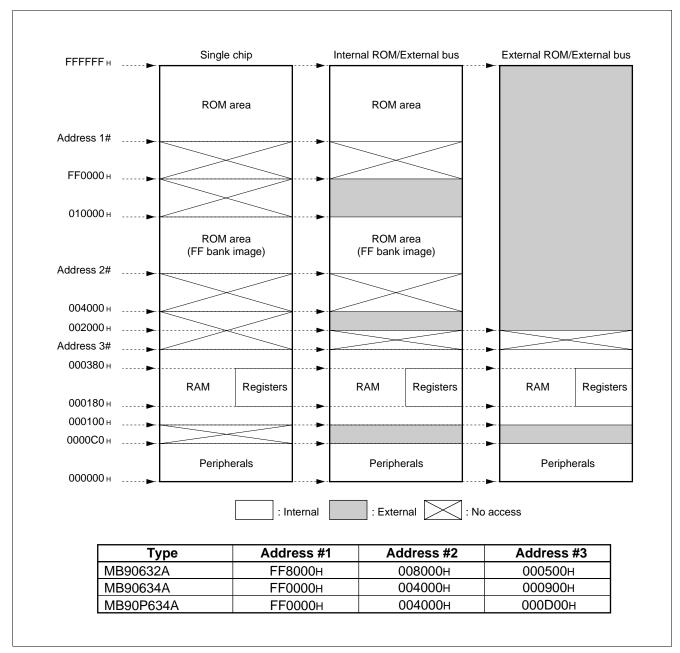
3. Programming Procedure

- (1) Set the EPROM programmer for a MBM27C1000.
- (2) Load the program data between 10000_H and 1FFFF_H in the EPROM programmer.


In the MB90P634A, ROM addresses FFFFFh to FF0000h in operating mode correspond to addresses 1FFFh to 10000h in EPROM mode.


- (3) Set the MB90P634A, in the adapter socket and connect the adapter socket to the EPROM programmer. Take care to correctly align the device with the adapter.
- (4) Perform programming.
- (5) If programming cannot be performed successfully, connect a 0.1 μF or similar capacitor between V_{CC} and GND and between V_{PP} and GND.

Note: As mask ROM products (MB90632A, 634A) do not support EPROM mode, data cannot be read using an EPROM programmer. Performing a blank check for other than the above addresses results in either non-EPROM addresses being read or the blank check being unable to be performed.


■ BLOCK DIAGRAM

■ F²MC-16L CPU PROGRAMMING MODEL

■ MEMORY MAP

■ I/O MAP

Address	Register	Register name	Access	Resource	Initial value
00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXX
01н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX
02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX
03н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXX
04н	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXX
05н	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXX
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXX
07н	Port 7 data register	PDR7	R/W	Port 7	XXXXX
08н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXX
09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXX
0Ан	Port A data register	PDRA	R/W	Port A	XXXXX
0В to 0Fн		Rese	erved area		
10н	Port 0 direction register	DDR0	R/W	Port 0	00000000
11н	Port 1 direction register	DDR1	R/W	Port 1	00000000
12н	Port 2 direction register	DDR2	R/W	Port 2	00000000
13н	Port 3 direction register	DDR3	R/W	Port 3	00000000
14н	Port 4 direction register	DDR4	R/W	Port 4	00000000
15н	Port 5 direction register	DDR5	R/W	Port 5	00000000
16н	Port 6 direction register	DDR6	R/W	Port 6	00000000
17н	Port 7 direction register	DDR7	R/W	Port 7	00000
18н	Port 8 direction register	DDR8	R/W	Port 8	00000000
19н	Port 9 direction register	DDR9	R/W	Port 9	00000000
1Ан	Port A direction register	DDRA	R/W	Port A	00000
1Вн	Port 4 pin register	ODR4	R/W	Port 4	00000000
1Сн	Port 0 resistance register	RDR0	R/W	Port 0	00000000
1Dн	Port 1 resistance register	RDR1	R/W	Port 1	00000000
1Ен	Port 6 resistance register	RDR6	R/W	Port 6	00000000
1 Fн	Analog input enable register	ADER	R/W	Port 5, A/D	11111111
20н	Serial mode register 0	SMR0	R/W		00000000
21н	Serial control register 0	SCR0	R/W	UART0	00000100
22н	Serial input register/ Serial output register 0	SIDR/ SODR0	R/W	O/MCTO	XXXXXXX

Address	Register	Register name	Access	Resource	Initial value					
23н	Serial status register 0	SSR0	R/W	UART0	00001-00					
24н	Serial mode control status register 0	SMCS0	R/W		0000					
25н	Serial mode control status register 0	SMCS0	R/W	I/O expansion serial interface 0	0000010					
26н	Serial data register 0	SDR0	R/W	interrace c	XXXXXXX					
27н	Clock division control register	CDCR	R/W	Communications pres- caler	01111					
28н	Serial mode control status register 1	SMCS1	R/W		0000					
29н	Serial mode control status register 1	SMCS1	R/W	I/O expansion serial interface 1	00000010					
2Ан	Serial data register 1	SDR1	R/W	interface i	XXXXXXX					
2B to 2Fн		Rese	erved area							
30н	Interrupt/DTP enable register	ENIR	R/W		00000000					
31н	Interrupt/DTP source register	EIRR	R/W	DTD/F (analistania)	XXXXXXX					
32н	December 1 and 1 a	ELV/D	D 444	DTP/External interrupts	00000000					
33н	Request level setting register	ELVR	R/W		00000000					
34 to 35н		Reserved area								
36н		ADCS1	D 444		00000000					
37н	Control status register	ADCS2	R/W	A/D compared to	00000000					
38н	Data as sisten	ADCR1	R	A/D converter	XXXXXXX					
39н	Data register	ADCR2	K		XXXXXXX					
ЗАн	D/A converter data register 0	DAT0	R/W		XXXXXXX					
3Вн	D/A converter data register 1	DAT1	R/W	D/A convertor	XXXXXXX					
3Сн	D/A control register 0	DACR0	R/W	D/A converter	0					
3Dн	D/A control register 1	DACR1	R/W		0					
3Ен	Clock control register	CLKR	R/W	CKOT output	000					
3Fн		Rese	erved area							
40н	Reload register L (channel 0)	PRLL0	R/W		XXXXXXX					
41н	Reload register H (channel 0)	PRLH0	R/W		XXXXXXX					
42н	Reload register L (channel 1)	PRLL1	R/W		XXXXXXX					
43н	Reload register H (channel 1)	PRLH1	R/W	8/16 bit PPG	XXXXXXX					
44н	PPG0 operation mode control register	PPGC0	R/W		0X000XX1					
45н	PPG1 operation mode control register	PPGC1	R/W		0X000001					
46н	PPG0, 1 output control register	PPGOE	R/W		00000000					
47 to 4Fн		Rese	erved area	<u> </u>	ı					
50н	Lower compare register channel 0	ОССР0	R/W	16-bit I/O timer output compare (channel 0 to 3)	XXXXXXXX					

Address	Register	Register name	Access	Resource	Initial value						
51н	Upper compare register channel 0	OCCP0	R/W		XXXXXXXX						
52н	Lower compare register channel 1	OCCP1	R/W		XXXXXXX						
53н	Upper compare register channel 1	OCCFI	K/VV		XXXXXXX						
54н	Lower compare register channel 2	OCCP2	R/W		XXXXXXXX						
55н	Upper compare register channel 2	OCCP2	K/VV	16-bit I/O timer	XXXXXXX						
56н	Lower compare register channel 3	OCCP3	R/W	Output compare	XXXXXXX						
57н	Upper compare register channel 3	OCCF3	IN/VV	(channel 0 to 3)	XXXXXXX						
58н	Compare control status register channel 0	OCS0	R/W		00000						
59н	Compare control status register channel 1	OCS1	R/W		000000						
5Ан	Compare control status register channel 2	OCS2	R/W		00000						
5Вн	Compare control status register channel 3	OCS3	R/W		000000						
5C to 5Fн		Reserved area									
60н	Lower input capture register channel 0	IDCDO	R		XXXXXXX						
61н	Upper input capture register channel 0	IPCP0	R		XXXXXXX						
62н	Lower input capture register channel 1	IPCP1	R	16-bit I/O timer	XXXXXXXX						
63н	Upper input capture register channel 1	IPCPT	R	Input capture (channel 0, 1)	XXXXXXX						
64н	Input capture control status register	ICS	R/W	. ,	00000000						
65н	Reserved area	_	_								
66н	Lower timer data register	TCDTL	R/W	16-bit I/O timer	00000000						
67н	Upper timer data register	TCDTH	R/W	Free-run timer	0000000						
68н	Timer control status register	TCCS	R/W	(channel 0, 1)	0000000						
69 to 6Fн		Rese	rved area		,						
70н	Up/down count register channel 0	UDCR0	R		00000000						
71н	Up/down count register channel 1	UDCR1	K		00000000						
72н	Reload compare register channel 0	RCR0	14/		00000000						
73н	Reload compare register channel 1	RCR1	W		00000000						
74н	Counter status register channel 0	CSR0	R/W		00000000						
75н	Reserved area	_	_	8/16-bit up/down timer/counter							
76н	Country control resistant shape -1.0	CCRL0	D/M	anion odditor	-0000000						
77н	Counter control register channel 0	CCRH0	R/W		00000000						
78н	Counter status register channel 1	CSR1	R/W		00000000						
79н	Reserved area	_	_								
7Ан	Counter control register channel 1	CCRL1	R/W		-0000000						

Address	Register	Register name	Acces s	Resource	Initial value
7Вн	Counter control register channel 1	CCRH1	R/W	8/16-bit up/down timer/counter	-0000000
7C to 87н		Rese	erved area	a e	
88н	Serial mode register 1	SMR1	R/W		00000000
89н	Serial control register 1	SCR1	R/W		00000100
8Ан	Serial input register 1/serial output register 1	SIDR1/ SODR1	R/W	UART1	xxxxxxx
8Вн	Serial status register 1	SSR1	R/W		00001-00
8C to 9Eн	Reserved	area (Access	sing 90 _H to	9Ен is prohibited.)	
9Гн	Delayed interrupt generation/ clear register	DIRR	R/W	Delayed interrupt generation module	0
АОн	Low-power consumption mode register	LPMCR	R/W	Low-power consumption	00011000
А1н	Clock selection register	CKSCR	R/W	Low-power consumption	11001100
A2 to A4 _H		Rese	erved area	à	
А5н	Auto-ready function selection register	ARSR	W	External pins	001100
А6н	External address output control register	HACR	W	External pins	0000
А7н	Bus control signal selection register	ECSR	W	External pins	0000*00-
А8н	Watchdog timer control register	WDTC	R/W	Watchdog timer	XXXXX111
А9н	Timebase timer control register	TBTC	R/W	Timebase timer	100100
AA to AF _H		Rese	erved area	a .	l .
ВОн	Interrupt control register 00	ICR00	R/W		00000111
В1н	Interrupt control register 01	ICR01	R/W		00000111
В2н	Interrupt control register 02	ICR02	R/W		00000111
ВЗн	Interrupt control register 03	ICR03	R/W		00000111
В4н	Interrupt control register 04	ICR04	R/W		00000111
В5н	Interrupt control register 05	ICR05	R/W		00000111
В6н	Interrupt control register 06	ICR06	R/W	latamont acatuallan	00000111
В7н	Interrupt control register 07	ICR07	R/W	Interrupt controller	00000111
В8н	B8н Interrupt control register 08		R/W		00000111
В9н	Interrupt control register 09	ICR09	R/W		00000111
ВАн	Interrupt control register 10	ICR10	R/W		00000111
ВВн	Interrupt control register 11	ICR11	R/W		00000111
ВСн	Interrupt control register 12	ICR12	R/W		00000111
ВОн	Interrupt control register 13	ICR13	R/W		00000111

(Continued)

Address	Register	Register name	Acces s	Resource	Initial value
ВЕн	Interrupt control register 14	ICR14	R/W	Interrupt controller	00000111
ВГн	Interrupt control register 15	ICR15	R/W	interrupt controller	00000111
C0 to FFн	Reserved area	_	_		_

Initial values

- 0: The initial value of this bit is "0".
- 1: The initial value of this bit is "1".
- *: The initial value of this bit is "0" or "1".
- X: The initial value of this bit is undefined.
- -: This bit is not used. The initial value is undefined.

Note: Areas below address 0000FF_H not listed in the table are reserved areas. These addresses are accessed by internal access. No access signals are output on the external bus.

■ INTERRUPT VECTOR AND INTERRUPT CONTROL REGISTER ASSIGNMENTS TO INTERRUPT SOURCES

Interrupt source	I ² OS	Interru	ot vector	Interrupt control register		
Interrupt source	support	Number	Address	ICR	Address	
Reset	×	#08	FFFFDC _H	_	_	
INT 9 instruction	×	#09	FFFFD8 _H	_	_	
Exception	×	#10	FFFFD4 _H	_	_	
A/D converter	0	#11	FFFFD0 _H	ICR00	0000В0н	
DTP 0 (External interrupt 0)	0	#13	FFFFC8 _H	ICR01	0000В1н	
16-bit free-run timer (I/O timer) overflow	0	#14	FFFFC4 _H	ICKUI	ООООВТН	
I/O expansion serial 1	0	#15	FFFFC0 _H	ICR02	0000В2н	
DTP 1 (External interrupt 1)	0	#16	FFFFBCH	ICINOZ	0000В2н	
I/O expansion serial 2	0	#17	FFFFB8 _H	ICR03	0000ВЗн	
DTP 2 (External interrupt 2)	0	#18	FFFFB4 _H	ICIOS	ООООВЗН	
DTP 3 (External interrupt 3)	0	#19	FFFFB0 _H	ICR04	0000В4н	
8/16-bit PPG 0 counter borrow	0	#20	FFFFACH	10104	0000В4н	
8/16-bit U/D counter 0 compare	0	#21	FFFFA8 _H			
8/16-bit U/D counter 0 underflow/ overflow, up/down invert	0	#22	FFFFA4 _H	ICR05	0000В5н	
8/16-bit PPG 1 counter borrow	0	#23	FFFFA0 _H	ICR06	000000	
DTP 4/5 (External interrupt 4/5)	0	#24	FFFF9C _H	ICRU6	0000В6н	
Output compare (channel 2) match (I/O timer)	0	#25	FFFF98 _H	ICR07	0000В7н	
Output compare (channel 3) match (I/O timer)	0	#26	FFFF94 _H	ICKU	0000В7н	
DTP 6 (External interrupt 6)	0	#28	FFFF8C _H	ICR08	0000В8н	
8/16-bit U/D counter 1 compare	0	#29	FFFF88 _H			
8/16-bit U/D counter 1 underflow/ overflow, up/down invert	0	#30	FFFF84 _H	ICR09	0000В9н	
Input capture (channel 0) read (I/O timer)	0	#31	FFFF80 _H	ICR10	0000ВАн	
Input capture (channel 1) read (I/O timer)	0	#32	FFFF7C _H	ICKIU	ООООВАН	
Output compare (channel 0) match (I/O timer)	0	#33	FFFF78 _H	ICR11	0000ВВн	
Output compare (channel 1) match (I/O timer)	0	#34	FFFF74 _H	ICKII	ООООВЬН	
DTP 7 (External interrupt 7)	0	#36	FFFF6C _H	ICR12	0000ВСн	
UART0 receive complete	0	#37	FFFF68⊦	ICR13	0000ВДн	
UART1 receive complete	0	#38	FFFF64 _H	IONIO	ООООВЫН	
UART0 transmit complete	0	#39	FFFF60 _H	ICR14	0000ВЕн	
UART1 transmit complete	0	#40	FFFF5C _H	IUN 14	UUUUDEH	
Reserved	×	#41	FFFF58 _H	ICR15	0000ВFн	
Delayed interrupt	×	#42	FFFF54 _H	101(13	ооооы н	

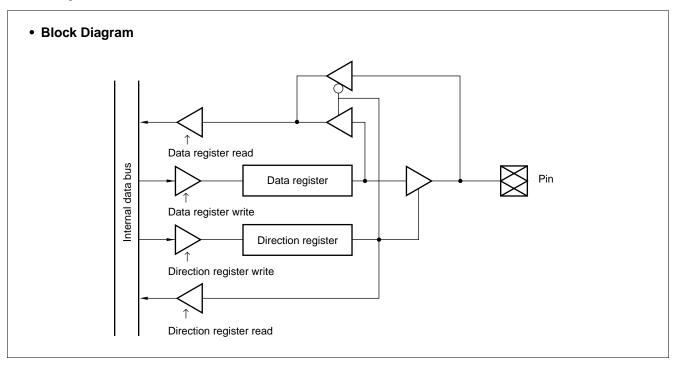
o: Indicates that the interrupt request flag is cleared by the I2OS interrupt clear signal (no stop request).

^{©:} Indicates that the interrupt request flag is cleared by the I2OS interrupt clear signal (stop request present).

x: Indicates that the interrupt request flag is not cleared by the I2OS interrupt clear signal.

Note: For resources in which two interrupt sources share the same interrupt number, the I²OS interrupt clear signal clears both interrupt request flags.

■ PERIPHERAL RESOURCES


1. Parallel Ports

(1) I/O Ports

Each port pin can be specified as either an input or output by its corresponding direction register when the pin is not set for use by a peripheral. When a port is set as an input, reading the data register always reads the value corresponding to the pin level. When a port is set as an output, reading the data register reads the data register latch value. The same applies when reading using a read-modify-write instruction.

When used as control outputs, reading the data register reads the control output value, irrespective of the direction register value.

Note that if a read-modify-write instruction (set bit or similar instruction) is used to set output data in the data register before switching a pin from input to output, the instruction reads the input level at the pin and not the data register latch value.

(2) Register Configuration

bit	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0	
Address: 000000H	P07	P06	P05	P04	P03	P02	P01	P00	Port 0 data register (PDR0)
Address: 000001H	P17	P16	P15	P14	P13	P12	P11	P10	Port 1 data register (PDR1)
Address: 000002H	P27	P26	P25	P24	P23	P22	P21	P20	Port 2 data register (PDR2)
Address: 000003H	P37	P36	P35	P34	P33	P32	P31	P30	Port 3 data register (PDR3)
Address: 000004H	P47	P46	P45	P44	P43	P42	P41	P40	Port 4 data register (PDR4)
Address: 000005H	P57	P56	P55	P54	P53	P52	P51	P50	Port 5 data register (PDR5)
Address: 000006H	P67	P66	P65	P64	P63	P62	P61	P60	Port 6 data register (PDR6)
Address: 000007H	_	-	_	P74	P73	P72	P71	P70	Port 7 data register (PDR7)
Address: 000008H	P87	P86	P85	P84	P83	P82	P81	P80	Port 8 data register (PDR8)
Address: 000009H	P97	P96	P95	P94	P93	P92	P91	P90	Port 9 data register (PDR9)
Address: 00000AH	_		_	PA4	PA3	PA2	PA1	PA0	Port A data register (PDRA)
bit	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0	
Address: 000010 _H	D07	D06	D05	D04	D03	D02	D01	D00	Port 0 direction register (DDR0)
Address: 000011H	D17	D16	D15	D14	D13	D12	D11	D10	Port 1 direction register (DDR1)
Address: 000012H	D27	D26	D25	D24	D23	D22	D21	D20	Port 2 direction register (DDR2)
Address: 000013 _H	D37	D36	D35	D34	D33	D32	D31	D30	Port 3 direction register (DDR3)
Address: 000014 _H	D47	D46	D45	D44	D43	D42	D41	D40	Port 4 direction register (DDR4)
Address: 000015 _H	D57	D56	D55	D54	D53	D52	D51	D50	Port 5 direction register (DDR5)
Address: 000016 _H	D67	D66	D65	D64	D63	D62	D61	D60	Port 6 direction register (DDR6)
Address: 000017 _H	_	-		D74	D73	D72	D71	D70	Port 7 direction register (DDR7)
Address: 000018 _H	D87	D86	D85	D84	D83	D82	D81	D80	Port 8 direction register (DDR8)
Address: 000019 _H	D97	D96	D95	D94	D93	D92	D91	D90	Port 9 direction register (DDR9)
Address: 00001AH	_	_	_	DA4	DA3	DA2	DA1	DA0	Port A direction register (DDRA)
bit	15	14	13	12	11	10	9	8	
Address: 00001BH	OD47	OD46	OD45	OD44	OD43	OD42	OD41	OD40	Port 4 pin register (ODR4)
bit	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0	
Address: 00001CH	RD07	RD06	RD05	RD04	RD03	RD02	RD01	RD00	Port 0 resistor register (RDR0)
Address: 00001DH	RD17	RD16	RD15	RD14	RD13	RD12	RD11	RD10	Port 1 resistor register (RDR1)
Address: 00001EH	RD67	RD66	RD65	RD64	RD63	RD62	RD61	RD60	Port 6 resistor register (RDR6)
bit	15	14	13	12	11	10	9	8	
Address: 00001FH	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	Port 5 analog input enable registe
					0	-			(ADER)
									v := =· v/

(3) Register Details

• Port Data Registers

bit	7	6	5	4	3	2	1	0	. Initial value	Access
PDR0 Address: 000000 _H	P07	P06	P05	P04	P03	P02	P01	P00	Undefined	R/W*
Additional Control of the Control of										
bit	15	14	13	12	11	10	9	8	Ī	
PDR1 Address: 000001 _H	P17	P16	P15	P14	P13	P12	P11	P10	Undefined	R/W*
bit	7	6	5	4	3	2	1	0		
PDR2 Address: 000002 _H	P27	P26	P25	P24	P23	P22	P21	P20	Undefined	R/W*
Address: 000002h									•	
bit	15	14	13	12	11	10	9	8	•	
PDR3 Address: 000003 _H	P37	P36	P35	P34	P33	P32	P31	P30	Undefined	R/W*
bit	7	6	5	4	3	2	1	0		
PDR4	P47	P46	P45	P44	P43	P42	P41	P40	Undefined	R/W*
Address: 000004 _H										
bit	15	14	13	12	11	10	9	8	_	
PDR5 Address: 000005 _H	P57	P56	P55	P54	P53	P52	P51	P50	Undefined	R/W*
Add1033. 000000h										
bit	7	6	5	4	3	2	1	0	ī	
PDR6 Address: 000006н	P67	P66	P65	P64	P63	P62	P61	P60	Undefined	R/W*
bit	15	14	13	12	11	10	9	8		
PDR7	_	_	_	P74	P73	P72	P71	P70	Undefined	R/W*
Address: 000007 _H										
bit	7	6	5	4	3	2	1	0		
PDR8 Address: 000008 _H	P87	P86	P85	P84	P83	P82	P81	P80	Undefined	R/W*
Add 633. 000000										
bit	15	14	13	12	11	10	9	8	1	
PDR9 Address: 000009 _H	P97	P96	P95	P94	P93	P92	P91	P90	Undefined	R/W*
	_		_	_						
bit PDRA	7	6	5	4	3	2	1	0	1	
Address: 00000AH	_		_	PA4	PA3	PA2	PA1	PA0	Undefined	R/W*

^{*:} The operation of reading or writing to I/O ports is slightly different from reading or writing to memory, as follows.

• Input mode

Read: Reads the corresponding pin level.

Write: Writes to the output latch.

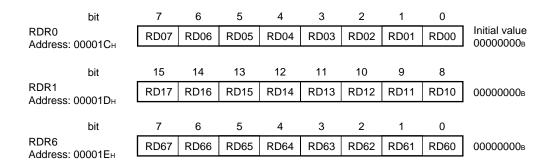
• Output mode

Read: Reads the value of the data register latch.

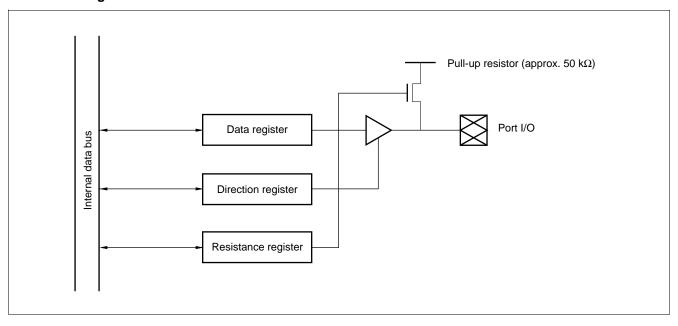
Write: The value is output from the corresponding pin.

• Port Direction Registers

bit	7	6	5	4	3	2	1	0	Initial value	Access
DDR0 Address: 000010 _H	D07	D06	D05	D04	D03	D02	D01	D00	00000000в	R/W
7.taa.000. 0000 1011										
bit	15	14	13	12	11	10	9	8		
DDR1 Address: 000011 _H	D17	D16	D15	D14	D13	D12	D11	D10	0000000В	R/W
1.5	_	•	_		•			•		
bit DDR2	7	6	5	4	3	2	1	0		
Address: 000012H	D27	D26	D25	D24	D23	D22	D21	D20	00000000в	R/W
bit	15	14	13	12	11	10	9	8		
DDR3	D37	D36	D35	D34	D33	D32	D31	D30	0000000в	R/W
Address: 000013 _H										
bit	7	6	5	4	3	2	1	0		
DDR4 Address: 000014 _H	D47	D46	D45	D44	D43	D42	D41	D40	0000000В	R/W
Address. 66661 III										
bit	15	14	13	12	11	10	9	8		
DDR5 Address: 000015 _H	D57	D56	D55	D54	D53	D52	D51	D50	0000000В	R/W
bit	7	6	5	4	3	2	1	0		
DDR6	D67	D66	D65	D64	D63	D62	D61	D60	0000000-	D AA/
Address: 000016 _H	Dor	D00	D03	D04	D03	D02	וסט	D00	0000000В	R/W
bit	15	14	13	12	11	10	9	8		
DDR7 Address: 000017 _H	_	_	_	D74	D73	D72	D71	D70	000в	R/W
Address. 000017H										
bit	7	6	5	4	3	2	1	0	1	
DDR8 Address: 000018 _H	D87	D86	D85	D84	D83	D82	D81	D80	00000000в	R/W
bit DDR9	15	14	13	12	11	10	9	8		
Address: 000019 _H	D97	D96	D95	D94	D93	D92	D91	D90	0000000В	R/W
h:+	7	6	E	4	2	2	1	0		
bit DDRA	7	6	5	4	3	2	1	0	00000	DAM
Address: 00001AH				DA4	DA3	DA2	DA1	DA0	00000в	R/W


When pins are used as ports, the register bits control the corresponding pins as follows.

0: Input mode


1: Output mode

Bits are set to "0" by a reset.

• Port Resistance Registers

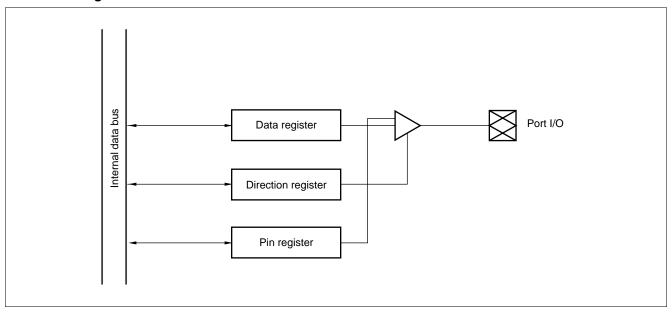
• Block Diagram

Notes: • Input resistance register R/W

Controls the pull-up resistor in input mode.

- 0: Pull-up resistor disconnected in input mode.
- 1: Pull-up resistor connected in input mode.

The setting has no meaning in output mode (pull-up resistor disconnected).


The direction register (DDR) sets input or output mode.

- The pull-up resistor is disconnected in hardware standby or stop mode (SPL = 1) (high impedance).
- This function is disabled when using an external bus. In this case, do not write to this register.

• Port Pin Register

bit	7	6	5	4	3	2	1	0	
ODR4 Address: 00001B _H	OD47	OD46	OD45	OD44	OD43	OD42	OD41	OD40	Initial value

Block Diagram

Notes: • Pin register R/W

Performs open-drain control in output mode.


- 0: Operate as a standard output port in output mode.
- 1: Operate as an open-drain output port in output mode.

The setting has no meaning in input mode (output Hi-z).

The direction register (DDR) sets input or output mode

- The pull-up resistor is disconnected in hardware standby or stop mode (SPL = 1) (high impedance).
- This function is disabled when using an external bus. In this case, do not write to this register.

Analog Input Enable Register

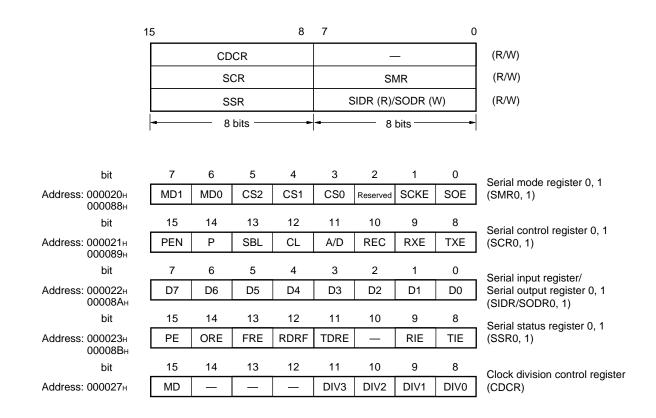
Controls each port 5 pin as follows.

0: Port input mode

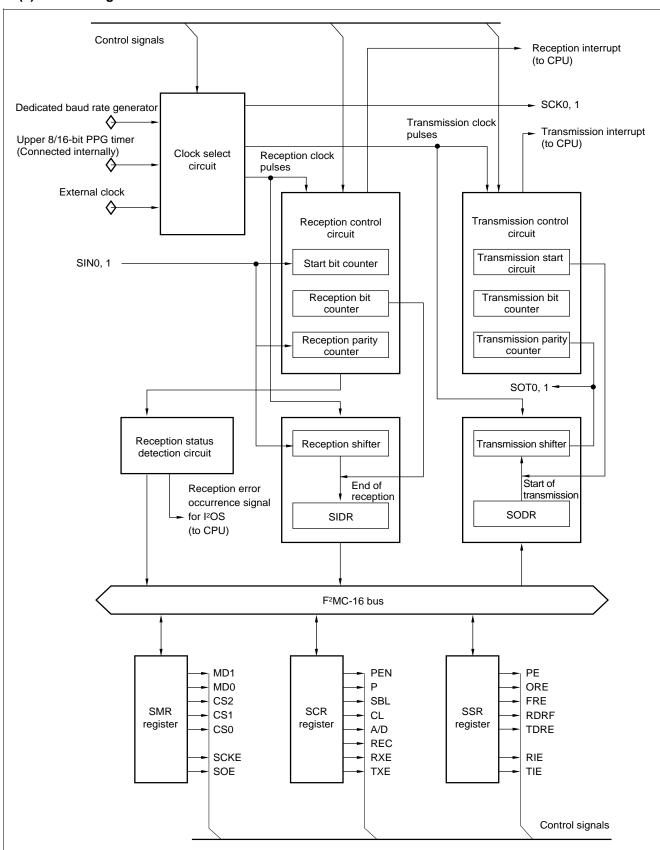
1: Analog input mode

Set to "1" by a reset.

2. UART


The UART is a serial I/O port that can be used for CLK asynchronous (start-stop synchronization) or CLK synchronous communications. The UART has the following features.

- Full duplex, double buffered
- Supports asynchronous (start-stop synchronization) and CLK synchronous data transfer
- Supports multi-processor mode
- Built-in dedicated baud rate generator


Asynchronous: 9615, 31250, 4808, 2404, 1202 bps CLK synchronous: 1 Mbps, 500 Kbps, 250 Kbps, 125 Kbps, ar. For a 6, 8, 10, 12, or 16 MHz clock.

- Supports flexible baud rate setting using an external clock
- Error detect function (parity, framing, and overrun)
- NRZ type transmission signal
- Intelligent I/O service support

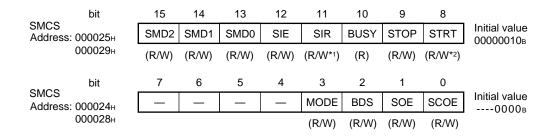
(1) Register Configuration

(2) Block Diagram

3. I/O Expansion Serial Interface

This block consists of an 8-bit serial I/O interface that can perform clock synchronous data transfer. Either LSB-first or MSB-first data transfer can be selected.

The following two serial I/O operation modes are available.


- Internal shift clock mode: Data transfer is synchronized with the internal clock.
- External shift clock mode: Data transfer is synchronized with the clock input from the external pin (SCK). By manipulating the general-purpose port that shares the external pin (SCK), this mode also enables the data transfer operation to be driven by CPU instructions.

(1) Register Configuration

bit	15	14	13	12	11	10	9	8	
Address: 000025н 000029н	SMD2	SMD1	SMD0	SIE	SIR	BUSY	STOP	STRT	
bit	7	6	5	4	3	2	1	0	Serial mode control status
Address: 000024н 000028н	_	_	_	_	MODE	BDS	SOE	SCOE	registers 0, 1 (SMCS0, 1)
bit	7	6	5	4	3	2	1	0	Serial data registers 0, 1
Address: 000026н 00002Ан	D7	D6	D5	D4	D3	D2	D1	D0	(SDR0, 1)

(2) Register Details

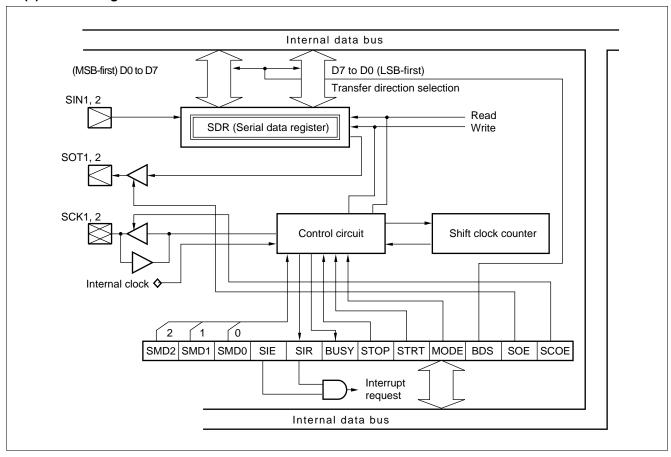
• Serial Mode Control Status Register (SMCS)

- *1: Only "0" can be written.
- *2: Only "1" can be written. Reading always returns "0".

This register controls the transfer operation mode of the serial I/O. The following describes the function of each bit.

(a) [bit 3] Serial mode selection bit (MODE)

This bit selects the conditions for starting operation from the halted state. Changing the mode during operation is prohibited.


MODE	Operation								
0	Start when STRT is set to "1". [Initial value]								
1	Start on reading from or writing to the serial data register.								

The bit is initialized to "0" by a reset. The bit is readable and writable. Set to "1" when using the intelligent I/O service.

(b) [bit 2] Transfer direction selection bit (BDS: Bit Direction Select)
Selects as follows at the time of serial data input and output whether the data are to be transferred in the order from LSB to MSB or vice versa.

MODE	Operation
0	LSB-first [Initial value]
1	MSB-first

(3) Block Diagram

4. A/D Converter

The A/D converter converts analog input voltages to digital values. The A/D converter has the following features.

- Conversion time: Minimum of 5.2 μs per channel (for a 16 MHz machine clock)
- Uses RC-type successive approximation conversion with a sample and hold circuit.
- 10-bit resolution
- Eight program-selectable analog input channels

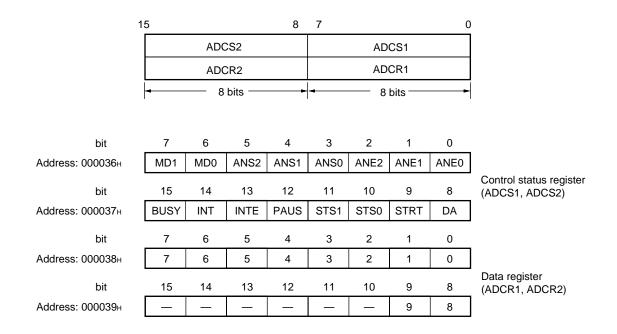
Single conversion mode : Selectively convert a one channel.

Scan conversion mode : Continuously convert multiple channels. Maximum of 8 program-

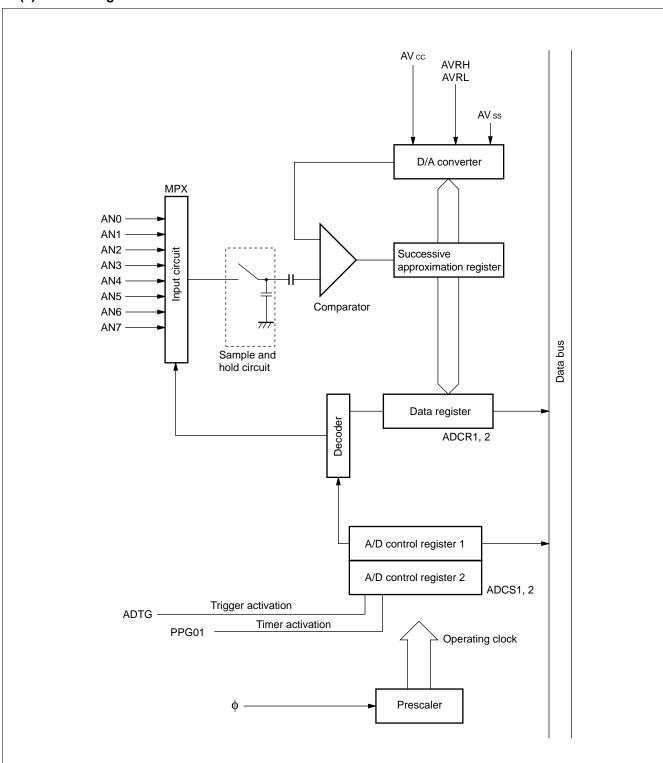
selectable channels.

Continuous conversion mode : Repeatedly convert specified channels.

Stop conversion mode : Convert one channel then halt until the next activation. (Enables


synchronization of the conversion start timing.)

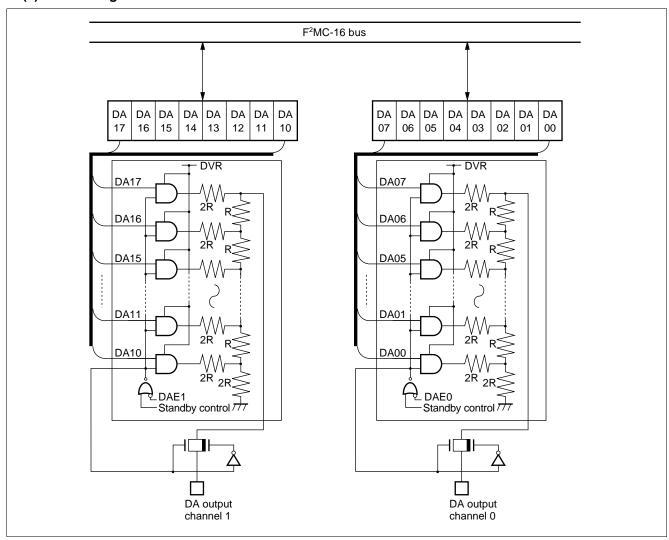
 An A/D conversion completion interrupt request to the CPU can be generated on the completion of A/D conversion. This interrupt can activate I²OS to transfer the result of A/D conversion to memory and is suitable for continuous operation.


• Activation by software, external trigger (falling edge), or timer (rising edge) can be selected.

(1) Register Configuration

The A/D converter has the following registers.

(2) Block Diagram


5. D/A Converter

This block is an R-2R type D/A converter with 8-bit resolution. The device contains two D/A converters. The D/A control register controls the output of the two D/A converters independently.

(1) Register Configuration

bit	7	6	5	4	3	2	1	0	D/A converter data register 0
Address: 00003AH	DA07	DA06	DA05	DA04	DA03	DA02	DA01	DA00	(DAT0)
bit	15	14	13	12	11	10	9	8	D/A converter data register 0
Address: 00003BH	DA17	DA16	DA15	DA14	DA13	DA12	DA11	DA10	(DAT1)
bit	7	6	5	4	3	2	1	0	D/A control register 0
Address: 00003CH	_	_	_	_	_	_	_	DAE0	(DACR0)
bit	15	14	13	12	11	10	9	8	D/A control register 1
Address: 00003DH	_	_		_	_	_	_	DAE1	(DACR1)

(2) Block Diagram

6. 8/16-bit PPG

This block is an 8-bit reload timer module. The block performs PPG output in which the pulse output is controlled by the operation of the timer.

The hardware consists of two 8-bit down-counters, four 8-bit reload registers, one 16-bit control register, two external pulse output pins, and two interrupt outputs. The PPG has the following functions.

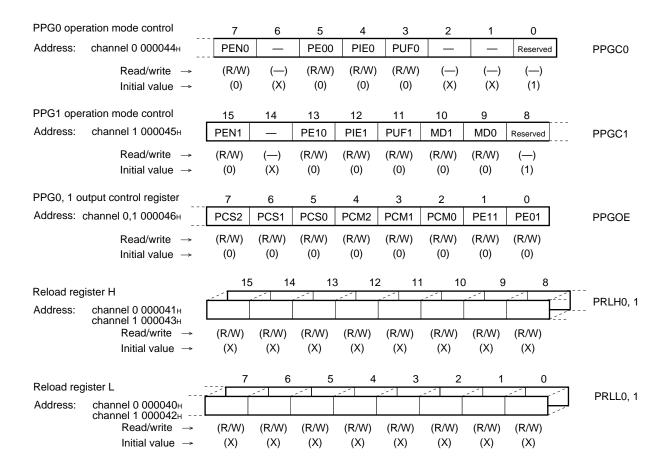
• 8-bit PPG output in two channels independent operation mode:

Two independent PPG output channels are available.

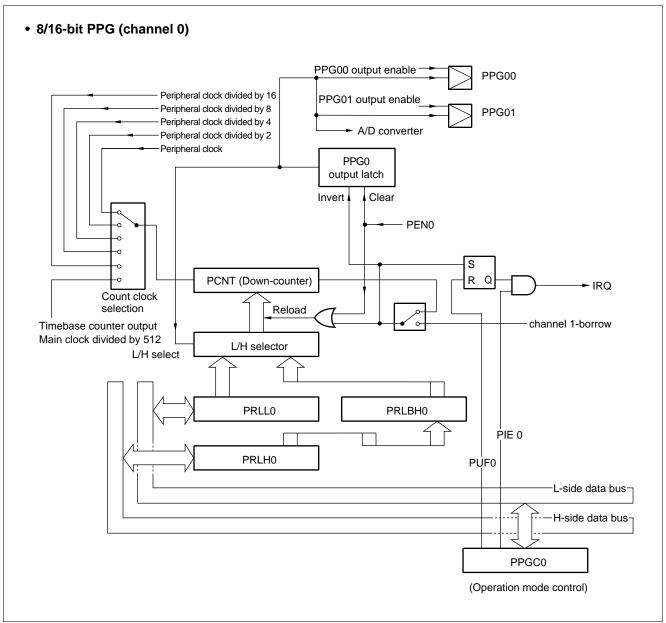
• 16-bit PPG output operation mode

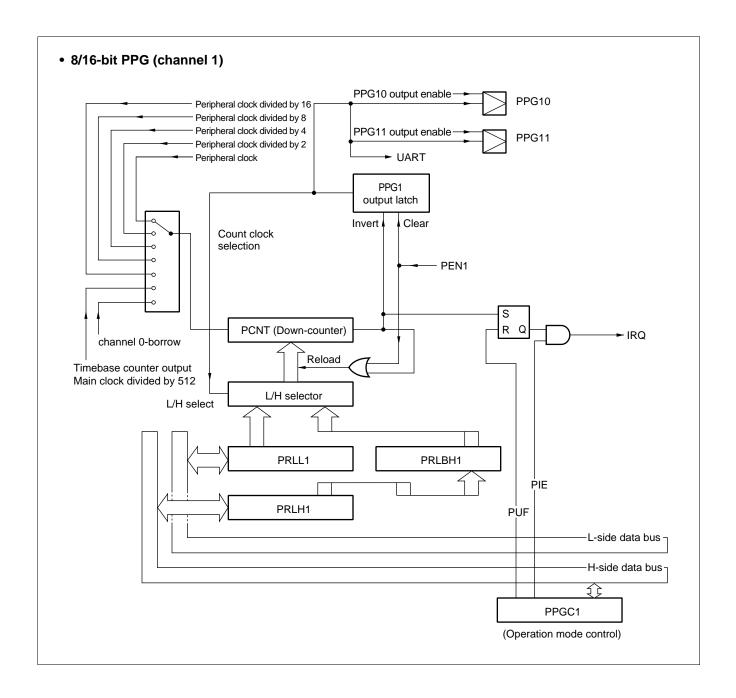
: One 16-bit PPG output channel is available.

• 8+8-bit PPG output operation mode


: Variable-period 8-bit PPG output operation is available by using the $\,$

output of channel 0 as the clock input to channel 1.


PPG output operation


: Outputs pulse waveforms with variable period and duty ratio. Can be used as a D/A converter in conjunction with an external circuit.

(1) Register Configuration

(2) Block Diagram

7. 8/16-bit Up/Down Counter/Timer

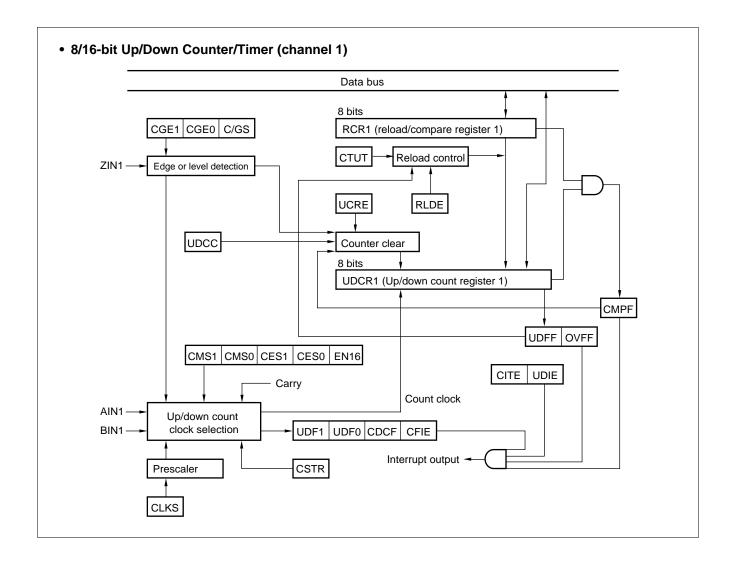
This block is an up/down counter/timer and consists of six event input pins, two 8-bit up/down counters, two 8-bit reload/compare registers, and their control circuits.

(1) Main	Functions	
----------	-----------	--

The 8-bit count register can count in the range	
(or 0 to 65535D in 1×16 -bit operation mode). • The count clock selection can select between	
Count modes	 Timer mode Up/down counter mode Phase difference count mode (× 2) Phase difference count mode (× 8)
Two different internal count clocks are available.	,
Count clock (at 16 MHz operation)	125 ns (8 MHz: Divide by 2) 1.0 μs (1 MHz: Divide by 8)
• In up/down count mode, you can select which	edge to detect on the external pin input signal.
Detected edge	Detect falling edges Detect rising edges Detect both rising and falling edges Edge detection disabled
from the encoder, a high-precision rotational a • Two different functions can be selected for the	tor encoder counting. By inputting the A, B, and Z phase outputs angle, speed, or similar count can be implemented simply.
ZIN pin —	Counter clear function Gate function
 Compare and reload functions are available a width up/down count can be performed by act 	and can be used either independently or together. A variable-ivating both functions.
Compare/reload function	Compare function (Output an interrupt when a compare occurs.) Compare function (Output an interrupt and clear the counter when a compare occurs.) Reload function (Output an interrupt and reload when an underflow occurs.) Compare/reload function (Output an interrupt and clear the counter when a compare occurs. Output an interrupt and reload when an underflow occurs.) Compare/reload disabled

- Whether or not to generate an interrupt when a compare, reload (underflow), or overflow occurs can be set independently.
- The previous count direction can be determined from the count direction flag.
- An interrupt can be generated when the count direction changes.

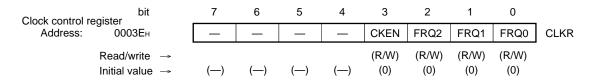
(2) Register Configuration


The 8/16-bit up/down counter/timer has the following registers.

15	8	7 0
	UDCR1	UDCR0
	RCR1	RCR0
	Reversed area	CSR0
	CCRH0	CCRL0
	Reversed area	CSR1
	CCRH1	CCRL1
-	8 bits	8 bits

Dit T Dit										
Address: 000070H D07 D06 D05 D04 D03 D02 D01 D00 (UDCR0)	bit	7	6	5	4	3	2	1	0	Un/down count register channel 0
Address: 000071H D17 D16 D15 D14 D13 D12 D11 D10 (UDCR1) D17 D16 D15 D14 D13 D12 D11 D10 (UDCR1) Address: 000072H D07 D06 D05 D04 D03 D02 D01 D00 (RCR1) Address: 000073H D17 D16 D15 D14 D13 D12 D11 D10 (RCR1) Address: 000073H D17 D16 D15 D14 D13 D12 D11 D10 (RCR1) Address: 000074H CSTR CITE UDIE CMPF OVFF UDFF UDF1 UDF0 (CSR0, 1) Address: 000076H D15 D14 D13 D12 D11 D10 (CSR0, 1) Address: 000076H D15 D14 D15 D1	Address: 000070 _H	D07	D06	D05	D04	D03	D02	D01	D00	,
Address: 000071H D17 D16 D15 D14 D13 D12 D11 D10 (UDCR1)	bit	15	14	13	12	11	10	9	8	Un/down count register channel 1
Address: 000072H D07 D06 D05 D04 D03 D02 D01 D00 Reload compare register channel (RCR1)	Address: 000071н	D17	D16	D15	D14	D13	D12	D11	D10	,
Address: 000072H	bit	7	6	5	4	3	2	1	0	Reload compare register channel 0
Address: 000073H D17 D16 D15 D14 D13 D12 D11 D10 Reload compare register channel (RCR1) Address: 000074H	Address: 000072H	D07	D06	D05	D04	D03	D02	D01	D00	
Address: 000073H D17 D16 D15 D14 D13 D12 D11 D10 (RCR1) Address: 000074H 000078H D17 D16 D15 D14 D13 D12 D11 D10 (RCR1) Address: 000074H 000078H D17 D16 D15 D14 D13 D12 D11 D10 (RCR1) CSTR CITE UDIE CMPF OVFF UDFF UDF1 UDF0 (CSR0, 1) Dit T	bit	15	14	13	12	11	10	9	8	Reload compare register channel 1
Address: 000074H 000078H bit 7 6 5 4 3 2 1 0 Counter status register channel (CSR0, 1) Address: 000076H 00007AH bit 15 14 13 12 11 10 9 8 Address: 000077H M16E CDCF CFIE CLKS CMS1 CMS0 CES1 CES0 (CCRH0) Counter status register channel (CSR0, 1) Counter status register channel (CCRL0, 1) Counter control register channel (CCRH0)	Address: 000073H	D17	D16	D15	D14	D13	D12	D11	D10	
Address: 000078H		7	6	5	4	3	2	1	0	Counter status register channel 0, 1
Address: 000076H 00007AH bit 15 14 13 12 11 10 9 8 Counter status register channel (CCRL0, 1) Address: 000077H M16E CDCF CFIE CLKS CMS1 CMS0 CES1 CES0 bit 7 6 5 4 3 2 1 0 Counter control register channel		CSTR	CITE	UDIE	CMPF	OVFF	UDFF	UDF1	UDF0	
CTUT UCRE RLDE UDCC CGSC CGE1 CGE0 (CCRL0, 1)		7	6	5	4	3	2	1	0	Counter status register channel 0, 1
Address: 000077H M16E CDCF CFIE CLKS CMS1 CMS0 CES1 CES0 Counter control register channe (CCRH0) bit 7 6 5 4 3 2 1 0 Counter control register channe		_	CTUT	UCRE	RLDE	UDCC	CGSC	CGE1	CGE0	
Address: 000077H M16E CDCF CFIE CLKS CMS1 CMS0 CES1 CES0 (CCRH0) bit 7 6 5 4 3 2 1 0 Counter control register channel	bit	15	14	13	12	11	10	9	8	Counter control register channel 0
Counter control register channel	Address: 000077 _H	M16E	CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CES0	S S
	bit	7	6	5	4	3	2	1	0	Counter control register channel 1
	Address: 00007BH	_	CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CES0	· ·

(3) Block Diagram



8. Clock Output Control Register

The clock output outputs the divided machine clock.

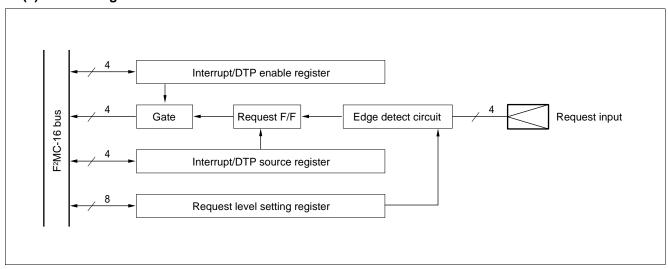
(1) Register Configuration

(a) [bit 3] CKEN CKOT output enable bit

MODE	Operation							
0	Operate as a standard port.							
1	Operate as the CKOT output.							

(b) [bits 2, 1, 0] FRQ2, FRQ1, FRQ0 These bits select the output frequency of the clock.

FRQ2	FRQ1	FRQ0	Output clock	φ = 16 MHz	φ = 8 MHz	φ = 4 MHz
0	0	0	φ/21	125 ns	250 ns	500 ns
0	0	1	φ/2²	250 ns	500 ns	1 μs
0	1	0	φ/2³	500 ns	1 μs	2 μs
0	1	1	φ/24	1 μs	2 μs	4 μs
1	0	0	φ/25	2 μs	4 μs	8 µs
1	0	1	φ/26	4 μs	8 µs	16 μs
1	1	0	φ/27	8 µs	16 μs	32 μs
1	1	1	ф/28	16 μs	32 μs	64 μs


9. DTP/External Interrupts

The DTP (Data Transfer Peripheral) is a peripheral block that interfaces external peripherals to the F²MC-16L CPU. The DTP receives DMA and interrupt processing requests from external peripherals and passes the requests to the F²MC-16L CPU to activate the intelligent I/O service or interrupt processing. Two request levels ("H" and "L") are provided for the intelligent I/O service. For external interrupt requests, generation of interrupts on a rising or falling edge as well as on "H" and "L" levels can be selected, giving a total of four types.

(1) Register Configuration

bit	7	6	5	4	3	2	1	0	Interrupt/DTP enable register
Address: 000030H	EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0	(ENIR)
bit	15	14	13	12	11	10	9	8	Interrupt/DTP source register
Address: 000031H	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	(EIRR)
bit	7	6	5	4	3	2	1	0	Request level setting register
Address: 000032H	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	(ELVR)
bit	15	14	13	12	11	10	9	8	Request level setting register
Address: 000033H	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	(ELVR)

(2) Block Diagram

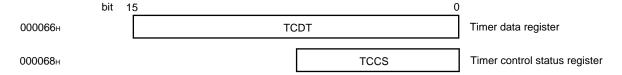
10. 16-bit I/O Timer

The 16-bit I/O timer consists of one 16-bit free-run timer, four output compare, and two input capture modules. Based on the 16-bit free-run timer, these functions can be used to generate two independent waveform outputs and to measure input pulse widths and external clock periods.

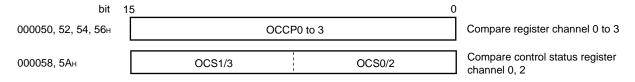
(1) A Summary of Each Function

- 16-bit free-run timer (× 1)
 - The 16-bit free-run timer consists of a 16-bit up-counter, a control register, and a prescaler. The output of the timer/counter is used as the base time for the input capture and output compare.
- (a) The operating clock for the counter can be selected from four different clocks. Four internal clocks ($\phi/4$, $\phi/16$, $\phi/32$, $\phi/64$)
- (b) Interrupts can be generated when a counter value overflow or compare match with compare register 0 occurs (the appropriate mode must be set for a compare match).
- (c) The counter can be initialized to 0000_H by a reset, software clear, or compare match with compare register 0.
- Output compare (× 4)

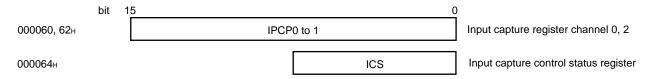
The output compare consists of two 16-bit compare registers, compare output latches, and control registers. The modules can invert the output level and generate an interrupt when the 16-bit free-run timer value matches the compare register value.

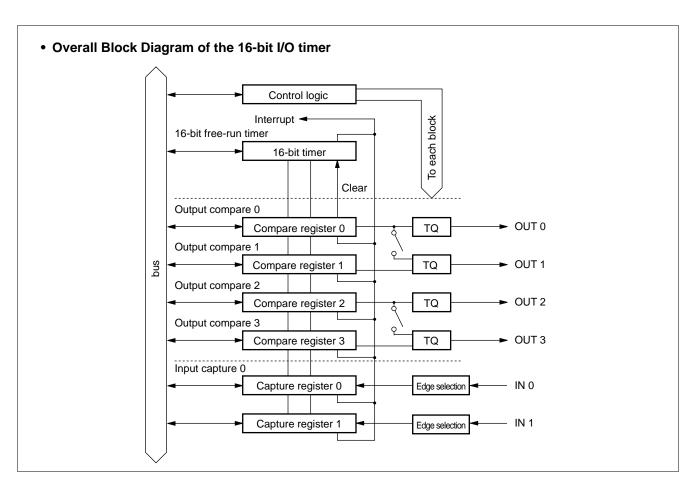

- (a) The four compare registers can be operated independently.
 Each compare register has a corresponding output pin and interrupt flag.
- (b) The four compare registers can be paired to control the output pins. Invert the output pins using the four compare registers.
- (c) Initial values can be set for the output pins.
- (d) An interrupt can be generated when a compare match occurs.
- Input capture (× 2)

The input capture consists of two independent external input pins, their corresponding capture registers, and a control register. The value of the 16-bit free-run timer can be stored in the capture register and an interrupt generated when the specified edge is detected on the signal from the external input pin.


- (a) The edge to detect on the external input signal is selectable.Detection of rising edges, falling edges, or either edge can be specified.
- (b) The two input capture channels can operate independently.
- (c) An interrupt can be generated on detection of the specified edge on the external input signal. The input capture interrupt can activate the intelligent I/O service.

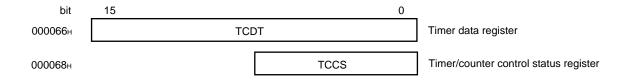
(2) Register Configuration for the Entire 16-bit I/O Timer

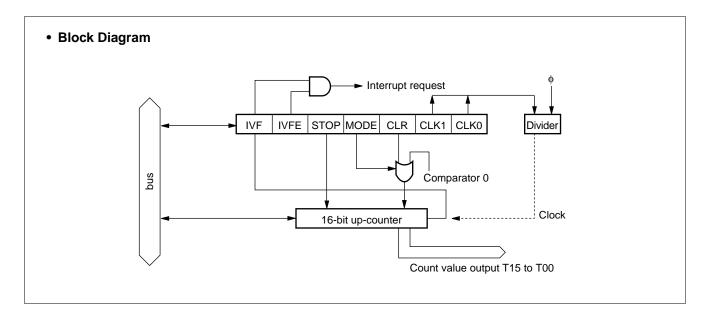

• 16-bit free-run timer



• 16-bit output compare

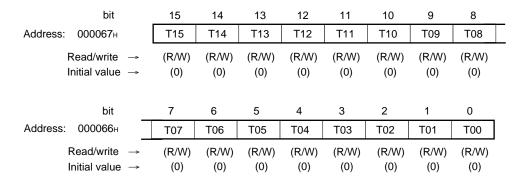
• 16-bit input capture




(3) 16-bit Free-run Timer

The 16-bit free-run timer consists of a 16-bit up-counter and a control status register. The count value of the timer is used as the base time for the input capture and output compare.

- (a) The count clock can be selected from four different clocks.
- (b) Interrupts can be generated when a counter value overflow occurs.
- (c) Depending on the mode setting, the counter can be initialized when a match occurs with compare register 0 of the output compare.


• Register Configuration

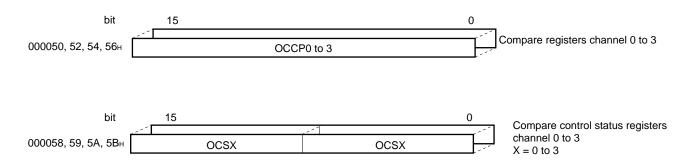
• Register Details

Data Register

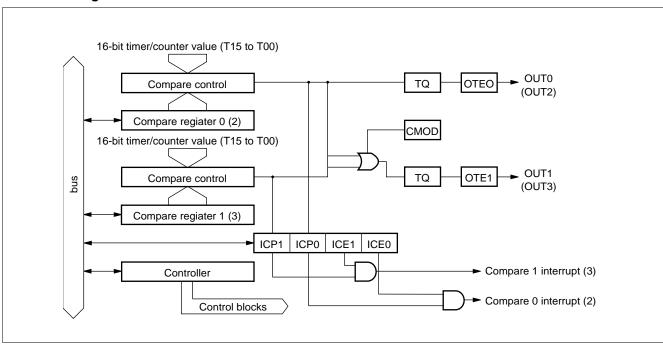
The count value of the 16-bit free-run timer can be read from this register. The count is cleared to "0000H" by a reset. Writing to this register sets the timer value. However, only write to the register when the timer is halted (STOP = "1"). Always use word access.

The 16-bit free-run timer is initialized by the following.

- (a) Reset
- (b) The clear bit (CLR) of the control status register
- (c) A match between the timer/counter value and compare register 0 of the output compare (if the appropriate mode is set)


(4) Output Compare

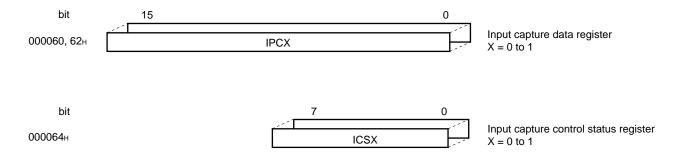
The output compare consists of 16-bit compare registers, compare output pins, and a control register. The module can invert the output level and generate an interrupt when the 16-bit free-run timer value matches a compare register value.


- (a) The two compare registers can be operated independently.

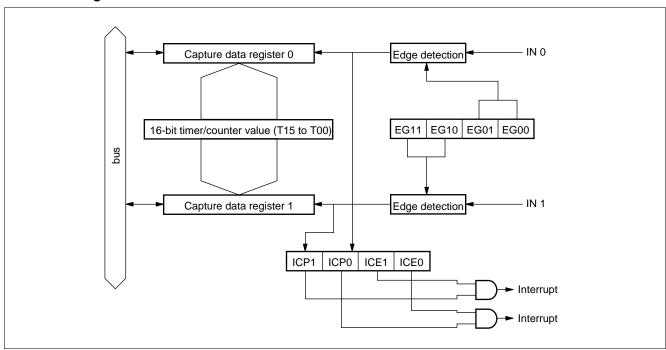
 The output compare can also be set to control pin output using two compare registers.
- (b) The initial value of the output pins can be set.
- (c) An interrupt can be generated when a compare match occurs.

• Register Configuration

Block Diagram



(5) Input Capture


The function of this module is to store the value of the 16-bit free-run timer in a register when the specified edge (rising, falling, or either edge) is detected on the external input signal. The module can also generate an interrupt on detection of the edge. The input capture contains input capture data registers and a control register. Each input capture has a corresponding external input pin.

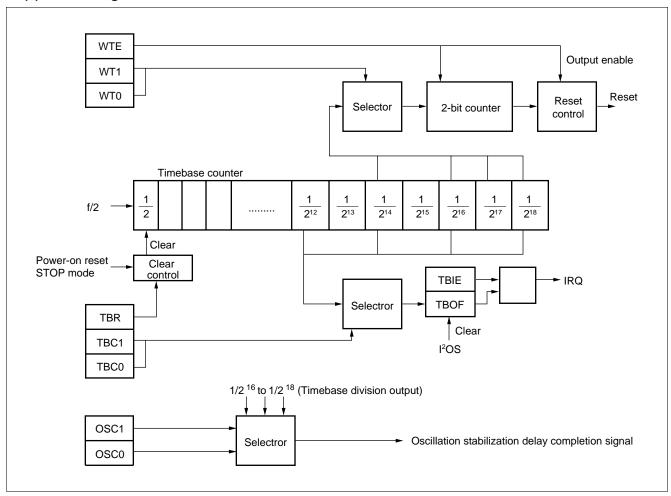
- (a) Three different types of edge detection can be selected. Rising edges (\uparrow) , falling edges (\downarrow) , or either edge $(\uparrow\downarrow)$.
- (b) An interrupt can be generated on detection of the specified edge on the external input.

Register Configuration (for the entire input capture)

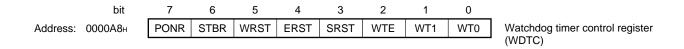
• Block Diagram

• Register Details

Input capture data register


15	14	13	12	11	10	9	8	
CP15	CP14	CP13	CP12	CP11	CP10	CP09	CP08	
(R) (X)	(R) (X)	(R) (X)	(R) (X)	(R) (X)	(R) (X)	(R) (X)	(R) (X)	
7	6	5	4	3	2	1	0	
CP07	CP06	CP05	CP04	CP03	CP02	CP01	CP00	
(R) (X)	(R)	(R)	(R)	(R)	(R)	(R) (X)	(R) (X)	
	(R) (X) 7 CP07	CP15 CP14 (R) (R) (X) (X) 7 6 CP07 CP06 (R) (R)	CP15 CP14 CP13 (R) (R) (R) (X) (X) (X) 7 6 5 CP07 CP06 CP05 (R) (R) (R)	CP15 CP14 CP13 CP12 (R) (R) (R) (R) (X) (X) (X) (X) 7 6 5 4 CP07 CP06 CP05 CP04 (R) (R) (R) (R)	CP15 CP14 CP13 CP12 CP11 (R) (R) (R) (R) (R) (X) (X) (X) (X) (X) 7 6 5 4 3 CP07 CP06 CP05 CP04 CP03 (R) (R) (R) (R) (R)	CP15 CP14 CP13 CP12 CP11 CP10 (R) (R) (R) (R) (R) (R) (X) (X) (X) (X) (X) (X) (X) 7 6 5 4 3 2 CP07 CP06 CP05 CP04 CP03 CP02 (R) (R) (R) (R) (R) (R)	CP15 CP14 CP13 CP12 CP11 CP10 CP09 (R) (R	CP15 CP14 CP13 CP12 CP11 CP10 CP09 CP08 (R) (

The 16-bit free-run timer value is stored in these registers when the specified edge is detected on the input waveform from the corresponding external pin. (Always use word access. Writing is prohibited.)


11. Watchdog Timer

The watchdog timer consists of a 2-bit watchdog counter that uses the carry signal from the 18-bit timebase counter as its clock source, a control register, and a watchdog reset controller. The following block diagram shows the structure of both the watchdog timer and timebase timer (see "12. Timebase Timer").

(1) Block Diagram

(2) Register Configuration

12. Timebase Timer

The timebase timer consists of an 18-bit timebase counter (which divides the system clock) and a control register. The carry signal of the timebase counter can generate a fixed period interrupt.

All bits of the timebase counter are cleared to zero at power-on, when stop mode is set, or by software (by writing "0" to the TBR bit). The timebase counter continuously increments while an oscillation is input.

The timebase counter is also used as the clock source for the watchdog timer and as a timer for the oscillation stabilization delay time.

(1) Block Diagram

See "(1) Block diagram" in "11. Watchdog Timer" for the block diagram of the timebase timer.

(2) Register Configuration

	bit	15	14	13	12	11	10	9	8	
Address:	0000А9н	Reserved	_	ı	TBIE	TBCF	TBR	TBC1	TBC0	Timebase timer control register
										(TBTC)

(3) Register Details

• TBTC (Timebase timer control register)

	bit	15	14	13	12	11	10	9	8	Initial value
Address:	0000А9н	Reserved	_	_	TBIE	TBCF	TBR	TBC1	TBC0	Х00000в
		(W)			(R/W)	(R/W)	(W)	(R/W)	(R/W)	

(a) [bit 15] Reserved

A reserved bit. Always set to "1" when writing data to the register.

(b) [bit 12] TBIE

Interval interrupt enable bit for the timebase timer. The interrupt is enabled when TBIE is "1" and disabled when TBIE is "0". Initialized to "0" by a reset. The bit is readable and writable.

(c) [bit 11] TBOF

Interrupt request flag for the timebase timer. An interrupt request is generated if TBCF goes to "1" when TBIE is "1". The bit is set to "1" at fixed intervals set by the TBC1 and 0 bits. Clear by writing "0", transition to stop or hardware standby mode, or a reset. Writing "1" has no meaning. Read as "1" by read-modify-write instructions.

(d) [bit 10] TBR

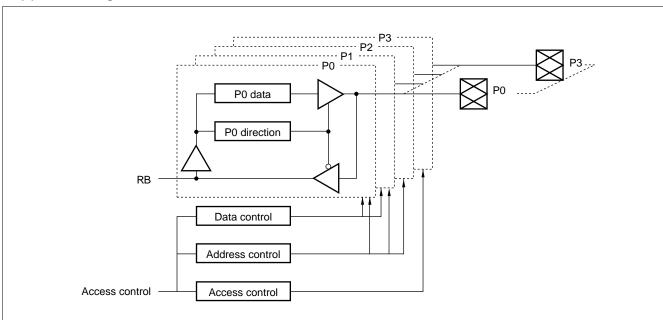
Clears all bits of the timebase counter to "0". Writing "0" to the TBR bit clears the timebase counter. Writing "1" to the TBR bit is meaningless. Reading from the TBR bit results in "1".

(e) [bit 9, 8] TBC1, 0

Set a timebase timer interval. The bits are initialized to "00" by resetting. These bits are readable and writable.

Setting of timebase timer interval

TBC1	TBC0	Interval time when base frequency is 4 MHz
0	0	1.024 ms
0	1	4.096 ms
1	0	16.384 ms
1	1	131.072 ms


13. External Bus Pin Control Circuit

The external bus pin control circuit controls the external bus pins required to extend the CPU's address/data bus outside the device.

(1) Register Configuration

	bit	15	14	13	12	11	10	9	8	
Auto-ready function sell Address:	ection register 0000A5н	ICR1	ICR0	HMR1	HMR0	_	_	LMR1	LMR0	ARSR
	Read/write → Initial value →	(W) (0)	(W) (0)	(W) (1)	(W) (1)	(—) (—)	(—) (—)	(W) (0)	(W) (0)	
External address output	bit t control register	7	6	5	4	3	2	1	0	
Address:	0000Ă6н	E23	E22	E21	E20	E19	E18	E17	E16	HACR
	Read/write → Initial value →	(W) (0)	(W) (0)	(W) (0)	(W) (0)	(W) (0)	(W) (0)	(W) (0)	(W) (0)	
Bus control signal selec	bit ction register	15	14	13	12	11	10	9	8	
Address:	0000А7н	CKE	RYE	HDE	ICBS	HMBS	WRE	LMBS	_	EPCR
	Read/write → Initial value →	(W) (0)	(W) (0)	(W) (0)	(W) (0)	(W) (1/0)	(W) (0)	(W) (0)	(—) (—)	

(2) Block Diagram

14. Low-Power Control Circuits (CPU Intermittent Operation Function, Oscillation Stabilization Delay Time, and Clock Multiplier Function)

The following operation modes are available: PLL clock mode, PLL sleep mode, timer mode, main clock mode, main sleep mode, stop mode, and hardware standby mode. Operation modes other than PLL clock mode are classified as low power consumption modes.

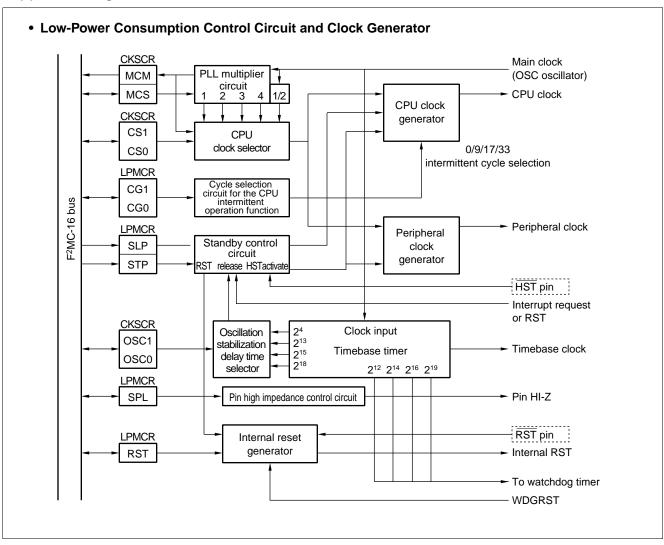
In main clock mode and main sleep mode, the device operates on the main clock only (OSC oscillator clock). The PLL clock (VCO oscillator clock) is stopped in these modes and the main clock divided by 2 is used as the operating clock.

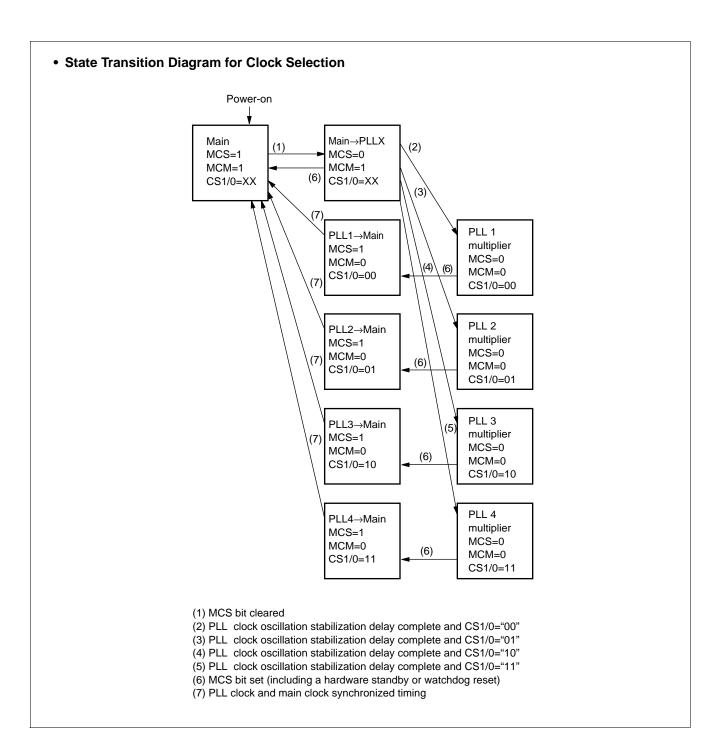
In PLL sleep mode and main sleep mode, the CPU's operating clock only is stopped and other elements continue to operate.

In timer mode, only the timebase timer operates.

Stop mode and hardware standby mode stop the oscillator. These modes maintain existing data with minimum power consumption.

The CPU intermittent operation function provides an intermittent clock to the CPU when register, internal memory, internal resource, or external bus access is performed. This function reduces power consumption by lowering the CPU execution speed while still providing a high-speed clock to internal resources.

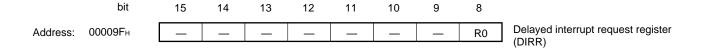

The PLL clock multiplier ratio can be set to 1, 2, 3, or 4 by the CS1, 0 bits.


The WS1, 0 bits set the delay time to wait for the main clock oscillation to stabilize when recovering from stop mode or hardware standby mode.

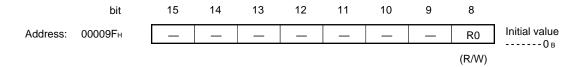
(1) Register Configuration

Low-power consumptio	bit n mode register	7	6	5	4	3	2	1	0	
Address:	0000А0н	STP	SLP	SPL	RST	Reserved	CG1	CG0	Reserved	LPMCR
	Read/write → Initial value →	(W) (0)	(W) (0)	(R/W) (0)	(W) (1)	(—) (1)	(R/W) (0)	(R/W) (0)	() (0)	
Clock select register	bit	15	14	13	12	11	10	9	8	
Address:	0000А1н	Reserved	МСМ	WS1	WS0	Reserved	MCS	CS1	CS0	CKSCR
	Read/write → Initial value →	() (1)	(R) (1)	(R/W) (1)	(R/W) (1)	(—) (1)	(R/W) (1)	(R/W) (0)	(R/W) (0)	

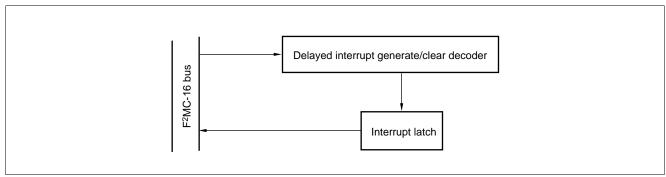
(2) Block Diagram



15. Delayed Interrupt Generation Module


The delayed interrupt generation module is used to generate the task switching interrupt. Interrupt requests to the F²MC-16L CPU can be generated and cleared by software using this module.

(1) Register Configuration


(2) Register Details

Delayed interrupt request register (DIRR)

The DIRR register controls generation and clearing of delayed interrupt requests. Writing "1" to the register generates a delayed interrupt request. Writing "0" to the register clears the delayed interrupt request. The register is set to the interrupt cleared state by a reset. Either "0" or "1" can be written to the reserved bits. However, considering possible future extensions, it is recommended that the set bit and clear bit instructions are used for register access.

(3) Block Diagram

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

Doromotor	Symbol	Va	lue	l lmi4	Domorko
Parameter	Symbol	Min.	Max.	Unit	Remarks
	Vcc	Vss - 0.3	Vss + 7.0	V	
Power supply voltage	AVcc*1	Vss - 0.3	Vss + 7.0	V	
	AVRH, AVRL*1	Vss - 0.3	Vss + 7.0	V	
Program voltage	VPP	Vss - 0.3	_	V	
Input voltage*2	Vı	Vss - 0.3	Vcc + 0.3	V	
Output voltage*2	Vo	Vss - 0.3	Vcc + 0.3	V	
"L" level (maximum) output current*3	Іоь	_	15	mA	
"L" level (average) output current*4	Iolav	_	50	mA	
"L" level total (maximum) output current	ΣΙοι	_	100	mA	
"L" level total (average) output current*5	ΣΙΟΙΑΥ	_	50	mA	
"H" level (maximum) output current*3	Іон	_	-15	mA	
"H" level (average) output current*4	Іонач	_	-50	mA	
"H" level total (maximum) output current	Σ loн	_	-100	mA	
"H" level total (average) output current*5	ΣΙομαν	_	-50	mA	
Power consumption	Pd	_	+400	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	T _{stg}	- 55	+150	°C	

^{*1:} AVcc, AVRH, and AVRL must not exceed Vcc. Similarly, it must not exceed AVRH and AVRL.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} V_1 and V_2 must not exceed V_{CC} + 0.3 V_2

^{*3:} The maximum output current must not be exceeded at any individual pin.

^{*4:} The average output current is the rating for the current from an individual pin averaged over 100 ms.

^{*5:} The average total output current is the rating for the current from all pins averaged over 100 ms.

2. Recommended Operating Conditions

(Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks			
Parameter	Symbol	Min.	Max.	Oilit	Remarks			
Power supply voltage	Vcc	2.7	5.5	V	For normal operation			
Fower supply voltage	VCC	2.7	5.5	V	To maintain statuses in stop mode			
	VIH	0.7 Vcc	Vcc + 0.3	V	Other than V _{IHS}			
"H" level input voltage	VIHS	0.8 Vcc	Vcc + 0.3	V	Hysteresis inputs			
	Vінм	Vcc - 0.3	Vcc + 0.3	V				
	VIL	Vss - 0.3	0.3 Vcc	V	Other than VILS			
"L" level input voltage	VILS	Vss - 0.3	0.2 Vcc	V	Hysteresis inputs			
	VILM	Vss - 0.3	Vss + 0.3	V				
Operating temperature	TA	-40	+85	°C				

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Damamatan	Councile of	Pin	Condition		Value		11	Damarla
Parameter	Symbol	name	Condition	Min.	Тур.	Max.	Unit	Remarks
	ViH		Vcc = +5.0	0.7 Vcc	_	Vcc + 0.3	V	
"H" level input voltage	Vihs	_	V±10%	0.8 Vcc	_	Vcc + 0.3	V	*1
	V _{IHM}		_	Vcc - 0.3	_	Vcc + 0.3	V	
	VIL		Vcc = +5.0	0.7 Vcc	_	Vcc + 0.3	V	
"L" level input voltage	VILS	_	V±10%	0.8 Vcc	_	Vcc + 0.3	V	*1
	VILM		_	Vss - 0.3	_	Vss + 0.3	V	
"H" level output voltage	Vон	_	Vcc = +4.5 V±10% Іон = -4.0 mA	Vcc - 0.5	_	_	V	
			$V_{CC} = +2.7 \text{ V}$ $I_{OH} = -1.6 \text{ mA}$	Vcc - 0.3	_	_	V	
"L" level output voltage	Vol	_	Vcc = +4.5 V±10% Іон = -4.0 mA	_	_	0.4	V	
			$V_{CC} = +2.7 \text{ V}$ $I_{OH} = -2.0 \text{ mA}$	_	_	0.4	V	
Pull-up resistor	R _{pull}	RST	_	22	_	110	kΩ	
	Icc		Vcc = +5.0	_	60	80	mA	
	Iccs	Vcc	V±10% Fc = 16 MHz		20	35	mA	
Power supply current*2	Icc		Vcc = +3.0		15	40	mA	
	Iccs	Vcc	V±10% Fc = 10 MHz	_	10	15	mA	
	Іссн		Vcc = +5.0 V±10%	_	_	20	μΑ	
Input pin capacitance	Cin	Other than Vcc and Vss	_	_	10	_	pF	
Input leak current	lıL	P73, 74 P86, 87	Vcc = 5.5 V Vss < Vı < Vcc	-10	_	10	μΑ	
Leak current for open-drain outputs	lleak	P50 to P57	_	_	0.1	10	μΑ	

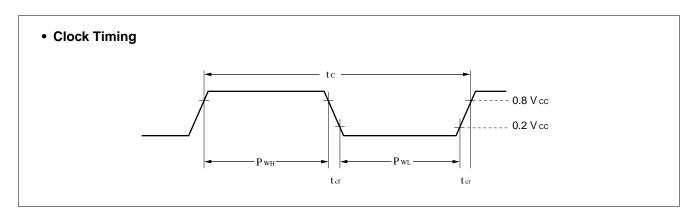
^{*1:} Hysteresis input pins: RST, HST

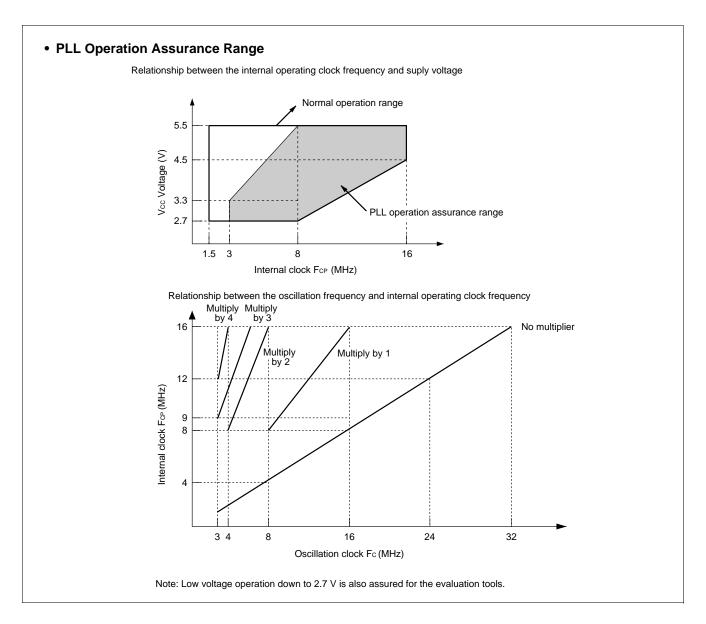
^{*2:} Current values are provisional and are subject to change without notice to allow for improvements to the characteristics and similar.

4. AC Characteristics

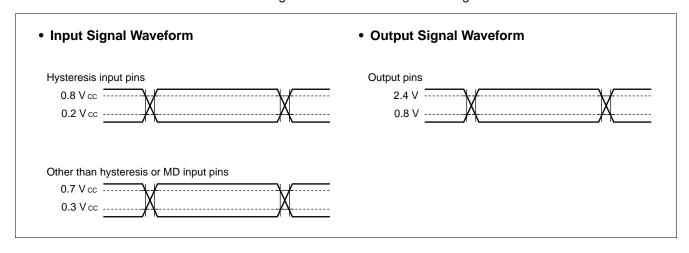
(1) Clock Timing

• When Vcc = 5.0 V±10%

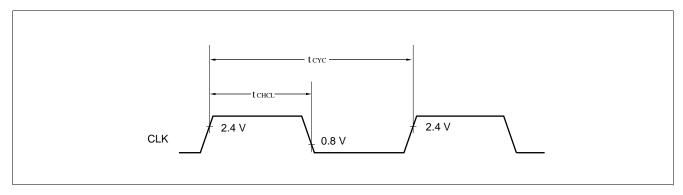

 $(Vcc = 4.5 \text{ V to } +5.0 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$


Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks
Farameter	Syllibol	name	Condition	Min.	Max.	Ullit	Remarks
Clock frequency	Fc	X0, X1	_	3	16	MHz	
Clock cycle time	t c	X0, X1	_	62.5	333	ns	
Input clock pulse width	Pwh, PwL	X0	_	10	_	ns	The duty ratio should be in the range 30 to 70%
Input clock rise time and fall time	tcr, tcf	X0	_	_	5	ns	
Internal operating clock frequency	fсР	_	_	1.5	16	MHz	
Internal operating clock cycle time	t CP	_	_	62.5	333	ns	

• When Vcc = 2.7 V (min.)

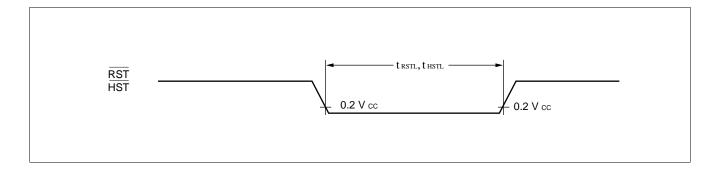

 $(Vcc = 4.5 \text{ V to } +5.0 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks
Farameter	Symbol	name	Condition	Min.	Max.	Ullit	Remarks
Clock frequency	Fc	X0, X1	_	3	10	MHz	
Clock cycle time	t c	X0, X1	_	100	333	ns	
Input clock pulse width	Pwh, PwL	X0	_	20	_	ns	The duty ratio should be in the range 30 to 70%
Input clock rise time and fall time	tcr, tcf	X0	_	_	5	ns	
Internal operating clock frequency	fсР	_	_	1.5	8	MHz	
Internal operating clock cycle time	t cp	_	_	100	333	ns	


The AC characteristics are for the following measurement reference voltages.

(2) Clock Output Timing

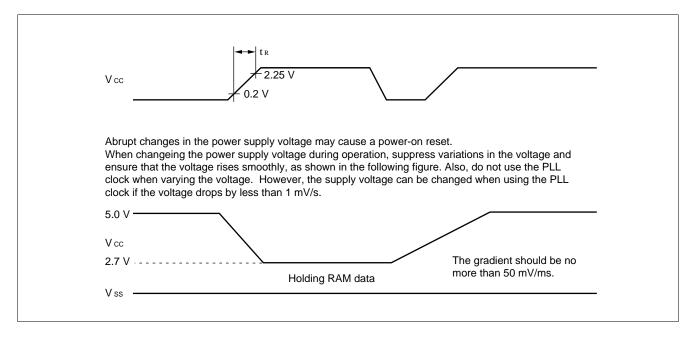
 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$


Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks
rarameter	Syllibol	name	Condition	Min.	Max.	Oilit	iveillai ks
Cycle time	tcyc	CLK	Vcc = 5.0	62.5	_	ns	
$CLK \uparrow \rightarrow CLK \downarrow$	t chcl	CLK	V±10%	20	_	ns	

(3) Reset and Hardware Standby Inputs

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

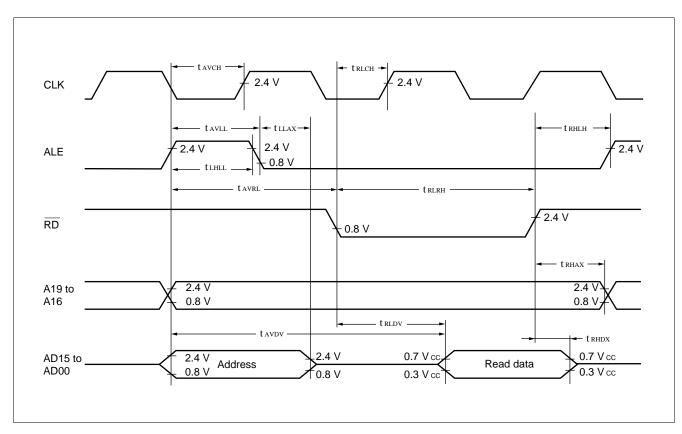
			$(\text{VCC} = \pm 2.7 \text{ V})$	10 +5.5 V,	VSS = U.U V	, 1A = -40	C 10 +65 C)
Parameter	Symbol	Pin	Pin Condition	Va	lue	Unit	Remarks
Faranielei	Syllibol	name	Condition	Min.	Max.	Onit	iveillai ka
Reset input time	t RSTL	RST		4	_	Machine cycle	
Hardware standby input time	t HSTL	HST		4	_	Machine cycle	



(4) Power-on Reset

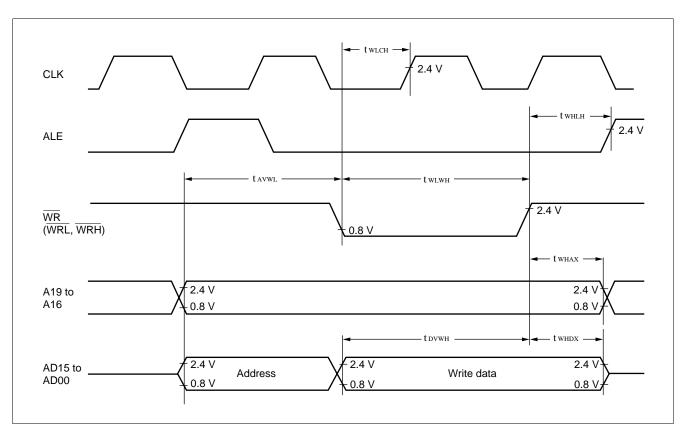
 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.	Oiiit	iveillai ks
Power supply rising time	t R	Vcc		_	30	ms	
Power supply cut-off time	t off	Vcc		1	_	ms	


Note: The above values are the values required for a power-on reset.

(5) Bus Timing (Read)

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$


Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.	Onit	neiliai KS
ALE pulse width	t LHLL	ALE	tcp/2 -20 — tcp/2 -25 —	tcp/2 -20	_		
Valid address $ ightarrow$ ALE \downarrow time	t avll	Multiplexed address		_	ns		
ALE \downarrow \rightarrow address valid time	tLLAX	Multiplexed address		tcp/2 -15	_	- ns	
Valid address → $\overline{\text{RD}} \downarrow \text{time}$	tavrl	Multiplexed address		tcp -15	_		
Valid address→ valid data input	tavdv	Multiplexed address		_	5 tcp/2 -60	ns	
RD pulse width	t rlrh	RD	_	3 tcp/2 -20	_	ns	
$\overline{RD}\ \downarrow \to valid\ data\ input$	t RLDV	D15 to D00		_	3 tcp/2 -60	ns	
$\overline{RD} \uparrow \to data \; hold \; time$	t RHDX			0	_	ns	
Valid address → valid data input	t avdv			0	_	ns	
$\overline{RD} \uparrow \to ALE \uparrow time$	t RHLH	RD, ALE		tcp/2 -15	_	ns	
$\overline{RD}\!\!\uparrow o address valid time$	t RHAX	Address, RD		tcp/2 -10	_	ns	
Valid address \rightarrow CLK \uparrow time	t avch	Address, CLK		tcp/2 -20	_	ns	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	RD, CLK		tcp/2 -20	_	ns	

(6) Bus Timing (Write)

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, TA = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Doromotor	Symbol	ymbol Pin name	Condition	Val	lue	Unit	Remarks
Parameter	Symbol	Pin name	in name Condition		Max.	Unit	Remarks
Valid address \rightarrow $\overline{\text{WR}}$ \downarrow time	t avwl	A19 to A00		tcp-15	_	ns	
Valid address $\rightarrow \overline{RD} \downarrow time$	t avrl	A23 to A00		tcp/2 -15	_	ns	
WR pulse width	twlwh	WR		3 tcp/2 -20	_	ns	
RD pulse width	t rlrh	RD		3 tcp/2 -20	_	ns	
Valid data output \rightarrow WR \uparrow time	t dvwh	D15 to D00	_	3 tcp/2 -20	_	ns	
$\overline{WR} \uparrow \to data \; hold \; time$	twhox	D15 to D00		20	_	ns	
$\overline{\mathrm{WR}} \uparrow \to \mathrm{address}$ valid time	twhax	A19 to A00	=	tcp/2 -10	_	ns	
$\overline{WR} \uparrow \to ALE \uparrow time$	twhlh	WR, ALE	1	tcp/2 -15	_	ns	
$\overline{WR} \downarrow \to CLK \uparrow time$	t wlch	WRL, WRH, CLK		tcp/2 -20	_	ns	

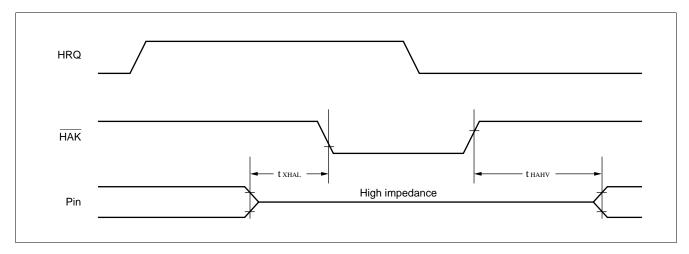


(7) Ready Input Timing

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	Value		Remarks	
rarameter Symbol		r III IIailie	Condition	Min.	Max.	Unit		
RDY setup time	t =	4 =1,11,15		Vcc = 5.0 V ±10%	45	_	ns	
RD1 setup time	t RYHS	RDY	Vcc = 3.0 V ±10%	70	_	ns		
RDY hold time	t RYHH		_	0	_	ns		

Note: Use the auto-ready function if the RDY setup time is too short.

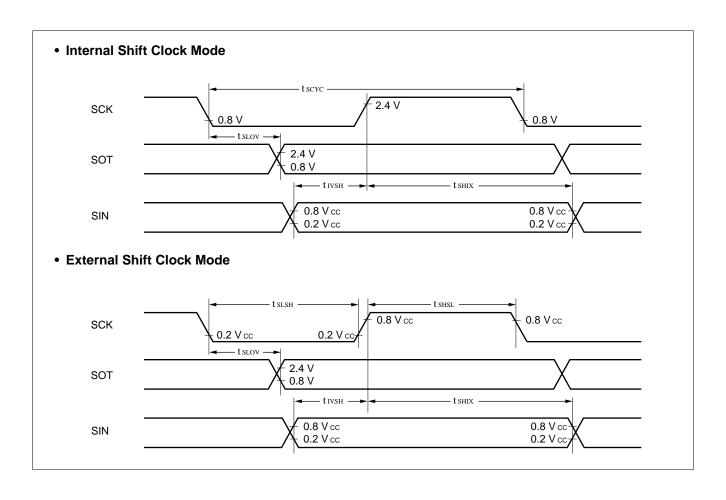


(8) Hold Timing

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name Condition		Value		Unit	Remarks
r ai ailletei	Symbol	i ili ilalile	Condition	Min.	Max.	Oilit	Remarks
Pin floating \rightarrow HAK \downarrow time	txhal	HAK	_	30	t cp	ns	
$\overrightarrow{HAK} \uparrow \to pin \ valid \ time$	t hahv	HAK	_	t CP	2 tcp	ns	

Note: After reading HRQ, more than one cycle is required before changing HAK.

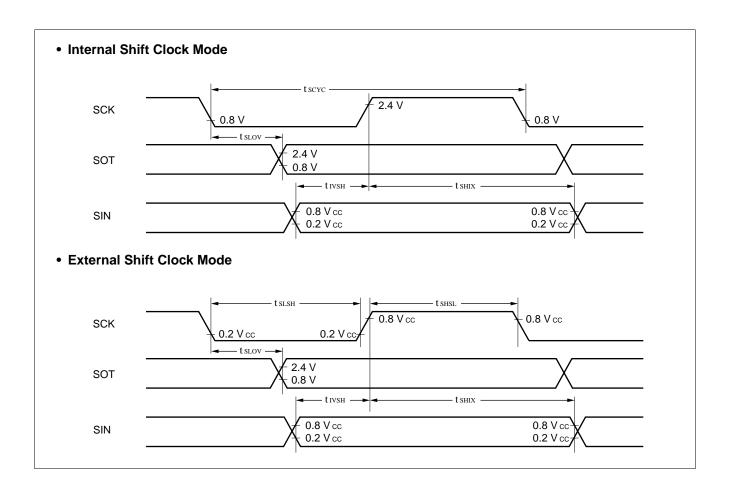

(9) UART Timing

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks	
Parameter	Syllibol	name	Condition	Min.	Max.	Oilit	Remarks	
Serial clock cycle time	tscyc		_	8 tcp	_	ns		
$SCK \downarrow \rightarrow SOT$ delay time	torov		Vcc = +5.0 V ±10%	-80	80	ns		
30N ↓ → 301 delay liftle	t sLov		Vcc = +3.0 V ±10%	-120	120	ns	C 90 pE 11TT	
Valid SIN → SCK ↑	tıvsн		Vcc = +5.0 V ±10%	100		ns	C _L = 80 pF+1TTL for the internal	
Valid SIN → SCR 1	UVSH		Vcc = +3.0 V ±10%	200	_	ns	shift clock mode output pin	
$SCK \uparrow \rightarrow valid SIN hold$	t shix		Vcc = +5.0 V ±10%	60		ns	Output piii	
time	L SHIX		Vcc = +3.0 V ±10%	120		ns		
Serial clock "H" pulse width	t shsl	_	_	4 tcp	_	ns		
Serial clock "L" pulse width	t slsh		_	4 tcp	_	ns		
$SCK \downarrow \rightarrow SOT$ delay time	t sLov		Vcc = +5.0 V ±10%	_	150	ns	C _L = 80 pF+1TTL for the external	
$300.4 \rightarrow 300$ delay time	L SLOV		Vcc = +3.0 V ±10%	_	200	ns	shift clock mode	
Valid SIN → SCK ↑	tıvsн		Vcc = +5.0 V ±10%	60	_	ns	output pin	
valid SIN → SCN 1	UVSH		Vcc = +3.0 V ±10%	120	_	ns		
$SCK \uparrow \rightarrow valid SIN hold$	toury		Vcc = +5.0 V ±10%	60	_	ns		
time	t shix		Vcc = +3.0 V ±10%	120	_	ns		

Notes: • These are the AC characteristics for CLK synchronous mode.

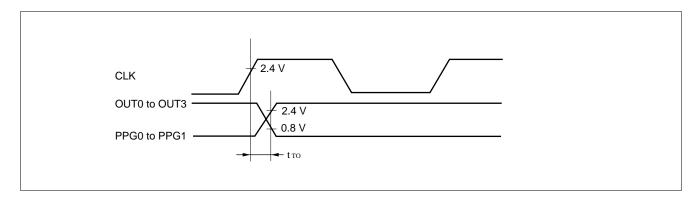
- C_L is the load capacitance connected to the pin at testing.
- tcp is the machine cycle period (unit: ns).


(10) I/O Extended Serial Timing

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

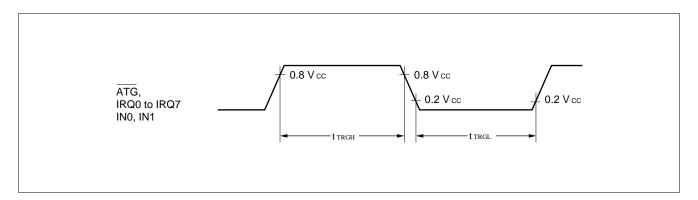
Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks	
Parameter	Syllibol	name	Condition	Min.	Max.	Oilit	Nemarks	
Serial clock cycle time	tscyc	_	_	8 tcp	_	ns		
$SCK \downarrow \rightarrow SOT$ delay time	t slov		Vcc = +5.0 V ±10%	_	80	ns	C _L = 80 pF+1TTL	
John W -> 301 delay time	tolov		Vcc = +3.0 V ±10%	_	160	ns	for the internal	
Valid SIN \rightarrow SCK ↑	t ıvsh	_	_	t CP	_	ns	shift clock mode output pin	
$\begin{array}{c} SCK \uparrow \to valid \; SIN \; hold \\ time \end{array}$	t shix	_	_	t CP	_	ns	- σαιραί μπ	
Serial clock "H" pulse	t sHSL		Vcc = +5.0 V ±10%	230	_	ns		
width		_	Vcc = +3.0 V ±10%	460	_	ns		
Serial clock "L" pulse	torou		Vcc = +5.0 V ±10%	230	_	ns	C _L = 80 pF+1TTL	
width	t slsh	_	Vcc = +3.0 V ±10%	460	_	ns	for the external shift clock mode	
$SCK \downarrow \to SOT$ delay time	t slov	_	_	2 tcp	_	ns	output pin	
Valid SIN →SCK ↑	t ıvsH	_	_	t CP	_	ns	Max. 2 MHz	
$\begin{array}{c} SCK \uparrow \to valid \; SIN \; hold \\ time \end{array}$	t shix	_	_	2 tcp	_	ns		

Notes: • These are the AC characteristics for CLK synchronous mode.


- tcp is the machine cycle period (unit: ns).
- The values in the table are target values.

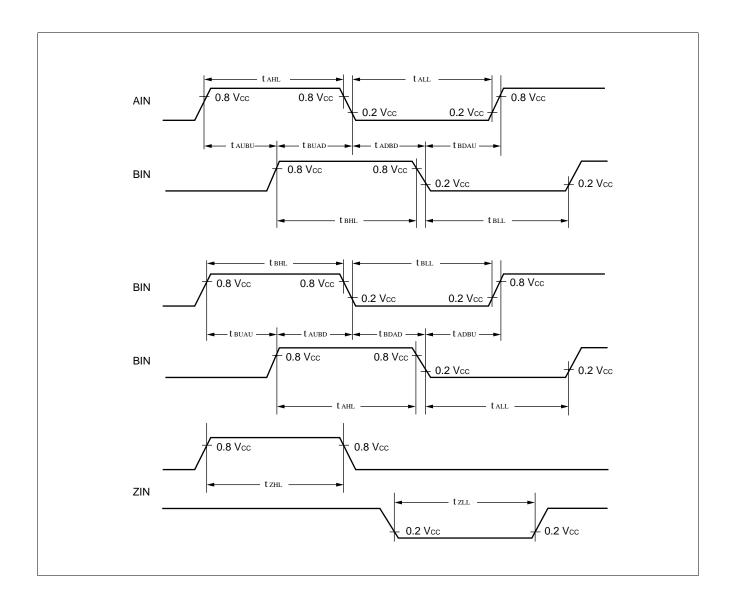
(11) Timer Output Timing

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$


Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Parameter	Syllibol	Fili liallie	Condition	Min.	Max.	Oilit	Remarks
SCK ↑ → Touт change	t то	OUT0 to OUT3	Vcc = +5.0 V ±10%	30	_	ns	
time	110	PPG00 to PPG11	Vcc = +3.0 V ±10%	80	_	ns	

(12) Trigger Input Timing

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$


Parameter	Symbol	Pin name Conditio		Va	Value		Remarks
Faranietei	Syllibol	Filitianie	Condition	Min.	Max.	Unit	Nemarks
Input pulse width	ttrgh ttrgl	ATG, IRQ0 to IRQ7 IN0, IN1	_	5 t cp	_	ns	

(13) Up/down Counter

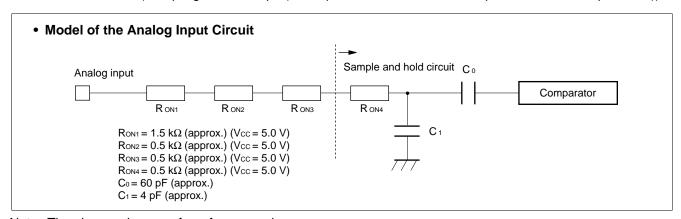
 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Donomoton	Symbol	Din nome	Condition		lue		,
Parameter	Symbol	Pin name	Condition	Min.	Max.	Unit	Remarks
AIN input "1" pulse width	t ahl			8 tcyL	_	ns	
AIN input "0" pulse width	t ALL			8 tcyl	_	ns	
BIN input "1" pulse width	t BHL			8 tcyl	_	ns	
BIN input "0" pulse width	t BLL		_	8 tcyl	_	ns	
$AIN \uparrow \rightarrow BIN \uparrow time$	t aubu	AINO, AIN1 BINO, BIN1		4 tcyl		ns	
$BIN \uparrow \rightarrow AIN \downarrow time$	t BUAD	,		4 tcyl	_	ns	
$AIN \downarrow \rightarrow BIN \downarrow time$	t adbd			4 tcyl		ns	
$BIN \downarrow \rightarrow AIN \uparrow time$	t BDAU			4 tcyl		ns	
$BIN \uparrow \to AIN \uparrow time$	t BUAU			4 tcyl	_	ns	
$AIN \uparrow \rightarrow BIN \downarrow time$	t aubd			4 tcyl	_	ns	
$BIN \downarrow \rightarrow AIN \downarrow time$	t BDAD			4 tcyl	_	ns	
$AIN \downarrow \rightarrow BIN \uparrow time$	t adbu			4 tcyl		ns	
ZIN input "1" pulse width	t zhl	71NO 71N4	_	4 tcyl	_	ns	
ZIN input "0" pulse width	tzll	ZINO, ZIN1		4 tcyL	_	ns	

5. A/D Converter Electrical Characteristics

 $(AVcc = Vcc = +2.7 \text{ V to } +5.5 \text{ V}, AVss = Vss = 0.0 \text{ V}, 2.7 \text{ V} \le AVRH - AVRL, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Davamatar	Symbol	Din nome		Value		Unit	
Parameter	Symbol	Pin name	Min.	Тур.	Max.	Unit	
Resolution	_	_	_	10	10	bit	
Total error	_	_	_	_	±3.0	LSB	
Linearity error	_	_	_	_	±2.0	LSB	
Differential linearity error	_	_	_	_	±1.5	LSB	
Zero transition error	Vот	AN0 to AN7	-1.5	+0.5	+2.5	LSB	
Full scale transition error	V _{FST}	AN0 to AN7	AVRH -3.5	AVRL -1.5	AVRH +0.5	LSB	
Conversion time			5.12*1	_	_	μs	
	_	_	8.12*2	_	_	μs	
Analog port input current	Iain	AN0 to AN7	_	_	10	μΑ	
Analog input voltage	Vain	AN0 to AN7	AVRL	_	AVRH	V	
Deference voltage	_	AVRH	AVRL + 2.7	_	AVcc	V	
Reference voltage	_	AVRL	0	_	AVRH – 2.7	V	
Davier aventy avent	la	AVcc	_	5	_	mA	
Power supply current	Іан	AVcc	_	_	5*3	μΑ	
Reference voltage supply	lR	AVRH	_	200	_	μΑ	
current	IRH	AVRH	_	_	5*3	μΑ	
Variation between channels	_	AN0 to AN7	_	_	4	LSB	

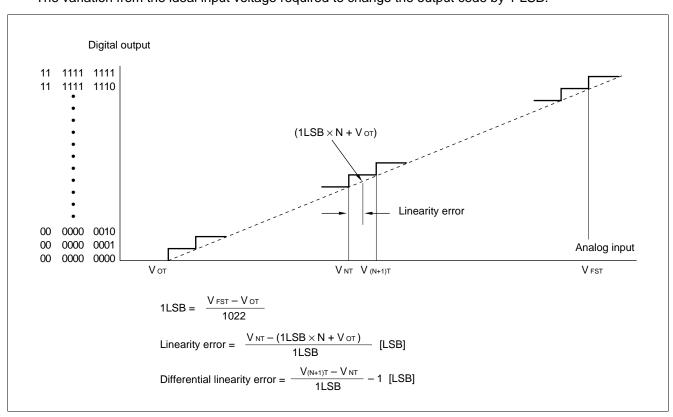

^{*1:} For $Vcc = +5.0 \text{ V} \pm 10\%$ and a 16 MHz machine clock

Notes: • The error increases proportionally as |AVRH – AVRL| decreases.

• The output impedance of the external circuits connected to the analog inputs should be in the following range.

Output impedance of external circuit < approx. 10 k Ω

• If the output impedance of the external circuit is too high, the sampling time for the analog voltage may be too short. (Sampling time = 3.8 µs (corresponds to 16 MHz internal operation if the multiplier is 4.))


Note: The above values are for reference only.

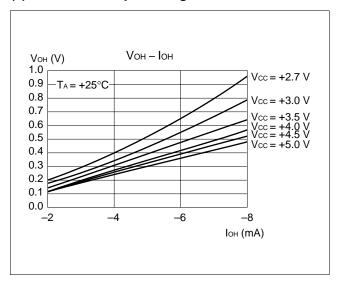
^{*2:} For $Vcc = +3.0 \text{ V} \pm 10\%$ and an 8 MHz machine clock

^{*3:} The current when the A/D converter is not operating or the CPU is in stop mode (for Vcc = AVcc = AVRH = +5.0 V).

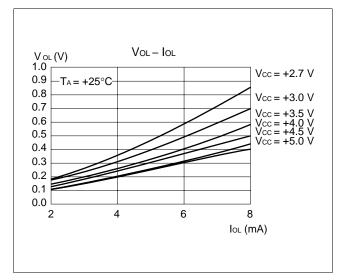
6. A/D Converter Glossary

- Resolution
 - The change in analog voltage that can be recognized by the A/D converter. If the resolution is 10 bits, the analog voltage can be resolved into $2^{10} = 1024$ steps.
- Total error
 - The deviation between the actual and logic value attributable to offset error, gain error, non-linearity error, and noise.
- Linearity error
 - The deviation between the actual conversion characteristic of the device and the line linking the zero transition point (00 0000 0000 \leftrightarrow 00 0000 0001) and the full scale transition point (11 1111 1110 \leftrightarrow 11 1111 1111).
- Differential linearity error
 The variation from the ideal input voltage required to change the output code by 1 LSB.

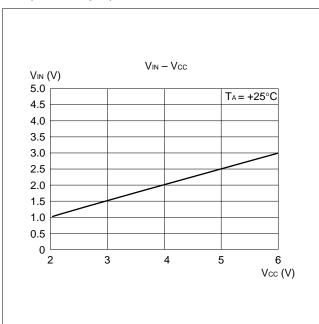
7. 8-bit D/A Converter Electrical Characteristics

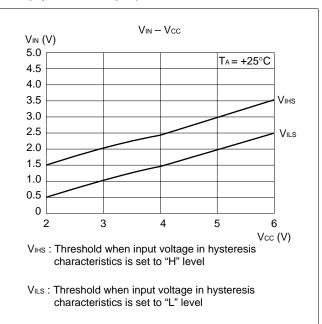

 $(Vcc = 2.7 \text{ to } 5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +70^{\circ}\text{C})$

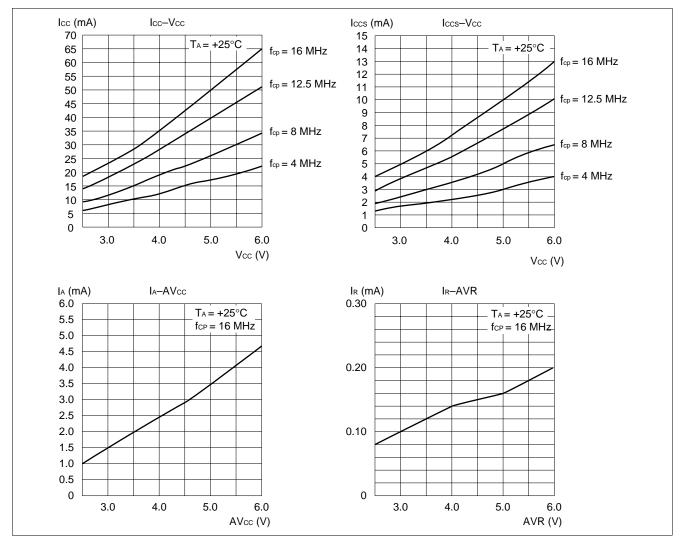
			(1, 100	1	
Parameter	Symbol	Pin name		Value		Unit	Remarks
i arameter	Cymbol	i ili ilalile	Min.	Тур.	Max.	Oint	Kemarks
Resolution	_	_	_	8	8	bit	
Differential linearity error	_	_	-0.9	_	0.9	LSB	
Absolute accuracy	_	_	_	_	1.2	%	
Conversion time	_	-	_	10	20	μS	The load capacitance = 20 pF
Analog reference power supply voltage	_	DVRH	Vss + 1.7	_	Vcc	V	DVss = Vss = 0.0 V
Reference power supply current (when operating)	lo	DVRH	_	1.0	1.5	mA	Current consumption at conversion
Reference power supply current (when stopped)	Ірн	DVRH	_	_	10	μА	Current consumption when stopped
Analog output impedance	_	DA0	_	28	_	kΩ	

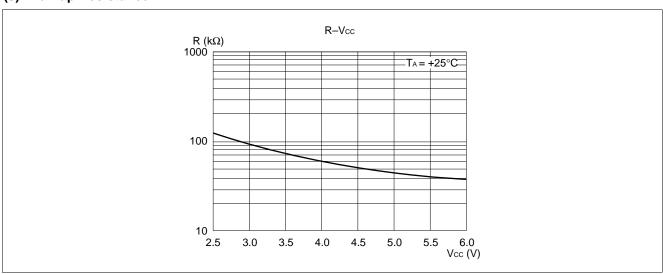

Note: DVss must be connected at Vss = 0.0 V.

■ EXAMPLE CHARACTERISTICS


(1) "H" Level Output Voltage


(2) "L" Level Output Voltage


(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)


(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

(5) Power Supply Current (fcp = Internal Operating Clock Frequency)

(5) Pull-up Resistance

■ INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction.
#	Indicates the number of bytes.
~	Indicates the number of cycles. m: When branching n: When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
В	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the "~" column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z: Transfers "0". X: Extends with a sign before transferring. -: Transfers nothing.
АН	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers 00 _H to AH. X : Transfers 00 _H or FF _H to AH by signing and extending AL.
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit),
S	N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction.
Т	- : No change.
N	S: Set by execution of instruction. R: Reset by execution of instruction.
Z	
V	
С	
RMW	Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. - : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte: Lower 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL:AH
AH AL	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FFн)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address

(Continued)

(Continued)

Symbol	Meaning
rel	Branch specification relative to PC
ear eam	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code	N	lotation	l	Address format	Number of bytes in address extension *
00 01 02 03 04 05 06 07	R0 R1 R2 R3 R4 R5 R6 R7	RW0 RW1 RW2 RW3 RW4 RW5 RW6 RW7	RL0 (RL0) RL1 (RL1) RL2 (RL2) RL3 (RL3)	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	
08 09 0A 0B	@RV @RV @RV @RV	V1 V2		Register indirect	0
0C 0D 0E 0F	@RV @RV @RV @RV	V1 + V2 +		Register indirect with post-increment	0
10 11 12 13 14 15 16 17	@RV @RV @RV @RV @RV	V0 + dis V1 + dis V2 + dis V3 + dis V4 + dis V5 + dis V6 + dis	p8 p8 p8 p8 p8 p8	Register indirect with 8-bit displacement	1
18 19 1A 1B	@RV @RV	V0 + dis V1 + dis V2 + dis V3 + dis	р16 р16	Register indirect with 16-bit displacement	2
1C 1D 1E 1F	@RV	V0 + RV V1 + RV C + disp ² 16	<i>J</i> 7	Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	0 0 2 2

Note: The number of bytes in the address extension is indicated by the "+" symbol in the "#" (number of bytes) column in the tables of instructions.

Table 4 Number of Execution Cycles for Each Type of Addressing

		(a)	Number of register
Code	Operand	Number of execution cycles for each type of addressing	accesses for each type of addressing
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
0C to 0F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16	4 4 2 1	2 2 0 0

Note: "(a)" is used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

	(b) I	oyte	(c) v	vord	(d) I	ong
Operand	Number of cycles	Number of access	Number of cycles	Number of access	Number of cycles	Number of access
Internal register	+0	1	+0	1	+0	2
Internal memory even address Internal memory odd address	+0 +0	1	+0 +2	1 2	+0 +4	2 4
Even address on external data bus (16 bits) Odd address on external data bus (16 bits)	+1 +1	1 1	+1 +4	1 2	+2 +8	2 4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

• When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	_	+2
External data bus (16 bits)	_	+3
External data bus (8 bits)	+3	_

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

• Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

Table 7 Transfer Instructions (Byte) [41 Instructions]

M	Inemonic	#	~	R G	В	Operation	L	A H	ı	s	Т	N	Z	٧	С	RM W
MOV	A, dir	2	3	0	(b)	byte (A) ← (dir)	Z	*	_	_	_	*	*	_	_	_
MOV	A, addr16	3	4	0	(b)	byte (A) ← (addr16)	Ζ	*	_	_	_	*	*	_	_	_ '
MOV	A, Ri	1	2	1	`o´	byte $(A) \leftarrow (Ri)$	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, ear	2	2	1	0	byte (A) ← (ear)	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, eam	2+	3+ (a)	0	(b)	byte (A) ← (eam)	Z Z	*	_	_	_	*	*	_	_	_
MOV	A, io	2	3 ′	0	(b)	byte $(A) \leftarrow (io)$	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, #imm8	2	2	0	`o´	byte (A) ← imm8	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, @A	2	3	0	(b)	byte $(A) \leftarrow ((A))$	Ζ	_	_	_	_	*	*	_	_	_
MOV	A, @RLi+disp8	3	10	2	(b)	byte (A) ← ``´´	Ζ	*	_	_	_	*	*	_	_	_
MOVN	A, #imm4	1	1	0	°O´	((RLi)+disp8)	Z	*	-	-	_	R	*	_	_	_
MOVX	A, dir	2	3	0	(b)	byte (A) ← imm4	Х	*	_	_	_	*	*	_	_	_
MOVX	A, addr16	3	4	0	(b)	byte (A) \leftarrow (dir)	X	*		_	_	*	*	_		_
MOVX	A, Ri	2	2	1	0	byte (A) \leftarrow (addr16)	X	*				*	*			_
MOVX	A, ear	2	2	1	0	byte (A) \leftarrow (add 10) byte (A) \leftarrow (Ri)	X	*		_	_	*	*	_		_
MOVX	A, eam	2+	3+ (a)	Ö	(b)	byte (A) \leftarrow (RI) byte (A) \leftarrow (ear)	X	*	_	_		*	*	_		_
MOVX	A, io	2	3+ (a)	0	(b)	byte (A) \leftarrow (ean)	X	*	_	_		*	*	_		_
MOVX	A, #imm8	2	2	0	0	byte (A) \leftarrow (io)	X	*	_	_	_	*	*	_		_
MOVX	A, @A	2	3	0	(b)	byte (A) \leftarrow (io) byte (A) \leftarrow imm8	X	_		_	_	*	*	_		_
MOVX	A, @RWi+disp8	2	5	1	(b)	byte (A) \leftarrow initio	X	*	Ξ			*	*			_
MOVX	A, @RLi+disp8	3	10	2	(b)	byte (A) \leftarrow ((A))	X	*			_	*	*	_		_
IVIOVA	A, WILLITUISPO	3	10	_	(D)	((RWi)+disp8)	^		_	_	_					-
MOV	dir, A	2	3	0	(b)	byte (A) \leftarrow	_	_	_	_	_	*	*	_	_	_
MOV	addr16, A	3	4	Ö	(b)	((RLi)+disp8)	_	_	_	_	_	*	*	_	_	_
MOV	Ri, A	1	2	1	0	((1121):31000)	_	_	_	_	_	*	*	_	_	_
MOV	ear, A	2	2	1	Ö	byte (dir) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	eam, A	2+	3+ (a)	Ö	(b)	byte (addr16) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	io, A	2	3	Ö	(b)	byte (Ri) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	@RLi+disp8, A	3	10	2	(b)	byte (ear) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	Ri, ear	2	3	2	0	byte (eam) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	Ri, eam	2+	4+ (a)	1	(b)	byte (io) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	ear, Ri	2	4	2	O	byte ((RLi) +disp8) ←	_	_	_	_	_	*	*	_	_	_
MOV	eam, Ri	2+	5+ (a)	1	(b)	(A)	_	_	_	_	_	*	*	_	_	_
MOV	Ri, #imm8	2	2	1	O´	byte (Ri) ← (ear)	_	_	_	_	_	*	*	_	_	_
MOV	io, #imm8	3	5	0	(b)	byte (Ri) ← (eam)	_	_	_	_	_	_	_	_	_	_
MOV	dir, #imm8	3	5	0	(b)	byte (ear) ← (Ri)	_	_	_	_	_	_	_	_	_	_
MOV	ear, #imm8	3	2	1	`o´	byte (eam) ← (Ŕi)	_	_	_	_	_	*	*	_	_	_
MOV	eam, #imm8	3+	4+ (a)	0	(b)	byte (Ri) ← imm8	_	_	_	_	_	_	_	_	_	_ '
MOV	@AĹ, AH	2	3 ′	0	(b)	byte (io) ← imm8	_	_	_	_	_	*	*	_	_	_ '
/MOV					,	byte (dir) ← imm8										
	,					byte (ear) ← imm8										
XCH	A, ear	2	4	2	0	byte (eam) ← imm8	Ζ	_	_	_	_	_	_	_	_	-
XCH	A, eam	2+	5+ (a)	0	2× (b)	byte $((A)) \leftarrow (AH)$	Z Z	_	_	_	_	-	_	_	_	-
XCH	Ri, ear	2	7 ′	4	0 ′	, , , ,	_	_	_	-	_	_	_	_	_	- '
XCH	Ri, eam	2+	9+ (a)	2	2× (b)		-	_	_	_	_	-	_	_	_	-
			`		` ′	byte (A) \leftrightarrow (ear)										
						byte $(A) \leftrightarrow (eam)$										
						byte (Ri) ↔ (ear)										
						byte (Ri) ↔ (eam)										

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic # ~ R G B Operation L H A H I S T N Z V C R H H H I S T N Z V C R H H H I S T N Z V C R H H H I S T N Z V C R H H H I S T N Z V C R H H H I S T N Z V C R H H I S T N Z V C R T N Z V C R T N Z V C R T N Z V C R T N Z V C R T N Z V C R T N Z V C R T N Z V C R T N Z V C R T N Z V C R T N Z V C	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N 0 A / A II
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
MOVW A, @RWi+disp8 2 5 1 (c) word (A) ← ((RWi) - * -	
MOVW A, @RLi+disp8 3 10 2 (c) +disp8)	
MOVW dir, A	
MOVW dir, A 2 3 0 (c) +disp8) * * MOVW addr16, A 3 4 0 (c)	•
	DVW dir, A
IMO(M) SPA = IMO(M) SPA = IMO(M) IMO(M	
	DVW SP, A
MOVW RWi, A $\begin{vmatrix} 1 & 2 & 1 & 0 \\ \end{vmatrix}$ word (addr16) \leftarrow (A) $\begin{vmatrix} - & - & - \\ - & - & \end{vmatrix}$ * $\begin{vmatrix} - & - & - \\ - & & \end{vmatrix}$	
MOVW ear, A $\begin{vmatrix} 2 & 2 & 1 & 0 & \text{word (SP)} \leftarrow (A) & - & - & - & * & * & - & - & - & - & -$	
$ WOVVV $ early, A $ Z+ S+(a) \cup C $ $ WOVV \leftarrow (A)$ - - - - - - - - -	
INIOV VV 10, A $ 2 3 0 (c) $ word (ear) \leftarrow (A) $ - - - - - - - - - - - - -$	
MOVW @RWi+disp8, A 2 5 1 (c) word (eam) \leftarrow (A) - - - - * * - - MOVW @RLi+disp8, A 3 10 2 (c) word (io) \leftarrow (A) - - - - * * - -	N/M @RVVI+uispo, A
MOVW @KLi+disp8, A $\begin{vmatrix} 3 & 10 & 2 & (c) & word (10) \leftarrow (A) & - & - & - & - & - & - & - & - & - & $	
MOVW RWi, eam 2+ 4+ (a) 1 (c) (A) - - - - * * - -	
MOVW ear, RWi $\begin{bmatrix} 2 & 4 & 2 & 0 \end{bmatrix}$ word ((RLi) +disp8) $\leftarrow \begin{bmatrix} - & - & - & - & - & - & - & - & - & -$	
MOVW eam, RWi 2+ 5+ (a) 1 (c) (A) * * *	
MOVW RWi, #imm16 3 2 1 1 0 word (RWi) \leftarrow (ear) $- - - - * * - - $	
MOVW io, #imm16	VW io, #imm16
MOVW ear, #imm16 4 2 1 0 word (ear) ← (RWi) - - - - * * - -	
MOVW eam, #imm16 $4+$ $4+$ (a) 0 (c) word (eam) \leftarrow (RWi) $-$	DVW eam, #imm16
INDVV AL, ALL $ 2 3 0 (c)$ Word $(10) \leftarrow 11111110$ $- - - - - - - - - - - - - - - - - - $	
/MOVW @A, T word (ear) ← imm16	MOVW @A, I
XCHW A, ear 2 4 2 0 word (eam) ← imm16	·U\\/ A cor
XCHW A, ear 2 4 2 0	
XCHW	
XCHW RWi, ear 2+ 9+ (a) 2 2× (c)	
word (A) \leftrightarrow (ear)	Tivv ittvi, caiii
$ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	
word (RWi) ↔ (ear)	
word (RWi) ↔ (eam)	
MOVL A, ear 2 4 2 0 long (A) ← (ear) * *	
$ MOVL A, ear 2 4 2 0 Iong (A) \leftarrow (ear) - - - - - + * - - $ $ MOVL A, ear 2 + 5 + (a) 0 (d) Iong (A) \leftarrow (ear) - - - - - * * - - $	
MOVL A, $#imm32$ $ S $ $ $	
- , - - - - - - - -	· ·, · · · · · · · · · · · · ·
MOVL ear, A	
MOVL eam, A $\begin{vmatrix} 2+ & 5+ & (a) & 0 & (d) & long (eam) \leftarrow (A) & - & - & - & - & * & * & - & - & - & -$	DVL eam, A

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

	1	+		i					-						
Mnemonic	#	~	R G	В	Operation	H	A	I	s	Т	N	Z	٧	С	RM W
ADD A,#imm8 ADD A, dir ADD A, ear ADD A, eam ADD ear, A ADD eam, A ADDC A ADDC A, eam SUB A, dir SUB A, ear SUB A, ear SUB A, ear SUB A, ear SUB A, eam	2 2 2 2+ 2 2+ 1 2 2+ 1 2 2+ 1 2 2+ 1 2 2+ 1 2 1	2 5 3 4+ (a) 3 5+ (a) 2 3 4+ (a) 3 5+ (a) 2 3 4+ (a) 3 5+ (a) 2 3 5+ (a)	0 0 1 0 2 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0	0 (b) 0 (b) 0 0 (b) 0 (b) 0 (b) 0 2×(b) 0 0 (b) 0 0 (b) 0	byte (A) \leftarrow (A) +imm8 byte (A) \leftarrow (A) +(dir) byte (A) \leftarrow (A) +(ear) byte (A) \leftarrow (A) +(eam) byte (ear) \leftarrow (ear) + (A) byte (eam) \leftarrow (eam) + (A) byte (A) \leftarrow (AH) + (AL) + (C) byte (A) \leftarrow (A) + (ear) + (C) byte (A) \leftarrow (A) + (eam) + (C) byte (A) \leftarrow (A) + (in the constant of the constan	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z					* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	- - - - - - - - - - - - - -
ADDW A ADDW A, ear ADDW A, eam ADDW A, #imm16 ADDW ear, A ADDCW A, ear ADDCW A, ear ADDCW A, ear SUBW A SUBW A, ear SUBW A, eam SUBW A, #imm16 SUBW ear, A SUBW A, ear SUBW A,	1 2 2+ 3 2 2+ 2 2+ 1 2 2+ 3 2 2+ 3 2 2+ 2 2+	2 3 4+ (a) 2 3 5+ (a) 3 4+ (a) 2 3 5+ (a) 3 4+ (a)	0 1 0 0 2 0 1 0 0 1 0 0 2 0 1 0	0 0 (c) 0 2×(c) 0 (c) 0 0 (c) 0 2×(c) 0 (c)	word (A) \leftarrow (AH) + (AL) word (A) \leftarrow (A) +(ear) word (A) \leftarrow (A) +(eam) word (A) \leftarrow (A) +imm16 word (ear) \leftarrow (ear) + (A) word (eam) \leftarrow (eam) + (C) word (A) \leftarrow (A) + (ear) + (C) word (A) \leftarrow (A) + (eam) + (C) word (A) \leftarrow (AH) - (AL) word (A) \leftarrow (AH) - (ear) word (AH) \leftarrow (AH) - (ear) word (AH) \leftarrow (AH) - (ear) word (AH) \leftarrow (AH) - (ear) word (ear) \leftarrow (ear) - (AH) word (ear) \leftarrow (ear) - (AH) word (AH) \leftarrow (AH) - (ear) - (CH) word (AH) \leftarrow (AH) - (ear) - (CH)						* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	
ADDL A, ear ADDL A, eam ADDL A, #imm32 SUBL A, ear SUBL A, eam SUBL A, #imm32	2 2+ 5 2 2+ 5	6 7+ (a) 4 6 7+ (a) 4	2 0 0 2 0 0	0 (d) 0 0 (d) 0	$\begin{array}{l} \text{long (A)} \leftarrow \text{(A)} + \text{(ear)} \\ \text{long (A)} \leftarrow \text{(A)} + \text{(eam)} \\ \text{long (A)} \leftarrow \text{(A)} + \text{imm32} \\ \text{long (A)} \leftarrow \text{(A)} - \text{(ear)} \\ \text{long (A)} \leftarrow \text{(A)} - \text{(eam)} \\ \text{long (A)} \leftarrow \text{(A)} - \text{imm32} \end{array}$	11111	111111	11111	_ _ _ _	_ _ _ _	* * * * * *	* * * * *	* * * * *	* * * * *	- - - -

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Mn	emonic	#	~	R G	В	Operation	L	A	I	s	Т	N	Z	٧	С	RM W
INC INC	ear eam	2 2+	2 5+ (a)	2 0	0 2× (b)	byte (ear) ← (ear) +1 byte (eam) ← (eam) +1	_		_	_	_	*	*	*	1 1	- *
DEC DEC	ear eam	2 2+	3 5+ (a)	2 0	0 2× (b)	byte (ear) ← (ear) −1 byte (eam) ← (eam) −1	_		_ _	_ _	_	*	*	*	1 1	_ *
INCW INCW	ear eam	2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow (ear) +1 word (eam) \leftarrow (eam) +1	_	1 1	_	_	_	*	*	*	1 1	*
DECW DECW	ear eam	2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow (ear) −1 word (eam) \leftarrow (eam) −1	_		_ _	_ _	_	*	*	*	I I	_ *
INCL INCL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) +1 long (eam) ← (eam) +1	_	1 1	_	_	_	*	*	*	1 1	*
DECL DECL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) -1 long (eam) ← (eam) -1	_		_ _	_ _	_ _	*	*	*	- 1	_ *

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mn	emonic	#	~	R G	В	Operation	L H	A	I	s	Т	N	Z	٧	С	RM W
CMP	A	1	1	0	0	byte (AH) – (AL)	_	_	_	_	_	*	*	*	*	_
CMP	A, ear	2	2	1	0	byte (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMP	A, eam	2+	3+ (a)	0	(b)	byte (A) ← (eam)	_	_	_	_	_	*	*	*	*	_
CMP	A, #imm8	2	2	0	0	byte (A) ← imm8	_	_	_	_	_	*	*	*	*	_
CMPW	Α	1	1	0	0	word (AH) – (AL)	_	_	١	-	_	*	*	*	*	_
CMPW	A, ear	2	2	1	0	word (A) \leftarrow (ear)	_	_	_	_	_	*	*	*	*	_
CMPW	A, eam	2+	3+ (a)	0	(c)	word (A) \leftarrow (eam)	_	_	_	_	_	*	*	*	*	_
CMPW	A, #imm16	3	2	0	0	word (A) \leftarrow imm16	_	_	_	_	_	*	*	*	*	-
CMPL	A, ear	2	6	2	0	word (A) ← (ear)	_	_	١	-	_	*	*	*	*	_
CMPL	A, eam	2+	7+ (a)	0	(d)	word (A) ← (eam)	_	_	_	_	_	*	*	*	*	_
CMPL	A, #imm32	5	3	0	0	word (A) \leftarrow imm32	_	_	_	_	_	*	*	*	*	_

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemo	onic	#	~	R G	В	Operation	L	A	I	s	Т	N	Z	٧	С	RM W
DIVU	Α	1	*1	0	0	word (AH) /byte (AL)	_	_	_	_	_	_	_	*	*	_
DIVU ear	A,	2	*2	1	0	Quotient → byte (AL) Remainder → byte (AH) word (A)/byte (ear)	_	1	_	_	_	_	_	*	*	_
	۸	2+	*3	0	*6	Quotient \rightarrow byte (A) Remainder \rightarrow	-	_	-	_	-	_	_	*	*	-
eam	Α,	2	*4	1	0	byte (ear) word (A)/byte (eam)	_	_	_	_	_	_	_	*	*	_
DIVUW ear	Α,	2+	*5	0	*7	Quotient → byte (A) Remainder → byte (eam) long (A)/word (ear)	-	-	_	_	_	_	_	*	*	-
DIVUW eam	Α,	1 2	*8 *9	0	0	Quotient → word (A) Remainder → word (ear) long (A)/word (eam)	_ _		_	_ _	_ _	_ _	_	_		
		2+	*10	0	(b)	Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	_	_	_	_	_	-	_
MULU	Α	1	*11	0	0		_	_	_	_	_	_	_	_	_	_
ear	A, A,	2 2+	*12 *13	0	(c)	byte (AH) *byte (AL) \rightarrow word (A) byte (A) *byte (ear) \rightarrow word (A) byte (A) *byte (eam) \rightarrow word (A)	_	1 1	_	_	_	_	_	_	1	-
MULUW MULUW ear	A,					word (AH) *word (AL) \rightarrow long (A) word (A) *word (ear) \rightarrow long (A) word (A) *word (eam) \rightarrow long (A)										
MULUW eam	Α,															

^{*1: 3} when the result is zero, 7 when an overflow occurs, and 15 normally.

^{*2: 4} when the result is zero, 8 when an overflow occurs, and 16 normally.

^{*3: 6 + (}a) when the result is zero, 9 + (a) when an overflow occurs, and 19 + (a) normally.

^{*4: 4} when the result is zero, 7 when an overflow occurs, and 22 normally.

^{*5: 6 + (}a) when the result is zero, 8 + (a) when an overflow occurs, and 26 + (a) normally.

^{*6: (}b) when the result is zero or when an overflow occurs, and $2 \times$ (b) normally.

^{*7: (}c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.

^{*8: 3} when byte (AH) is zero, and 7 when byte (AH) is not zero.

^{*9: 4} when byte (ear) is zero, and 8 when byte (ear) is not zero.

^{*10:} 5 + (a) when byte (eam) is zero, and 9 + (a) when byte (eam) is not 0.

^{*11: 3} when word (AH) is zero, and 11 when word (AH) is not zero.

^{*12: 4} when word (ear) is zero, and 12 when word (ear) is not zero.

^{*13: 5 + (}a) when word (eam) is zero, and 13 + (a) when word (eam) is not zero.

Table 13 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mn	emonic	#	~	R G	В	Operation	L H	A	I	s	Т	N	z	٧	С	RM W
AND AND AND AND AND	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 0 (b) 0 2× (b)	byte (A) \leftarrow (A) and imm8 byte (A) \leftarrow (A) and (ear) byte (A) \leftarrow (A) and (eam) byte (ear) \leftarrow (ear) and (A) byte (eam) \leftarrow (eam) and (A)	_ _ _ _	_ _ _ _	1 1 1 1		_ _ _ _	* * * * *	* * * * *	R R R R	_ _ _ _	_ _ _ _ *
OR OR OR OR OR	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2× (b)	byte (A) \leftarrow (A) or imm8 byte (A) \leftarrow (A) or (ear) byte (A) \leftarrow (A) or (eam) byte (ear) \leftarrow (ear) or (A) byte (eam) \leftarrow (eam) or (A)	_ _ _ _	_ _ _ _	1 1 1 1		_ _ _ _	* * * *	* * * *	R R R R	_ _ _ _	_ _ _ _ *
XOR XOR XOR XOR XOR	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2× (b)	byte (A) \leftarrow (A) xor imm8 byte (A) \leftarrow (A) xor (ear) byte (A) \leftarrow (A) xor (eam) byte (ear) \leftarrow (ear) xor (A) byte (eam) \leftarrow (eam) xor (A)	- - - -	_ _ _ _	1 1 1 1	 - - -	_ _ _ _	* * * *	* * * *	R R R R	_ _ _ _	_ _ _ _ *
NOT NOT NOT	A ear eam	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (b)	byte (A) \leftarrow not (A) byte (ear) \leftarrow not (ear) byte (eam) \leftarrow not (eam)	- - -	_ _ _	1 1 1		_ _ _	* *	* *	R R R	_ _ _	_ _ *
ANDW ANDW ANDW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2 0	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) and (A) word (A) \leftarrow (A) and imm16 word (A) \leftarrow (A) and (ear) word (A) \leftarrow (A) and (eam) word (ear) \leftarrow (ear) and (A) word (eam) \leftarrow (eam) and (A)	- - - -		11111	1 1 1 1 1	- - - -	* * * * * *	* * * * * *	R R R R R R	- - - -	_ _ _ _ _ *
ORW ORW ORW ORW ORW ORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) or (A) word (A) \leftarrow (A) or imm16 word (A) \leftarrow (A) or (ear) word (A) \leftarrow (A) or (eam) word (ear) \leftarrow (ear) or (A) word (eam) \leftarrow (eam) or (A)	- - - -		11111	11111	- - - -	* * * * * *	* * * * * *	R R R R R R	- - - -	_ _ _ _ *
XORW XORW XORW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) xor (A) word (A) \leftarrow (A) xor imm16 word (A) \leftarrow (A) xor (ear) word (A) \leftarrow (A) xor (eam) word (ear) \leftarrow (ear) xor (A) word (eam) \leftarrow (eam) xor (A)	- - - -		11111	111111	_ _ _ _	* * * * * *	* * * * * *	R R R R R		_ _ _ _ *
NOTW NOTW NOTW	ear	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (c)	word (A) \leftarrow not (A) word (ear) \leftarrow not (ear) word (eam) \leftarrow not (eam)	- - -	_ _ _	1 1 1	1 1 1	_ _ _	* *	* *	R R R	_ _ _	_ _ *

Table 14 Logical 2 Instructions (Long Word) [6 Instructions]

Mnem	onic	#	~	R G	В	Operation	L H	A H	I	s	Т	N	Z	٧	С	RM W
	ear eam	2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)	_	_	1 1	_	_	*	*	R R	1 1	_
,	ear eam	2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)	_	_	1	_ _	_ _	*	*	R R	_	_ _
XORL A, XORL A,		2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) xor (ear) long (A) \leftarrow (A) xor (eam)	_	_	1 1	_ _	_ _	*	*	R R	_ _	_ _

Table 15 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mn	emonic	#	~	R G	В	Operation	L	A	I	s	Т	N	Z	٧	С	RM W
NEG	А	1	2	0	0	byte (A) \leftarrow 0 – (A)	Х	-	-	-	-	*	*	*	*	_
NEG NEG	ear eam	2 2+	3 5+ (a)	2 0	0 2× (b)	byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	_ _	_ _	_ _	_ _	_ _	*	*	*	*	*
NEGW	Α	1	2	0	0	word (A) \leftarrow 0 – (A)	_	_	_	_	_	*	*	*	*	ı
NEGW NEGW		2 2+	3 5+ (a)	2 0	0 2× (c)	word (ear) \leftarrow 0 - (ear) word (eam) \leftarrow 0 - (eam)	_ _	_ _	_ _	_ _	_ _	*	*	*	*	*

Table 16 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	#	~	RG	В	Operation	LH	A	I	S	T	N	Z	٧	С	RM W
NRML A, R0	2	*1	1	0	$\begin{array}{l} \text{long (A)} \leftarrow \text{Shift until first} \\ \text{digit is "1"} \\ \text{byte (R0)} \leftarrow \text{Current shift} \\ \text{count} \end{array}$	_	-	I	-	_	ı	*	ı	ı	1

^{*1: 4} when the contents of the accumulator are all zeroes, 6 + (R0) in all other cases (shift count).

Table 17 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	#	~	R G	В	Operation	L H	A H	I	s	Т	N	z	٧	С	RM W
RORCA	2	2	0	0	byte (A) ← Right rotation with carry	_	_	_	_	_	*	*	_	*	_
ROLC A	2	2	0	0	byte (A) \leftarrow Left rotation with carry	-	-	-	_	-	*	*	_	*	-
RORCear	2	3	2	0	byte (ear) ← Right rotation with carry	-	_	_	_	_	*	*	_	*	_ *
RORCeam	2+	5+	0	_ ` '	byte (eam) ← Right rotation with	_	_	_	_	_	*	*	_	*	
ROLC ear	2	(a) 3	2	0 2x (b)	carry	_	_	_	_	_	*	*	_	*	_ *
ROLC eam	2+	ა 5+	U	2× (b)	byte (ear) ← Left rotation with carry byte (eam) ← Left rotation with carry	_	-	-	_	-			_		
ASR A, R0	2	(a)	1	0		_	_	_	_	*	*	*	_	*	_
LSR A, R0	2		1	0	byte (A) \leftarrow Arithmetic right barrel shift (A,	_	_	_	_	*	*	*	_	*	_
LSL A, R0	2	*1	1	0	R0)	_	_	_	_	-	*	*	_	*	_
		*1 *1			byte (A) ← Logical right barrel shift (A, R0)										
					byte (A) ← Logical left barrel shift (A, R0)										
ASRWA LSRWA/	1	2	0	0	word (A) ← Arithmetic right shift (A, 1	-	1	1	-	*	* R	*	-	*	_
SHRW A	1	2	0	0	bit) word (A) ← Logical right shift (A, 1	_	_	_	_	_	*	*	_	*	_
LSLW A/ SHLW A	2	*1	1	0	bit) word (A) ← Logical left shift (A, 1 bit)	_	_	_	_	*	*	*	_	*	_
	2	*1	1	0		_	_	_	_	*	*	*	_	*	_
ASRWA, R0 LSRWA, R0	2	*1	1	0	word (A) \leftarrow Arithmetic right barrel shift (A, R0)	-	_	_	_	_	*	*	_	*	_
LSLW A, R0					word (A) ← Logical right barrel shift (A, R0)										
					word (A) ← Logical left barrel shift (A, R0)										
ASRL A, R0 LSRL A, R0	2 2	*2 *2	1	0	long (A) ← Arithmetic right shift (A, R0)	-	_	_	_	*	*	*	_	*	_
LSKL A, RU LSLL A, R0	2	*2	1	0	long (A) ← Logical right barrel shift	_	_	_	_	_	*	*	_	*	_
					(A, R0) long (A) ← Logical left barrel shift (A, R0)										

^{*1: 6} when R0 is 0, 5 + (R0) in all other cases.

^{*2: 6} when R0 is 0, 6 + (R0) in all other cases.

Table 18 Branch 1 Instructions [31 Instructions]

Mne	emonic	#	~	RG	В	Operation	L H	A	I	s	Т	N	Z	٧	С	RM W
BZ/BEC) rel	2	*1	0	0	Branch when $(Z) = 1$	_	_	_	_	_	_	_	_	_	_
BNZ/BN	NE rel	2	*1	0	0	Branch when $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BC/BLC) rel	2	*1	0	0	Branch when $(C) = 1$	_	_	_	_	_	_	_	_	_	_
BNC/BH	HS rel	2	*1	0	0	Branch when $(C) = 0$	_	_	_	_	_	_	_	_	_	_
BN	rel	2	*1	0	0	Branch when $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BP	rel	2	*1	0	0	Branch when $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BV	rel	2	*1	0	0	Branch when $(V) = 1$	_	_	_	_	_	_	_	_	_	_
BNV	rel	2	*1	0	0	Branch when $(V) = 0$	_	_	_	_	_	_	_	_	_	_
ВТ	rel	2	*1	0	0	Branch when $(T) = 1$	_	_	_	_	_	_	_	_	_	_
BNT	rel	2	*1	0	Ö	Branch when $(T) = 0$	_	_	_	_	_	_	_	_	_	_
BLT	rel	2	*1	0	0	Branch when (V) xor $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BGE	rel	2	*1	0	Ö	Branch when (V) xor $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BLE	rel	2	*1	0	Ö	Branch when ((V) xor (N)) or	_	_	_	_	_	_	_	_	_	_
BGT	rel	2	*1	0	Ö	(Z) = 1	_	_	_	_	_	_	_	_	_	_
BLS	rel	2	*1	0	Ö	Branch when ((V) xor (N)) or	_	_	_	_	_	_	_	_	_	_
BHI	rel	2	*1	0	Ö	(Z) = 0	_	_	_	_	_	_	_	_	_	_
BRA	rel	2	*1	0	0	Branch when (C) or $(Z) = 1$	_	_	_	_	_	_	_	_	_	_
D	101	_				Branch when (C) or $(Z) = 0$										
JMP	@A	1	2	0	0	Branch unconditionally	_	_	_	_	_	_	_	_	_	_
JMP	addr16	3	3	0	0	Dranon anochalionally	_	_	_	_	_	_	_	_	_	_
JMP	@ear	2	3	1	0	word (PC) \leftarrow (A)	_	_	_	_	_	_	_	_	_	_
JMP	@eam	2+	4+ (a)	0	(c)	word (PC) \leftarrow (A) word (PC) \leftarrow addr16			_	_		_		_		
JMPP	@ear *3	2	5 5	2	0	word (PC) ← (ear)	_	_	_	_		_	_	_	_	_
JMPP	@eam *3	2+	6+ (a)	0	(d)	word (PC) ← (ear) word (PC) ← (earn)	_	_	_	_	_	_	_	_	_	_
JMPP	addr24	2+ 4	4	0	(d)	word (PC) \leftarrow (ear), (PCB) \leftarrow	_	_	_	_	_	_	_	_	_	_
JIVIPP	auurz4	4	4	U	U	(ear +2)	_	_	_	_	_	_	_	_	_	_
0 4 1 1	@ *1	2	6	1	(0)	word (PC) \leftarrow (eam), (PCB) \leftarrow										
CALL	@ear *4	2+	_	0	(c)	(eam +2)	_	_	_	_	_	_	_	_	_	_
CALL	@eam *4		7+ (a)	0			_	_	_	_	_	_	_	_	_	_
CALL	addr16 *5	3	6 7	_	(c)	word (PC) \leftarrow ad24 0 to 15,	_	_		_	_	_	_	_	_	_
	#vct4 *5	1		0		(PCB) ← ad24 16 to 23	_	_	_	_	_	_	_	_	_	_
CALLP	@ear *6	2	10	2	2× (c)	word (PC) ← (ear)	_	_	_	_	_	_	_	_	_	_
	_	•	44 . (=)	_	*2	word (PC) \leftarrow (eam)										
CALLP	@eam *6	2+	11+ (a)	0	*2	word (PC) ← addr16	_	_	_	_	_	_	_	_	_	_
			40			Vector call instruction										
CALLP	addr24 *7	4	10	0	2× (c)	word (PC) \leftarrow (ear) 0 to 15	_	_	_	_	_	_	_	_	_	_
						(PCB) ← (ear) 16 to 23										
						word (PC) \leftarrow (eam) 0 to 15										
						(PCB) ← (eam) 16 to 23										
						word (PC) \leftarrow addr0 to 15,										
						(PCB) ← addr16 to 23										

^{*1: 4} when branching, 3 when not branching.

^{*2: (}b) + $3 \times$ (c)

^{*3:} Read (word) branch address.

^{*4:} W: Save (word) to stack; R: read (word) branch address.

^{*5:} Save (word) to stack.

^{*6:} W: Save (long word) to W stack; R: read (long word) R branch address.

^{*7:} Save (long word) to stack.

Table 19 Branch 2 Instructions [19 Instructions]

Mnemonic	#	~	RG	В	Operation	L H	A	I	s	Т	N	Z	٧	С	RM W
CBNE A, #imm8, rel	3	*1	0	0	Branch when byte (A) ≠	_	_	_	_	_	*	*	*	*	-
CWBNEA, #imm16, rel	4	*1	0	0	imm8	_	_	_	_	_	*	*	*	*	-
ODNIE War - O I		*2		0	Branch when word (A) ≠						*	*	*	*	
CBNE ear, #imm8, rel CBNE eam, #imm8,	4 4+	*3	1	0 (b)	imm16	_	_	_	_	_	*	*	*	*	_
rel*9	5	*4	1	(0)	Branch when byte (ear) ≠	_		_	_		*	*	*	*	_
CWBNEear, #imm16,	5+	*3	Ö	(c)	imm8	_	_	_	_	_	*	*	*	*	_
rel				(0)	Branch when byte (eam) ≠										
CWBNEeam, #imm16,	3	*5	2	0	imm8	_	_	_	_	_	*	*	*	_	_
rel*9					Branch when word (ear) ≠										
	3+	*6	2	2× (b)	imm16	_	_	_	_	_	*	*	*	_	*
DBNZ ear, rel					Branch when word (eam) ≠ imm16										
DBNZ eam, rel	3	*5	2	0		_	_	_	_	_	*	*	*	_	-
			_	٥ ()	Branch when byte (ear) =						*	*	*		*
DIA/DAIZ	3+	*6	2	2× (c)		_	_	_	_	_	*	*	*	_	*
DWBNZ ear, rel					Branch when byte (eam) = $(eam) - 1$, and $(eam) \neq 0$										
DWBNZ eam, rel	2	20	0	8× (c)	(earri) – 1, and (earri) \neq 0	_	_	R	S	_	_	_	_	_	_
DVBIVE cam, ici	3	16	Ö		Branch when word (ear) =	_	_	R	S	_	_	_	_	_	_
	4	17	Ō	6× (c)	(ear) – 1, and (ear) ≠ 0	_	_	R	S	_	_	_	_	_	_
INT #vct8	1	20	0	8× (c)	Branch when word (eam) =	_	_	R	S	_	_	_	_	_	-
INT addr16	1	15	0	6× (c)	(eam) – 1, and (eam) ≠ 0	_	_	*	*	*	*	*	*	*	-
INTP addr24	_	_	_	()											
INT9	2	6	0	(c)	Software interrupt	_	_	_	_	_	_	_	_	_	-
RETI					Software interrupt Software interrupt										
LINK #local8					Software interrupt										
LINK #IOCAIO	1	5	0	(c)	Return from interrupt	_	_	_	_	_	_	_	_	_	_
	'	3		(0)	retain nom interrupt										
					At constant entry, save old										
UNLINK	1	4	0	(c)	frame pointer to stack, set	_	_	_	_	_	_	_	_	_	-
	1	6	0	(d)	new frame pointer, and	_	_	_	_	_	_	_	_	_	-
					allocate local pointer area										
RETP *8					old frame pointer from stack.										
					Return from subroutine										
					Return from subroutine										
RET * ⁷ RETP * ⁸					At constant entry, retrieve old frame pointer from stack. Return from subroutine Return from subroutine										

^{*1: 5} when branching, 4 when not branching

^{*2: 13} when branching, 12 when not branching

^{*3: 7 + (}a) when branching, 6 + (a) when not branching

^{*4: 8} when branching, 7 when not branching

^{*5: 7} when branching, 6 when not branching

^{*6: 8 + (}a) when branching, 7 + (a) when not branching

^{*7:} Retrieve (word) from stack

^{*8:} Retrieve (long word) from stack

^{*9:} In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.

Table 20 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	#	~	RG	В	Operation	Ļ	A	I	s	Т	N	Z	٧	С	RM W
PUSHW A PUSHW AH PUSHW PS PUSHW rlst	1 1 1 2	4 4 4 *3	0 0 0 *5	(C) (C) (C) *4	$\begin{aligned} & \text{word (SP)} \leftarrow (\text{SP}) - 2, \left((\text{SP})\right) \leftarrow (\text{A}) \\ & \text{word (SP)} \leftarrow (\text{SP}) - 2, \left((\text{SP})\right) \leftarrow (\text{AH}) \\ & \text{word (SP)} \leftarrow (\text{SP}) - 2, \left((\text{SP})\right) \leftarrow (\text{PS}) \\ & (\text{SP}) \leftarrow (\text{SP}) - 2n, \left((\text{SP})\right) \leftarrow (\text{rlst}) \end{aligned}$	- - -	_ _ _ _	_ _ _ _	_ _ _ _		- - -			- - -	
POPW A POPW AH POPW PS POPW rist	1 1 1 2	3 3 4 *2	0 0 0 *5	(C) (C) (C) *4	word (A) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 word (AH) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 word (PS) \leftarrow ((SP)), (SP) \leftarrow (SP) +2 (rlst) \leftarrow ((SP)), (SP) \leftarrow (SP) +2n	- - -	* - -	- - * -	- * -	- * -	- * -	- * -	- - * -	- - * -	- - -
JCTX @A	1	14	0	6× (c)	Context switch instruction	-	-	*	*	*	*	*	*	*	-
AND CCR, #imm8 OR CCR, #imm8	2 2	3	0	0 0	byte (CCR) \leftarrow (CCR) and imm8 byte (CCR) \leftarrow (CCR) or imm8	_ _	_ _	*	*	*	*	*	*	*	_ _
MOV RP, #imm8 MOV ILM, #imm8	2	2 2	0	0 0	byte (RP) ←imm8 byte (ILM) ←imm8	_ _	_ _	_ _	_ _		_ _		_ _	_	_
MOVEA RWi, ear MOVEA RWi, eam MOVEA A, ear MOVEA A, eam	2 2+ 2 2+	3 2+ (a) 1 1+ (a)	1 1 0 0	0 0 0 0	word (RWi) ←ear word (RWi) ←eam word(A) ←ear word (A) ←eam	- - -	- * *	- - -	_ _ _ _		_ _ _ _			- - -	_ _ _
ADDSP #imm8 ADDSP #imm16	2	3 3	0	0	word (SP) \leftarrow (SP) +ext (imm8) word (SP) \leftarrow (SP) +imm16	_ _	_	_	_		_ _			_	_
MOV A, brgl MOV brg2, A	2 2	*1 1	0	0	byte (A) \leftarrow (brgl) byte (brg2) \leftarrow (A)	Z -	*	_	_		*	*		_	_
NOP ADB DTB PCB SPB NCC CMR	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0	0 0 0 0 0 0	No operation Prefix code for accessing AD space Prefix code for accessing DT space Prefix code for accessing PC space Prefix code for accessing SP space Prefix code for no flag change Prefix code for common register bank						_ _ _ _ _				

^{*1:} PCB, ADB, SSB, USB, and SPB : 1 state DTB, DPR : 2 states

^{*2:} $7 + 3 \times (pop count) + 2 \times (last register number to be popped)$, 7 when rlst = 0 (no transfer register)

^{*3: 29 + (}push count) $-3 \times$ (last register number to be pushed), 8 when rlst = 0 (no transfer register)

^{*4:} Pop count \times (c), or push count \times (c)

^{*5:} Pop count or push count.

Table 21 Bit Manipulation Instructions [21 Instructions]

Mnemonic	#	~	RG	В	Operation	L	A	I	s	Т	N	Z	٧	С	RM W
MOVB A, dir:bp	3	5	0	(b)	byte (A) \leftarrow (dir:bp) b	Ζ	*	_	_	_	*	*	_	_	1
MOVB A,	4	5	0	(b)	byte (A) ← (addr16:bp) b	Ζ	*	_	-	_	*	*	_	_	_
addr16:bp	3	4	0	(b)	byte (A) \leftarrow (io:bp) b	Ζ	*	_	_	_	*	*	_	_	_
MOVB A, io:bp				, ,											
·	3	7	0	2× (b)	bit (dir:bp) b \leftarrow (A)	_	_	_	_	_	*	*	_	_	*
MOVB dir:bp, A	4	7	0		bit (addr16:bp) $b \leftarrow (A)$	_	_	_	_	_	*	*	_	_	*
MOVB addr16:bp, A	3	6	0	2× (b)	bit (io:bp) b \leftarrow (A)	_	_	_	-	_	*	*	_	_	*
MOVB io:bp, A	3	7	0	2× (b)	bit (dir:bp) b \leftarrow 1	_	_	_	_	_	_	_	_	_	*
'	4	7	0		bit (addr16:bp) b ← 1	_	_	_	_	_	_	_	_	_	*
SETB dir:bp	3	7	0		bit (io:bp) b \leftarrow 1	_	_	_	_	_	_	_	_	_	*
SETB addr16:bp				(-)											
SETB io:bp	3	7	0	2× (b)	bit (dir:bp) b \leftarrow 0	_	_	_	_	_	_	_	_	_	*
'	4	7	0		bit (addr16:bp) b ← 0	_	_	_	_	_	_	_	_	_	*
CLRB dir:bp	3	7	0		bit (io:bp) b \leftarrow 0	_	_	_	_	_	_	_	_	_	*
CLRB addr16:bp				,	() /										
CLRB io:bp	4	*1	0	(b)	Branch when (dir:bp) $b = 0$	_	_	_	_	_	_	*	_	_	_
'	5	*1	0	(b)	Branch when (addr16:bp) $b = 0$	_	_	_	_	_	_	*	_	_	_
BBC dir:bp, rel	4	*2	0	(b)	Branch when (io:bp) $b = 0$	_	_	_	_	_	_	*	_	_	_
BBC addr16:bp,				,	(1 /										
rel	4	*1	0	(b)	Branch when (dir:bp) b = 1	_	_	_	_	_	_	*	_	_	_
BBC io:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) $b = 1$	_	_	_	_	_	_	*	_	_	_
• • • • • • • • • • • • • • • • • • • •	4	*2	0	(b)	Branch when (io:bp) $\dot{b} = 1$	_	_	_	_	_	_	*	_	_	_
BBS dir:bp, rel				, ,	,										
BBS addr16:bp,	5	*3	0	2× (b)	Branch when (addr16:bp) $b = 1$,	_	_	_	_	_	_	*	_	_	*
rel				,	bit = 1										
BBS io:bp, rel	3	*4	0	*5		_	_	_	_	_	_	_	_	_	_
'					Wait until (io:bp) b = 1										
SBBS addr16:bp,	3	*4	0	*5	, ,,	_	_	_	_	_	_	_	_	_	_
rel					Wait until (io:bp) b = 0										
					,										
WBTS io:bp															
WBTC io:bp															

^{*1: 8} when branching, 7 when not branching

^{*2: 7} when branching, 6 when not branching

^{*3: 10} when condition is satisfied, 9 when not satisfied

^{*4:} Undefined count

^{*5:} Until condition is satisfied

Table 22 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	#	~	R G	В	Operation	L	AH	I	s	Т	N	Z	٧	С	RM W
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow$ (A) 8 to 15	_	_	_	_	_	_	_	_	_	_
SWAPW/XCHW AL, AH	1	2	0	0	word (AH) \leftrightarrow (AL)	_	*	_	_	_	_	_	_	_	_
EXT	1	1	0	0	byte sign extension	Χ	_	_	_	_	*	*	_	_	_
EXTW	1	2	0	0	word sign extension	_	Χ	_	_	_	*	*	_	_	_
ZEXT	1	1	0	0	byte zero extension	Ζ	_	_	_	_	R	*	_	_	_
ZEXTW	1	1	0	0	word zero extension	-	Ζ	_	_	_	R	*	_	_	_

Table 23 String Instructions [10 Instructions]

Mnemonic	#	~	R G	В	Operation	LΗ	A	I	S	Т	N	Z	٧	С	RM W
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH+ ← @AL+, counter	_	_	_	_	_	_	_	-	-	_
MOVSD	2	*2	*5	*3	=RW0	_	_	_	_	_	_	_	_	_	-
SCEQ/SCEQI	2	*1	*5	*4	Byte transfer @AH \rightarrow @AL \rightarrow , counter = RW0	_	_	_	_	_	*	*	*	*	_
SCEQD	2	*1	*5	*4	5	_	_	_	_	_	*	*	*	*	_
FISL/FILSI	2	6m +6	*5	*3	Byte retrieval (@AH+) – AL, counter = RW0 Byte retrieval (@AH–) – AL, counter = RW0	Ī	_	_	Ī	_	*	*	1	-	-
					Byte filling $@AH+\leftarrow AL$, counter = RW0										
MOVSW/	2	*2	*8	*6	Word transfer @AH+ ← @AL+, counter	_	_	_	_	_	_	_	ı	1	_
MOVSWI	2	*2	*8	*6	= RW0	-	_	_	-	_	_	-	-	_	-
MOVSWD	2	*1	*8	*7	Word transfer $@AH-\leftarrow @AL-$, counter = RW0				_		*	*	*	*	
SCWEQ/	2	*1	*8	*7	= KVVO	_	_		_	_	*	*	*	*	_
SCWEQI SCWEQD	2	6m +6	*8	*6	Word retrieval (@AH+) – AL, counter = RW0	_	_	_	_	_	*	*			_
FILSW/FILSWI	_	0111 10			Word retrieval (@AH–) – AL, counter = RW0										
					Word filling $@AH+\leftarrow AL$, counter = RW0										

m: RW0 value (counter value)

n: Loop count

^{*1: 5} when RW0 is 0, 4 + 7 \times (RW0) for count out, and 7 \times n + 5 when match occurs

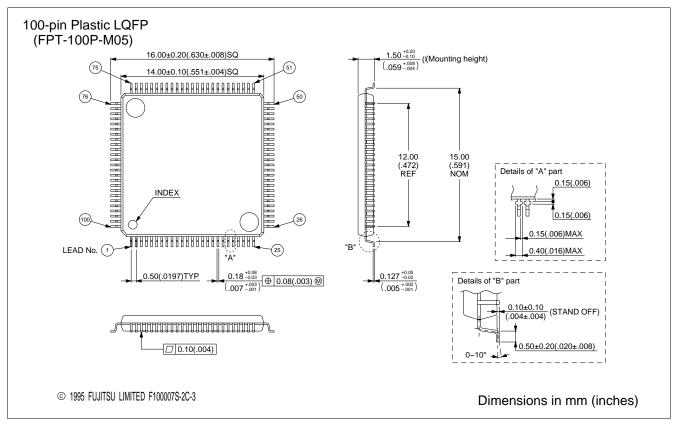
^{*2: 5} when RW0 is 0, 4 + $8 \times$ (RW0) in any other case

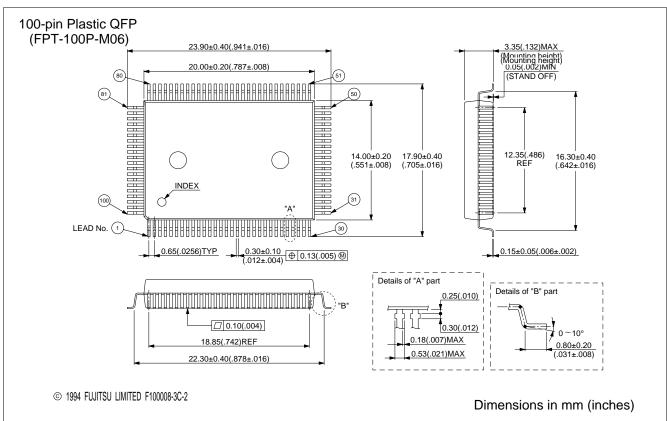
^{*3: (}b) \times (RW0) + (b) \times (RW0) when accessing different areas for the source and destination, calculate (b) separately for each.

^{*4: (}b) \times n

^{*5: 2 × (}RW0)

^{*6: (}c) \times (RW0) + (c) \times (RW0) when accessing different areas for the source and destination, calculate (c) separately for each.


^{*7: (}c) \times n


^{*8: 2 × (}RW0)

■ ORDERING INFORMATION

Model	Package	Remarks
MB90632APFV MB90634APFV MB90P634APFV	100-pin Plastic LQFP (FPT-100P-M05)	
MB90632APF MB90634APF MB90P634APF	100-pin Plastic QFP (FPT-100P-M06)	MB90P634A supports ES alone.

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741

Tel: (65) 281-0770 Fax: (65) 281-0220

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9803

© FUJITSU LIMITED Printed in Japan