DS07-12531-2E

8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89630R Series

MB89635R/T635R/636R/637R/T637R MB89P637/W637/PV630

■ OUTLINE

The MB89630R series has been developed as a general-purpose version of the F²MC*-8L family consisting of proprietary 8-bit, single-chip microcontrollers.

In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as dual-clock control system, five operating speed control stages, a UART, timers, a PWM timer, a serial interface, an A/D converter, an external interrupt, and a watch prescaler.

*: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- · High-speed operating capability at low voltage
- Minimum execution time: 0.4 μs@3.5 V, 0.8 μs@2.7 V
- F2MC-8L family CPU core

Instruction set optimized for controllers

Multiplication and division instructions
16-bit arithmetic operations
Test and branch instructions
Bit manipulation instructions, etc.

· Five types of timers

8-bit PWM timer: 2 channels (Also usable as a reload timer)

8-bit pulse-width count timer (Continuous measurement capable, applicable to remote control, etc.)

16-bit timer/counter

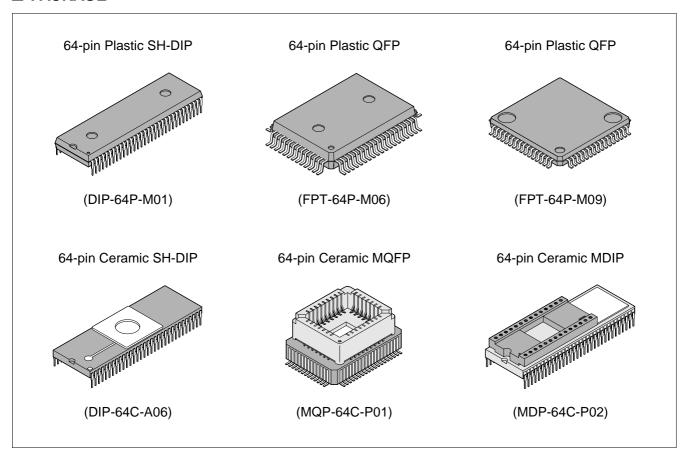
21-bit timebase timer

• UART

CLK-synchronous/CLK-asynchronous data transfer capable (6, 7, and 8 bits)

· Serial interface

Switchable transfer direction to allows communication with various equipment.


• 10-bit A/D converter

Start by an external input capable

(Continued)

- External interrupt: 4 channels
 Four channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function).
- Low-power consumption modes
 Stop mode (Oscillation stops to minimize the current consumption.)
 Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)
 Subclock mode
 Watch mode
- Bus interface function
 With hold and ready function

■ PACKAGE

■ PRODUCT LINEUP

Part number								
Item	MB89635R	MB89636R	MB89637R	R MB89T635R MB89T637R		MB89P637	MB89W637	MB89PV630
Classification		produced pr k ROM prod			al ROM lucts	One-time PROM product	EPROM product	Piggyback/ evaluation product (for evaluation and development)
ROM size	(internal	24 K × 8 bits (internal mask ROM)	32 K × 8 bits (internal mask ROM)	Fixed to ex	ternal ROM			32 K × 8 bits (external ROM)
RAM size	512×8 bits	768 × 8 bits	1024 × 8 bits	512 × 8 bits		1024 × 8 bit	S	1 K×8 bits
CPU functions	Instruction Instruction Data bit I Minimum	ber of instruen bit length: on length: on execution to processing	me:		6 bits 6.4 μs/10 M		32.768 kHz μs@32.768	kHz
Ports	I/O ports Output p	rts: orts (N-ch open- (N-ch open- orts (CMOS) (CMOS):	·drain):	 5 (All also serve as peripherals.) 8 (All also serve as peripherals.) 4 (All also serve as peripherals.) 8 (All also serve as bus control.) 28 (27 ports also serve as bus pins and peripherals.) 53 				
Clock timer		2	1 bits × 1 (in	main clock)	/15 bits × 1 ((at 32.768 k	Hz)	
8-bit PWM timer		I timer opera	channe	els	•		·	$0.3.3 \text{ ms}) \times 2$
8-bit pulse width count timer	8-bit rela	timer operat oad timer op pulse width i measurer	eration (togo measureme	gled output on the contract on the contract of the contract on the contract on the contract on the contract on the contract of the contract on the contract of	capable, ope (capable of	erating clock continuous	cycle: 0.4 to	o 12.8 μs) nt, and
16-bit timer/ counter	16	1 6-bit event c	6-bit timer o ounter opera	peration (op ation (rising	erating clock edge/falling	cycle: 0.4 edge/both e	μs) edge selectal	ole)
8-bit serial I/O	(one externa	One clock	SB first/MSB selectable f	rom four trai	nsfer clocks		.s)
UART			Trans	switching two fer data leng 300 to 62500	jth (6, 7, and	d 8 bits)		
10-bit A/D converter	Ca	apable of co	A/D convers	obit resolution sion mode (o mode (convitation by a	conversion tive:	me: 13.2 μs : 7.2 μs)	,	mer

(Continued)

							T		
Part number	MB89635R	MB89636R	MB89637R	MB89T635R	MB89T637R	MB89P637	MB89W637	MB89PV630	
External interrupt input	Used also	4 independent channels (edge selection, interrupt vector, source flag). Rising edge/falling edge selectable sed also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)							
Standby mode		Slee	p mode, sto	p mode, wat	ch mode, ar	nd subclock	mode		
Process				CN	10S				
Operating voltage*	2	2.2 V to 6.0 V 2.7 V to 6.0 V							
EPROM for use								MBM27C256A-20CZ MBM27C256A-20TV	

^{*:} Varies with conditions such as the operating frequency. (See section " Electrical Characteristics.") In the case of the MB89PV630, the voltage varies with the restrictions of the EPROM for use.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89635R MB89T635R	MB89636R MB89637R MB89T637R	MB89P637	MB89W637	MB89PV630
DIP-64P-M01	0	0	0	×	×
FPT-64P-M06	0	0	0	×	×
FPT-64P-M09	0	0	×*	×*	×*
DIP-64C-A06	×	×	×	0	×
MQP-64C-P01	×	×	×	×	0
MDP-64C-P02	×	×	×	×	0

^{○ :} Available ×: Not available

Note: For more information about each package, see section "■ Package Dimensions."

^{*:} To convert pin pitches, an adapter socket (manufacturer: Sun Hayato Co., Ltd.) is available.
64SD-64QF2-8L: For conversion from (DIP-64P-M01, DIP-64C-A06, or MDP-64C-P02) to FPT-64P-M09
Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403
FAX (81)-3-5396-9106

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

On the MB89P637/W637, the program area starts from address 8007_H but on the MB89PV630 and MB89637R starts from 8000_H.

- On the MB89P637/W637, addresses 8000H to 8006H comprise the option setting area, option settings can be read by reading these addresses. On the MB89PV630/MB89637R, addresses 8000H to 8006H could also be used as a program ROM. However, do not use these addresses in order to maintain compatibility of the MB89P637/W637.
- The stack area, etc., is set at the upper limit of the RAM.
- · The external area is used.

2. Current Consumption

- In the case of the MB89PV630, add the current consumed by the EPROM which connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume
 more current than the product with a mask ROM. However, the current consumption in sleep/stop modes is
 the same. (For more information, see sections "■ Electrical Characteristics" and "■ Example Characteristics.")

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.

Before using options check section "■ Mask Options."

Take particular care on the following points:

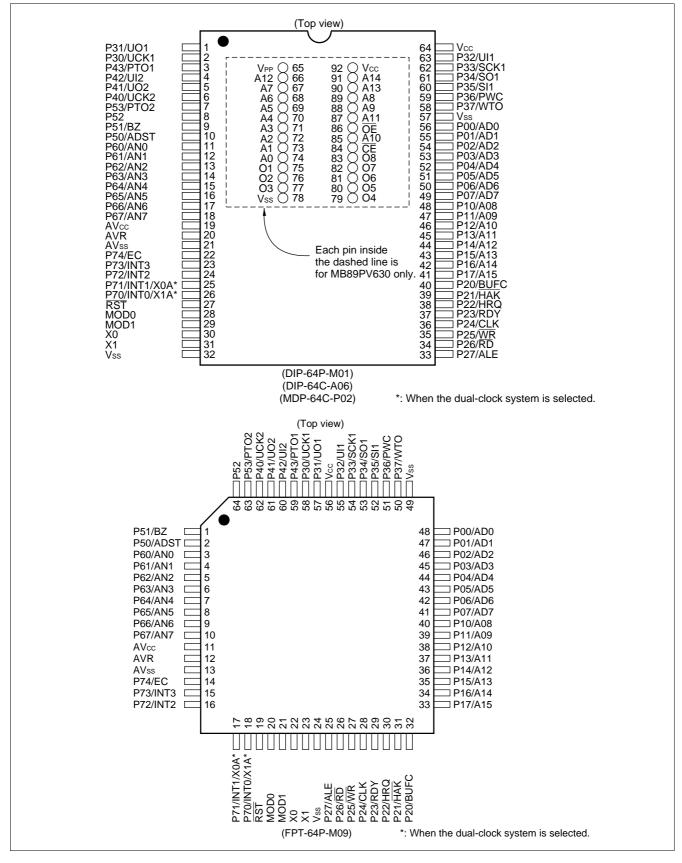
- A pull-up resistor cannot be set for P50 to P53 on the MB89P637 and MB89W637.
- Options are fixed on the MB89PV630, MB89T635R, and MB89T637R.

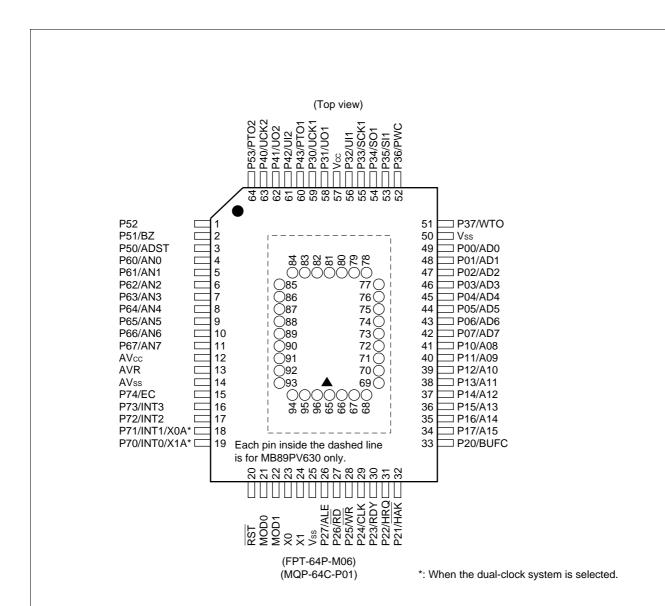
4. Differences between the MB89630 and MB89630R Series

· Memory access area

There are no difference between the access area of MB89635/MB89635R, and that of MB89637/MB89637R. The access area of MB89636 is different from that of the MB89636R when using in external bus mode.

Address	Me	mory area
Address	MB89636	MB89636R
0000н to 007Fн	I/O area	I/O area
0080н to 037Fн	RAM area	RAM area
0380н to 047Fн		Access prohibited
0480н to 7FFFн	External area	External area
8000н to 9FFFн		Access prohibited
A000н to FFFFн	ROM area	ROM area


- Other specifications
 Both MB89630 series and MB89630R is the same.
- Electrical specifications/electrical characteristics
 Electrical specifications of the MB89630R series are the same as that of the MB89630 series.
 Electrical characteristics of both the series are much the same.


■ CORRESPONDENCE BETWEEN THE MB89630 AND MB89630R SERIES

- The MB89630R series is the reduction version of the MB89630 series.
- The the MB89630 and MB89630R series consist of the following products:

MB89630 series	MB89635	MB89T635	MB89636	MB89637	MB89T637	MB80D637	MB89W637	MB89PV630
MB89630R series	MB89635R	MB89T635R	MB89636R	MB89637R	MB89T637R	WD031 037	WID09VV037	WID091 V030

■ PIN ASSIGNMENT

• Pin assignment on package top (MB89PV630 only)

Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name
65	N.C.	73	A2	81	N.C.	89	ŌĒ
66	V _{PP}	74	A1	82	O4	90	N.C.
67	A12	75	A0	83	O5	91	A11
68	A7	76	N.C.	84	O6	92	A9
69	A6	77	O1	85	07	93	A8
70	A5	78	O2	86	O8	94	A13
71	A4	79	O3	87	CE	95	A14
72	А3	80	Vss	88	A10	96	Vcc

N.C.: Internally connected. Do not use.

■ PIN DESCRIPTION

	Pin no.			Oimervit	
SH-DIP*1 MDIP*2	QFP2*3	QFP1*4 MQFP*5	Pin name	Circuit type	Function
30	22	23	X0	Α	Main clock crystal oscillator pins
31	23	24	X1		
28	20	21	MOD0	D	Operating mode selection pins
29	21	22	MOD1		Connect directly to Vcc or Vss.
27	19	20	RST	С	Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L".
56 to 49	48 to 41	49 to 42	P00/AD0 to P07/AD7	F	General-purpose I/O ports When an external bus is used, these ports function as the multiplex pins of the lower address output and the data I/O.
48 to 41	40 to 33	41 to 34	P10/A08 to P17/A157	F	General-purpose I/O ports When an external bus is used, these ports function as an upper address output.
40	32	33	P20/BUFC	Н	General-purpose output port When an external bus is used, this port can also be used as a buffer control output by setting the BCTR.
39	31	32	P21/HAK	Н	General-purpose output port When an external bus is used, this port can also be used as a hold acknowledge by setting the BCTR.
38	30	31	P22/HRQ	F	General-purpose output port When an external bus is used, this port can also be used as a hold request input by setting the BCTR.
37	29	30	P23/RDY	F	General-purpose output port When an external bus is used, this port functions as a ready input.
36	28	29	P24/CLK	Н	General-purpose output port When an external bus is used, this port functions as a clock output.
35	27	28	P25/WR	Н	General-purpose output port When an external bus is used, this port functions as a write signal output.
34	26	27	P26/RD	Н	General-purpose output port When an external bus is used, this port functions as a read signal output.

*1: DIP-64P-M01, DIP-64C-A06

*4: FPT-64P-M06 *5: MQP-M64C-P01

*2: MDP-64C-P02

*3: FPT-64P-M09

(Continued)

	Pin no.			Circuit	
SH-DIP*1 MDIP*2	QFP2*3	QFP1*4 MQFP*5	Pin name	Circuit type	Function
33	25	26	P27/ALE	Н	General-purpose output port When an external bus is used, this port functions as an address latch signal output.
2	58	59	P30/UCK1	G	General-purpose I/O port Also serves as the clock I/O 1 for the UART. This port is a hysteresis input type.
1	57	58	P31/UO1	F	General-purpose I/O port Also serves as the data output 1 for the UART.
63	55	56	P32/UI1	G	General-purpose I/O port Also serves as the data input 1 for the UART. This port is a hysteresis input type.
62	54	55	P33/SCK1	G	General-purpose I/O port Also serves as the data input for the 8-bit serial I/O. This port is a hysteresis input type.
61	53	54	P34/SO1	F	General-purpose I/O port Also serves as the data output for the 8-bit serial I/O.
60	52	53	P35/SI1	G	General-purpose I/O port Also serves as the data input for the 8-bit serial I/O. This port is a hysteresis input type.
59	51	52	P36/PWC	G	General-purpose I/O port Also serves as the measured pulse input for the 8-bit pulse width counter. This port is a hysteresis input type.
58	50	51	P37/WTO	F	General-purpose I/O port Also serves as the toggle output for the 8-bit pulse width counter.
6	62	63	P40/UCK2	G	General-purpose I/O port Also serves as the clock I/O 2 for the UART. This port is a hysteresis input type.
5	61	62	P41/UO2	F	General-purpose I/O port Also serves as the data output 2 for the UART.
4	60	61	P42/UI2	G	General-purpose I/O port Also serves as the data input 2 for the UART. This port is a hysteresis input type.
3	59	60	P43/PTO1	F	General-purpose I/O port Also serves as the toggle output for the 8-bit PWM timer.
10	2	3	P50/ADST	К	General-purpose I/O port Also serves as an A/D converter external activation. This port is a hysteresis input type.

*1: DIP-64P-M01, DIP-64C-A06

*2: MDP-64C-P02

*4: FPT-64P-M06 *5: MQP-M64C-P01

*3: FPT-64P-M09

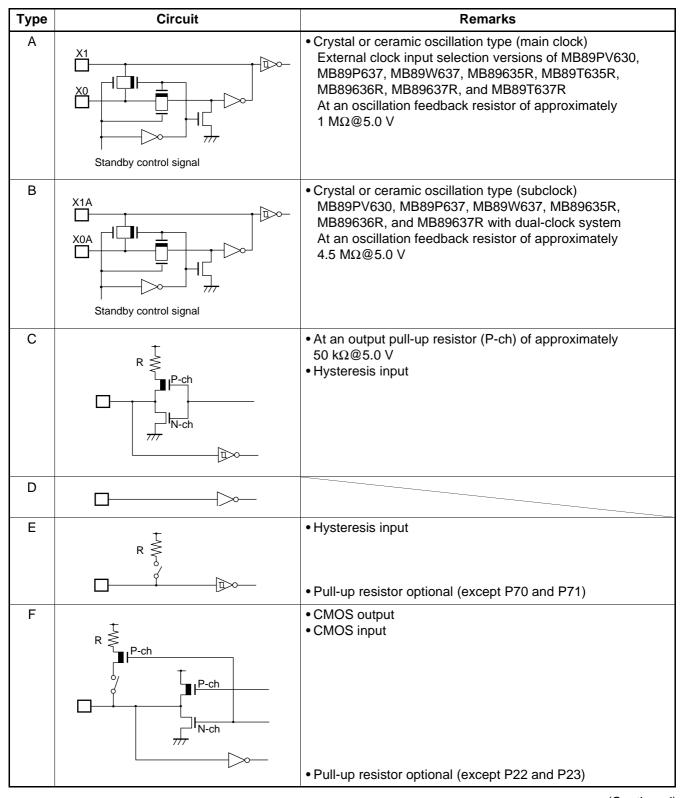
(Continued)

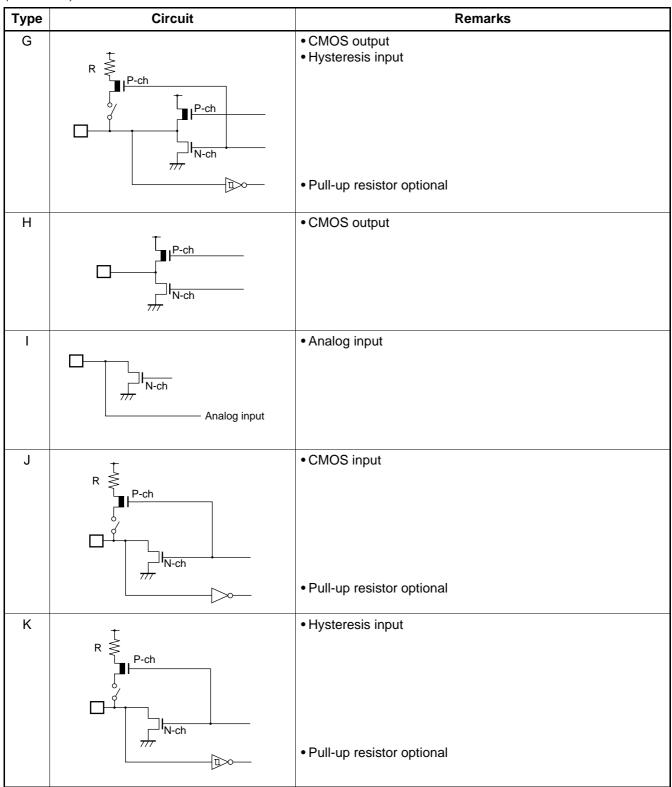
	Pin no.		Bin name Circuit		
SH-DIP*1 MDIP*2	QFP2*3	QFP1*4 MQFP*5	Pin name	type	Function
9	1	2	P51/BZ	J	General-purpose I/O port Also serves as a buzzer output.
8	64	1	P52	J	General-purpose I/O port
7	63	64	P53/PTO2	J	General-purpose I/O port Also serves as the toggle output for the 8-bit PWM timer.
11 to 18	3 to 10	4 to 11	P60/AN0 to P67/AN7	I	N-ch open-drain output ports Also serve as an A/D converter analog input.
26, 25	18, 17	19, 18	P70/INT0/X1A, P71/INT1/X0A	B/E	Input-only ports These ports are a hysteresis input type. Also serve as an external interrupt input (at single-clock operation). Subclock crystal oscillator pins (at dual-clock operation)
24, 23	16, 15	17, 16	P72/INT2, P73/INT3	E	Input-only ports Also serve as an external interrupt input. These ports are a hysteresis input type.
22	14	15	P74/EC	Е	General-purpose input port Also serves as the external clock input for the 16-bit timer/counter. This port is a hysteresis input type.
64	56	57	Vcc	_	Power supply pin
32, 57	24,49	25, 50	Vss	_	Power supply (GND) pin
19	11	12	AVcc	_	A/D converter power supply pin
20	12	13	AVR	_	A/D converter reference voltage input pin
21	13	14	AVss		A/D converter power supply pin Use this pin at the same voltage as Vss.

*1: DIP-64P-M01, DIP-64C-A06

*4: FPT-64P-M06

*2: MDP-64C-P02


*5: MQP-M64C-P01


*3: FPT-64P-M09

• External EPROM pins (MB89PV630 only)

Pin	no.	D:	1/0	Function
MDIP	MQFP	Pin name	I/O	Function
65	66	V _{PP}	0	"H" level output pin
66 67 68 69 70 71 72 73 74	67 68 69 70 71 72 73 74 75	A12 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
75 76 77	77 78 79	O1 O2 O3	I	Data input pins
78	80	Vss	0	Power supply (GND) pin
79 80 81 82 83	82 83 84 85 86	O4 O5 O6 O7 O8	I	Data input pins
84	87	CE	0	ROM chip enable pin Outputs "H" during standby.
85	88	A10	0	Address output pin
86	89	ŌĒ	0	ROM output enable pin Outputs "L" at all times.
87 88 89	91 92 93	A11 A9 A8	0	Address output pins
90	94	A13	0	
91	95	A14	0	
92	96	Vcc	0	EPROM power supply pin
	65 76 81 90	N.C.	_	Internally connected pins Be sure to leave them open.

■ I/O CIRCUIT TYPE

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be AVcc = DAVC = Vcc and AVss = AVR = Vss even if the A/D and D/A converters are not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

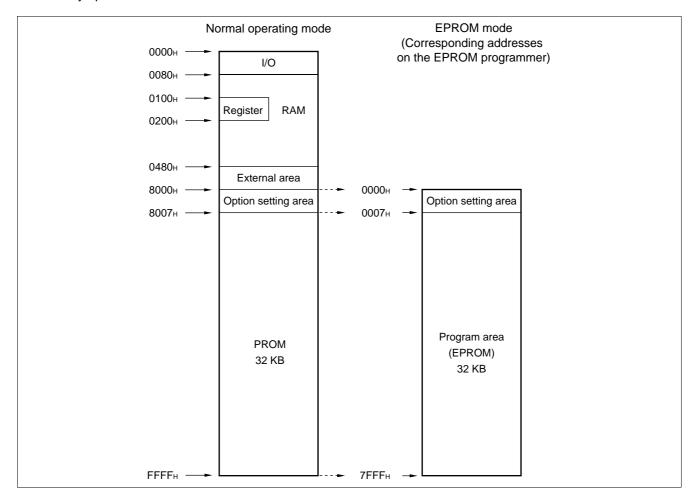
5. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency (50 Hz to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required even for power-on reset (option selection) and wake-up from stop mode.

■ PROGRAMMING TO THE EPROM ON THE MB89P637


The MB89P637 is an OTPROM version of the MB89630 series.

1. Features

- 32-Kbytes PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

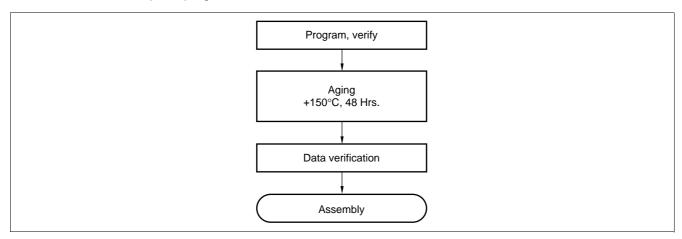
2. Memory Space

Memory space in each mode is illustrated below.

3. Programming to the EPPROM

In EPROM mode, the MB89P637 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter.

However, the electronic signature mode cannot be used.


When the operating ROM area for a single chip is 32 Kbytes (8007_H to FFFF_H) the EPROM can be programmed as follows:

Programming procedure

- Set the EPROM programmer to the MBM27C256A-20CZ and MBM27C256A-20TV.
- (2) Load program data into the EPROM programmer at 0007H to 7FFFH. (Note that addresses 8000H to FFFFH in the operating mode assign to 0000H to 7FFFH in EPROM mode).
- (3) Load option data into addresses 0000H to 0006H of the EPROM programmer. (For information about each corresponding option, see "8. OTPROM Option Bit Map.")
- (4) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. Erasure

In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an ultraviolet light source. A dosage of 10 W-seconds/cm² is required to completely erase an internal EPROM. This dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (Å)) with intensity of 12000 μ W/cm² for 15 to 21 minutes. The internal EPROM should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the internal EPROM and similar devices, will erase with light sources having wavelengths shorter than 4000 Å. Although erasure time will be much longer than with UV source at 2537 Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

7. EPROM Programmer Socket Adapter

Part No.	MB89P637-SH	MB89P637PF
Package	SH-DIP-64	QFP-64
Compatible socket adapter Sun Hayato Co., Ltd.	ROM-64SD-28DP-8L	ROM-64QF-28DP-8L

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403

FAX: (81)-3-5396-9106

8. OTPROM Option Bit Map

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0000н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Single/dual- clock system 1: Dual clock 0: Single clock	Reset pin output 1: Yes 0: No	Power-on reset 1: Yes 0: No	11:2 ¹⁸ /Fc	bilization (/F _{сн}) н 01:2 ¹⁷ /F _{сн} н 00:2 ⁴ /F _{сн}
0001н	P07 Pull-up 1: No 0: Yes	P06 Pull-up 1: No 0: Yes	P05 Pull-up 1: No 0: Yes	P04 Pull-up 1: No 0: Yes	P03 Pull-up 1: No 0: Yes	P02 Pull-up 1: No 0: Yes	P01 Pull-up 1: No 0: Yes	P00 Pull-up 1: No 0: Yes
0002н	P17 Pull-up 1: No 0: Yes	P16 Pull-up 1: No 0: Yes	P15 Pull-up 1: No 0: Yes	P14 Pull-up 1: No 0: Yes	P13 Pull-up 1: No 0: Yes	P12 Pull-up 1: No 0: Yes	P11 Pull-up 1: No 0: Yes	P10 Pull-up 1: No 0: Yes
0003н	P37 Pull-up 1: No 0: Yes	P36 Pull-up 1: No 0: Yes	P35 Pull-up 1: No 0: Yes	P34 Pull-up 1: No 0: Yes	P33 Pull-up 1: No 0: Yes	P32 Pull-up 1: No 0: Yes	P31 Pull-up 1: No 0: Yes	P30 Pull-up 1: No 0: Yes
0004н	Vacancy Readable and writable	P43 Pull-up 1: No 0: Yes	P42 Pull-up 1: No 0: Yes	P41 Pull-up 1: No 0: Yes	P40 Pull-up 1: No 0: Yes			
0005н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P74 Pull-up 1: No 0: Yes	P73 Pull-up 1: No 0: Yes	P72 Pull-up 1: No 0: Yes	Vacancy Readable and writable	Vacancy Readable and writable
0006н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Reserved bit Readable and writable			

Note: Each bit is set to '1' as the initialized value.

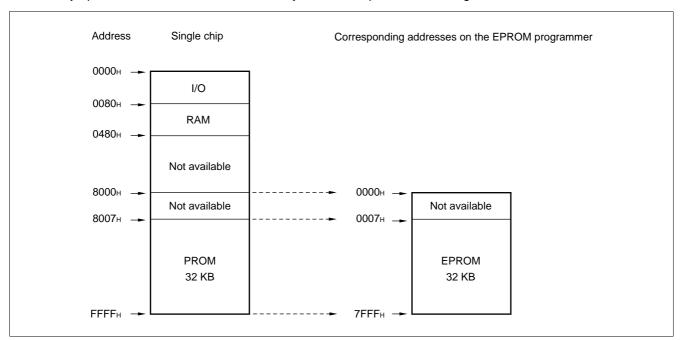
■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20CZ, MBM27C256A-20TV

2. Programming Socket Adapter

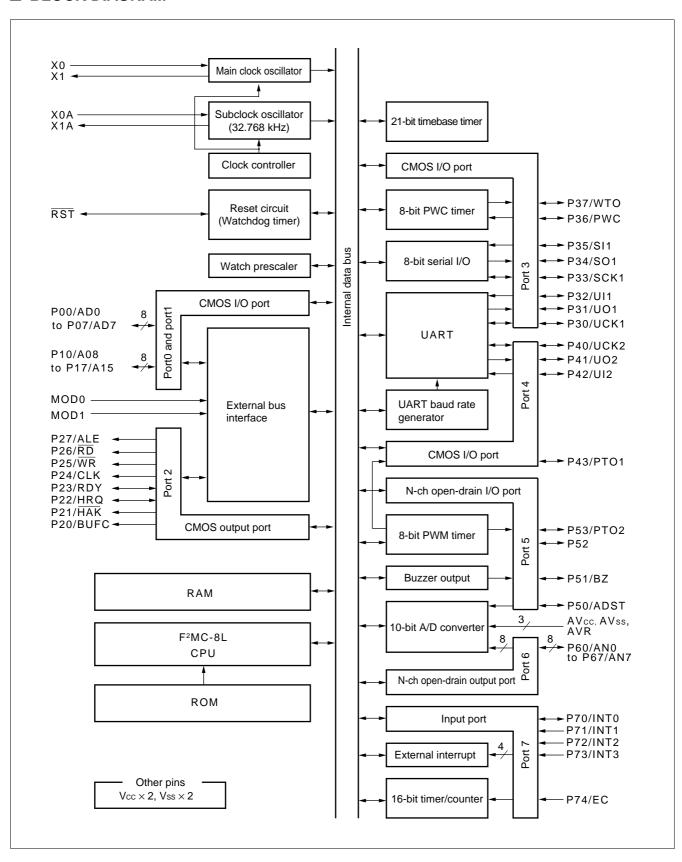
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.


Package	Adapter socket part number
LCC-32 (Rectangle)	ROM-32LC-28DP-YG

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403

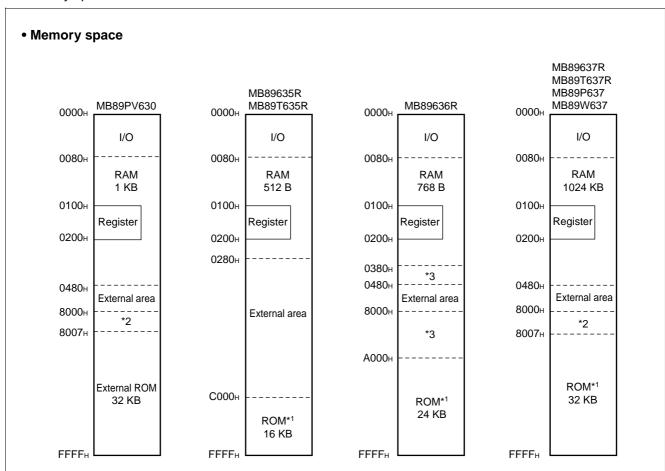
FAX: (81)-3-5396-9106

3. Memory Space


Memory space in each mode, such as 32-Kbyte PROM, option area is diagrammed below.

4. Programming to the EPROM

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0007_H to 7FFF_H.
- (3) Program to 0000H to 7FFFH with the EPROM programmer.


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89630R series offer 64 Kbytes of memory for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end of I/O area, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89630R series is structured as illustrated below.

- *1: The ROM area is an external area depending on the mode. The internal ROM cannot be used on the MB89T635R and MB89T637R.
- *2: Addresses 8000H to 8006H for the MB89P637 and MB89W637 comprise an option area, do not use this area for the MB89PV630 and MB89637R.
- *3: The access is forbidden in the external bus mode.

2. Registers

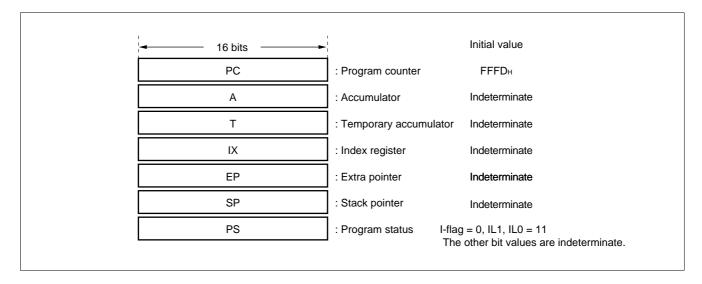
The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating the instruction storage positions

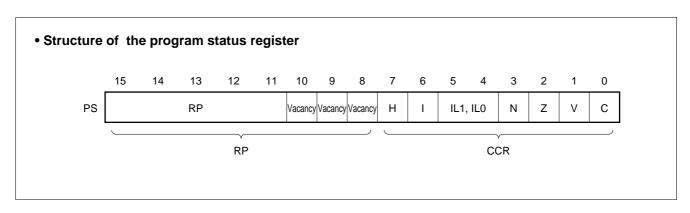
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A16-bit register which performs arithmetic operations with the accumulator

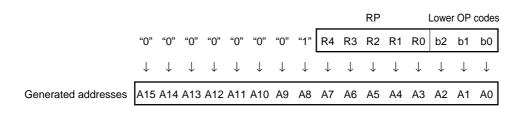

When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A16-bit register for index modification


Extra pointer (EP): A16-bit pointer for indicating a memory address

Stack pointer (SP): A16-bit register for indicating a stack area

Program status (PS): A16-bit register for storing a register pointer, a condition code



The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

• Rule for conversion of actual addresses of the general-purpose register area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set to '1' when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is enabled when this flag is set to '1'. Interrupt is disabled when the flag is cleared to '0'. Cleared to '0' at the reset.

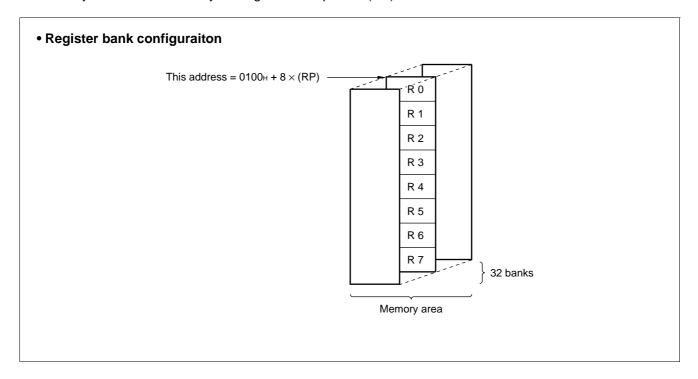
IL1, IL0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	l	†
1	0	2	
1	1	3	Low

N-flag: Set to '1' if the MSB becomes to '1' as the result of an arithmetic operation. Cleared to '0' when the bit is cleared to '0'.

Z-flag: Set to '1' when an arithmetic operation results in 0. Cleared to '0' otherwise.

V-flag: Set to '1' if the complement on 2 overflows as a result of an arithmetic operation. Cleared to '0' if the overflow doesnot occur.


C-flag: Set to '1' when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to '0' otherwise.

Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89653A (RAM 512×8 bits). The bank currently in use is indicated by the register bank pointer (RP).

■ I/O MAP

Address	Read/write	Register name	Register description
00н	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	PDR1	Port 1 data register
03н	(W)	DDR1	Port 1 data direction register
04н	(R/W)	PDR2	Port 2 data register
05н	(W)	BCTR	External bus pin control register
06н		Vac	cancy
07н	(R/W)	SYCC	System clock control register
08н	(R/W)	STBC	System clock control register
09н	(R/W)	WDTE	Watchdog timer control register
0Ан	(R/W)	TBCR	Timebase timer control register
0Вн	(R/W)	WPCR	Watch prescaler control register
0Сн	(R/W)	CHG3	Port 3 switching register
0Dн	(R/W)	PDR3	Port 3 data register
0Ен	(W)	DDR3	Port 3 data direction register
0F _H	(R/W)	PDR4	Port 4 data register
10н	(W)	DDR4	Port 4 data direction register
11н	(R/W)	BUZR	Buzzer register
12н	(R/W)	PDR5	Port 5 data register
13н	(R/W)	PDR6	Port 6 data register
14н	(R)	PDR7	Port 7 data register
15н	(R/W)	PCR1	PWC pulse width control register 1
16н	(R/W)	PCR2	PWC pulse width control register 2
17н	(R/W)	RLBR	PWC reload buffer register
18н	(R/W)	TMCR	16-bit timer control register
19н	(R/W)	TCHR	16-bit timer count register (H)
1Ан	(R/W)	TCLR	16-bit timer count register (L)
1Вн		Vac	cancy
1Сн	(R/W)	SMR1	Serial mode register
1Dн	(R/W)	SDR1	Serial data register
1Ен		Vac	cancy
1F _H		Vac	cancy

(Continued)

Address	Read/write	Register name	Register description
20н	(R/W)	ADC1	A/D converter control register 1
21н	(R/W)	ADC2	A/D converter control register 2
22н	(R/W)	ADDH	A/D converter data register (H)
23н	(R/W)	ADDL	A/D converter data register (L)
24н	(R/W)	EIC1	External interrupt control register 1
25н	(R/W)	EIC2	External interrupt control register 2
26н		Vac	ancy
27н		Vac	ancy
28н	(R/W)	CNTR1	PWM timer control register 1
29н	(R/W)	CNTR2	PWM timer control register 2
2Ан	(R/W)	CNTR3	PWM timer control register 3
2Вн	(W)	COMR1	PWM timer compare register 1
2Сн	(W)	COMR2	PWM timer compare register 2
2Dн	(R/W)	SMC	UART serial mode control register
2Ен	(R/W)	SRC	UART serial rate control register
2Fн	(R/W)	SSD	UART serial status/data register
30н	(R) (W)	SIDR SODR	UART serial input data control register UART serial output data control register
31н to 7Вн		Vac	ancy
7Сн	(W)	ILR1	Interrupt level setting register 1
7Dн	(W)	ILR2	Interrupt level settingregister 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7F _H		Vac	ancy

Note: Do not use vacancies.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Farameter	Syllibol	Min.	Max.	Oilit	Nemarks
Power supply voltage	Vcc	Vss - 0.3	Vss + 7.0	V	*
Fower supply voltage	AVcc	Vss - 0.3	Vss + 7.0	V	*
A/D converter reference input voltage	AVR	Vss - 0.3	Vss + 7.0	V	AVR must not exceed "AVcc + 0.3 V".
Input voltage	Vı	Vss - 0.3	Vcc + 0.3	V	Except P50 to P53
Input voltage	V _{I2}	Vss - 0.3	Vss + 7.0	V	P50 to P53
Output valtage	Vo	Vss - 0.3	Vcc + 0.3	V	Except P50 to P53
Output voltage	V _{O2}	Vss - 0.3	Vss + 7.0	V	P50 to P53
"L" level maximum output current	loL	_	20	mA	
"L" level average output current	IOLAV		4	mA	Average value (operating current × operating rate)
"L" level total maximum output current	Σ loL	_	100	mA	
"L" level total average output current	Σ lolav		40	mA	Average value (operating current × operating rate)
"H" level maximum output current	І он	_	-20	mA	
"H" level average output current	Іонач	_	-4	mA	Average value (operating current × operating rate)
"H" level total maximum output current	Σ loн	_	-50	mA	
"H" level total average output current	Σ lohav		-20	mA	Average value (operating current × operating rate)
Power consumption	PD	_	500	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	- 55	+150	°C	

^{*:} Use AVcc and Vcc set at the same voltage.

Take care so that AVcc does not exceed Vcc, such as when power is turned on.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks	
Faranietei	Syllibol	Min.	Max	Offic	Nemarks	
		2.2*	6.0*	V	Normal operation assurance range* MB89635R/637R	
Power supply voltage	Vcc	2.7*	6.0*	V	Normal operation assurance range* MB89PV630/P637/ W637/T635R/T637R	
	AVcc	1.5	6.0	V	Retains the RAM state in stop mode	
A/D converter reference input voltage	AVR	3.0	AVcc	V		
Operating temperature	TA	-40	+85	°C		

^{*:} These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1 and "5. A/D Converter Electrical Characteristics."

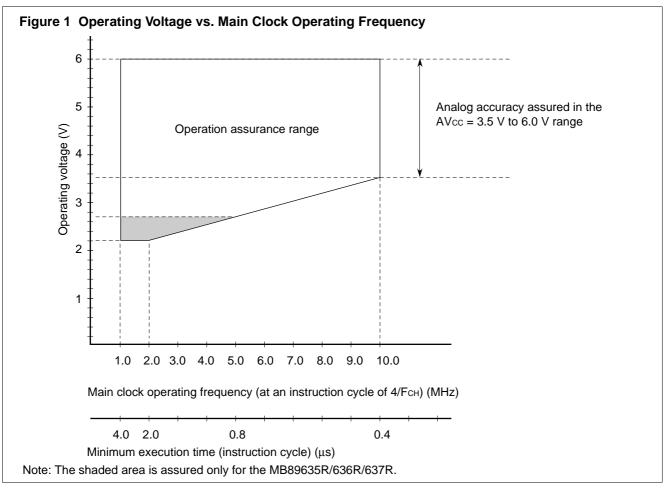


Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/FcH. Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

 $(AVcc = Vcc = 5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Donometer	0	Din nama	Condition		Value			Remarks	
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Nemarks	
	V _{IH1}	P00 to P07, P10 to P17, P22, P23, P31, P34, P37, P41, P43, P51 to P53		0.7 Vcc	—	Vcc + 0.3	V	P51 to P53 with pull-up resistor	
"H" level input	VIH2	P51 to P53		0.7 Vcc		Vss + 6.0	V	Without pull-up resistor	
voltage	Vihs	RST, MOD0, MOD1, P30, P32, P33, P35, P36, P40, P42,P50, P72 to P74		0.8 Vcc		Vcc + 0.3	V	P50 with pull-up resistor	
	VIHS2	P50, P70, P71		0.8 Vcc	_	Vss + 6.0	V	Without pull-up resistor	
	VIL	P00 to P07, P10 to P17, P22, P23, P31, P34, P37, P41, P43	_	Vss-0.3	_	0.3 Vcc	V		
"L" level input voltage	VILS	P30, P32, P33, P35, P36, P40, P42, P50 to P53, P70 to P74, RST, MOD0, MOD1		Vss - 0.3	_	0.2 Vcc	V		
Open-drain output pin application voltage	VD	P50 to P53		Vss-0.3		Vss+ 6.0	V		
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P43	Iон = −2.0 mA	4.0		_	٧		
"L" level output voltage	Vol	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P43, P50 to P53, P60 to P67, RST	IoL = 4.0 mA	_	—	0.4	V		
Input leakage current (Hi-z output leakage current)	Li	P00 to P07, P10 to P17, P20 to P23, P30 to P37, P40 to P43, P50 to P53, P70 to P74, MOD0, MOD1	0.0 V < Vı < Vcc	_	_	±5	μΑ	Without pull-up resistor	

 $(AVcc = Vcc = 5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

_		Dia	O a malitia m			Value			
Parameter	Symbol	Pin name	Co	ondition	Min.	Тур.	Max.	Unit	Remarks
Pull-up resistance	RPULL	P00 to P07, P10 to P17, P30 to P37, P40 to P43, P50 to P53, P72 to P74	Vı = C	0.0 V	25	50	100	kΩ	With pull-up resistor
	Icc1		Vcc=	10 MHz 5.0 V = 0.4 μs	_	12	20	mA	
	Icc2		Vcc =	= 10 MHz = 3.0 V	_	1.0	2	mA	MB89635R/T635R/ 636R/637R/T637R/ PV630
			Linst 2 =	= 6.4 μs	_	1.5	2.5	mA	MB89P637/W637
_	Iccs1			$C_{CH} = 10 \text{ MHz}$ $C_{CC} = 5.0 \text{ V}$ $C_{cost}^{*2} = 0.4 \mu\text{s}$	_	3	7	mA	
	Iccs2		<u> 9</u> V	$f_{CH} = 10 \text{ MHz}$ $f_{CC} = 3.0 \text{ V}$ $f_{nst}^{*2} = 6.4 \mu\text{S}$	_	0.5	1.5	mA	
	Iccl	Vcc	FcL = 32.768 kHz, Vcc = 3.0 V Subclock mode		_	50	100	μА	MB89635R/T635R/ 636R/637R/T637R/ PV630
Power supply current*1			Subclock mode	_	500	700	μΑ	MB89P637/W637	
current	Iccls		Vcc=	32.768 kHz, 3.0 V lock sleep	_	25	50	μА	
	Ісст		Vcc = • Wat • Mair stop	32.768 kHz, 3.0 V ch mode clock mode at -clock em	_	3	15	μΑ	
	Іссн		Sub modMair mod	+25°C clock stop de n clock stop le at single- k system	_	_	1	μΑ	

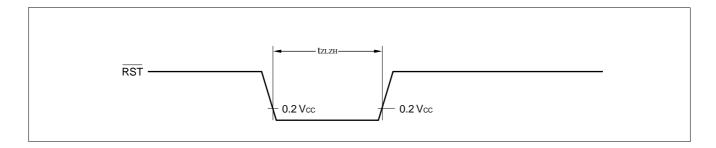
(Continued)

$$(AVcc = Vcc = 5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$$

Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
i arameter 5	Syllibol	riii iiaiiie	Condition	Min.	Тур.	Max.	Oilit	Remarks
I _A			FcH = 10 MHz, when A/D conversion operates.	_	6	_	mA	
Power supply current*1	Іан	AVcc	FcH = 10 MHz, TA = +25°C, when A/D conversion in a stop.	_	_	1	μΑ	
Input capacitance	Cin	Other than AVcc, AVss, Vcc, and Vss	f = 1 MHz	_	10	_	pF	

^{*1:} The power supply current is measured at the external clock.

In the case of the MB89PV630, the current consumed by the connected EPROM and ICE is not counted.

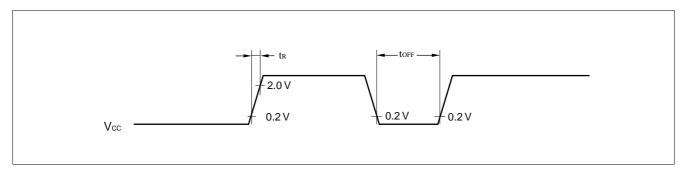

*2: For information on t_{inst}, see "(4) Instruction Cycle" in "4. AC Characteristics."

4. AC Characteristics

(1) Reset Timing

 $(Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

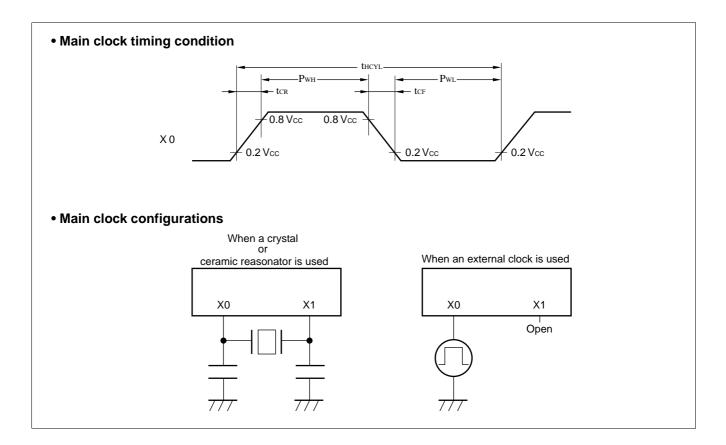
Parameter	Symbol	ool Condition		ne	Unit	Remarks
Farameter	Syllibol	Condition	Min.	Max.	Oilit	Kemarks
RST "L" pulse width	t zlzh	_	48 thcyl	_	ns	

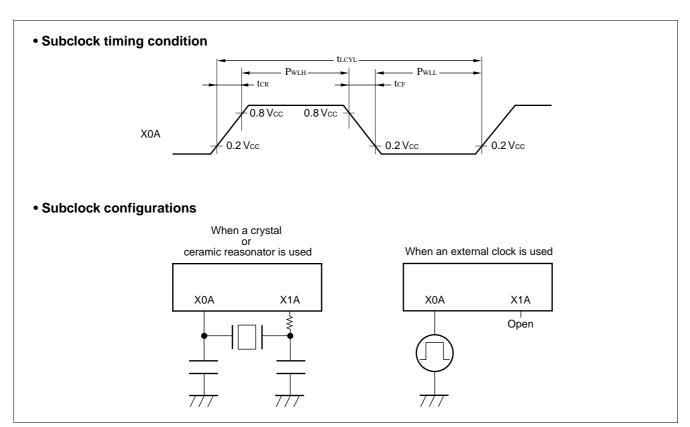

(2) Specification for Power-on Reset

 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol Conditio		Val	ue	Unit	Remarks	
raiametei	Syllibol	Min. Max.		5111	Romano		
Power supply rising time	t R		_	50	ms	Power-on reset function only	
Power supply cut-off time	t off	_	1	_	ms	Min. interval time for the next power-on reset	

Note: Make sure that power supply rises within the selected oscillation stabilization time.


If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.



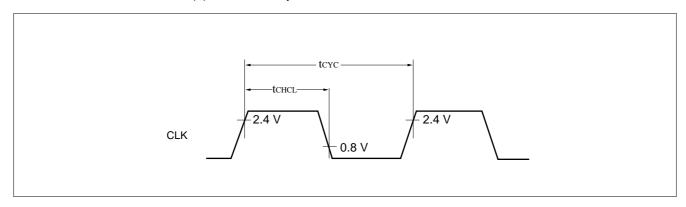
(3) Clock Timing

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol Pin name		Condition	Value			Unit	Remarks
i arameter	Syllibol	Fill Hallie	Condition	Min.	Тур.	Max.	Oilit	Remarks
Clock fraguency	F cн	X0, X1		1	_	10	MHz	
Clock frequency	FcL	X0A, X1A		_	32.768	_	kHz	
Clask avalations	t HCYL	X0, X1		100	_	1000	ns	
Clock cycle time	t LCYL	X0A, X1A		_	30.5	_	μs	
Input clock pulse width	Pwh PwL	X0	_	20	_	_	ns	External clock
Input clock pulse width	P _{WLH} P _{WLL}	X0A		_	15.2	_	μs	External clock
Input clock rising/falling time	tcr tcr	X0		_	_	10	ns	External clock

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks		
Instruction cycle (minimum execution time)	t inst	4/Fсн, 8/Fсн, 16/Fсн, 64/Fсн	μs	(4/Fcн) t _{inst} = 0.4 μs, operating at Fcн = 10 MHz		
		2/FcL	μs	$t_{inst} = 61.036 \ \mu s$, operating at $F_{CL} = 32.768 \ kHz$		

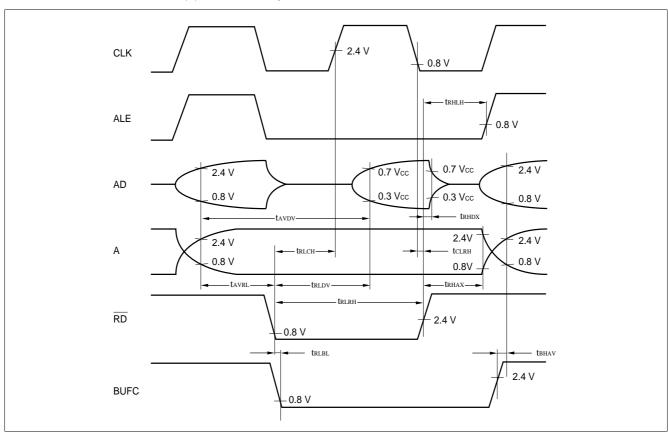

Note: Operating at 10 MHz, the cycle varies with the set execution time.

(5) Clock Output Timing

 $(Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.	Oiiit	Iveillaiks
Clock time	t cyc	CLK		1/2 t _{inst} *	_	μs	
$CLK \uparrow \to CLK \downarrow$	t chcL	CLK	_	1/4 t _{inst} * - 70 ns	1/4 t _{inst} *	μs	

*: For information on tinst, see "(4) Instruction Cycle."

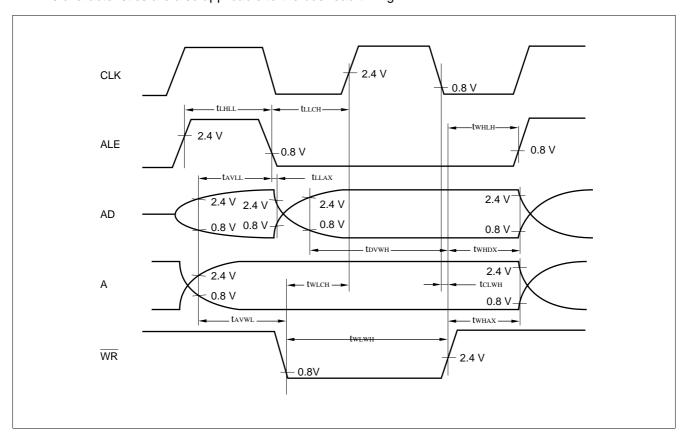


(6) Bus Read Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, 10 \text{ MHz}, \text{AVss} = \text{Vss} = 0.0 \text{ V}, \text{T}_{A} = -40^{\circ}\text{C to} +85^{\circ}\text{C})$

	Symbol		Condition	Value			ĺ
Parameter				Min.	Max.	Unit	Remarks
Valid address \rightarrow \overline{RD} ↓ time	tavrl	RD, A15 to A08, AD7 to AD0		1/4 t _{inst} *– 64 ns	_	μs	
RD pulse width	trlrh	RD		1/2 t _{inst} *- 20 ns	_	μs	
Valid address \rightarrow data read time	tavdv	AD7 to AD0, A15 to A08		1/2 t inst*	200	μs	No wait
$\overline{RD} \downarrow \to data$ read time	trldv	RD, AD7 to AD0		1/2 t _{inst} *– 80 ns	120	μs	No wait
$\overline{RD} \!\uparrow \! o \! data \; hold \; time$	t RHDX	AD7 to AD0, RD		0	_	μs	
$\overline{RD} \uparrow \to ALE \uparrow time$	trhlh	RD, ALE	_	1/4 t _{inst} *- 40 ns	_	μs	
$\overline{RD}\!\uparrow o address$ loss time	t RHAX	RD, A15 to A08		1/4 t _{inst} *- 40 ns	_	μs	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	RD, CLK		1/4 t _{inst} *– 40 ns	_	μs	
$CLK \downarrow \to \overline{RD} \uparrow time$	t CLRH	KD, CLK		0	_	ns	
$\overline{RD} \downarrow \to BUFC \downarrow time$	t RLBL	RD, BUFC		- 5	_	μs	
BUFC $\uparrow \rightarrow$ valid address time	tвнаv	A15 to A08, AD7 to AD0, BUFC		5	_	μs	

^{*:} For information on tinst, see "(4) Instruction Cycle."

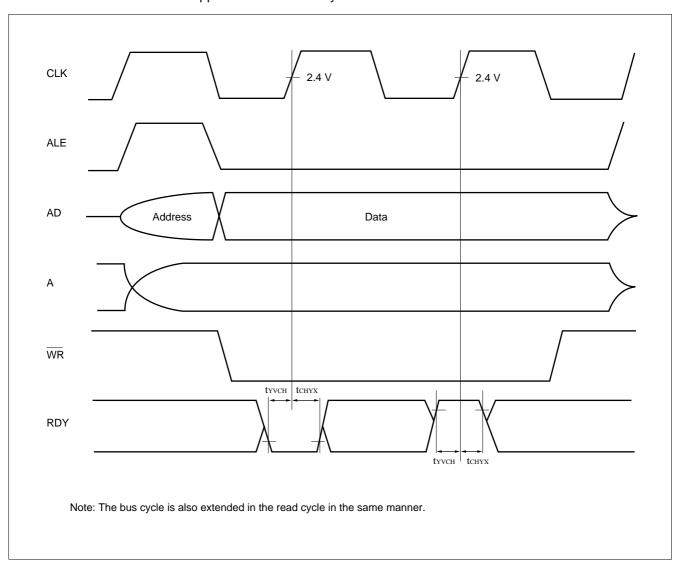


(7) Bus Write Timing

 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ FcH} = 10 \text{ MHz}, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ Ta} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Value	;	Unit	Remarks
rarameter	Syllibol	FIII Hallie	Condition	Min.	Max.	Onit	iveillai ks
Valid address \rightarrow ALE $↓$ time	tavll	AD7 to AD0,		1/4 t _{inst} *1 – 64 ns*2	_	μs	
ALE \downarrow time \rightarrow address loss time	tLLAX	ALE A15 to A08		5	_	ns	
Valid address → WR ↓ time	tavwl	WR, ALE		1/4 t _{inst} *1 – 60 ns*2	_	μs	
WR pulse width	twlwh	WR		1/2 t _{inst} *1 – 20 ns*2		μs	
Write data \rightarrow WR \uparrow time	tovwh	AD7 to AD0, WR		1/2 t _{inst} *1 – 60 ns*2	_	μs	
$\overline{WR} \uparrow \to address$ loss time	twhax	WR, A15 to A08	_	1/4 t _{inst} *1 – 40 ns*2	_	μs	
$\overline{WR} \uparrow \to data \; hold \; time$	twhdx	AD7 to AD0, WR		1/4 t _{inst} *1 – 40 ns*2	_	μs	
$\overline{WR} \uparrow \to ALE \uparrow time$	twhlh	WR, ALE		1/4 t _{inst} *1 – 40 ns*2	_	μs	
$\overline{WR} \downarrow \to CLK \uparrow time$	twlch	WR, CLK		1/4 t _{inst} *1 – 40 ns*2	_	μs	
$CLK \downarrow \to \overline{WR} \uparrow time$	tclwh	WK, CLK		0	_	ns	
ALE pulse width	tlhll	ALE		1/4 t _{inst} *1 – 35 ns*2		μs	
ALE \downarrow \rightarrow CLK \uparrow time	t llch	ALE,CLK		1/4 t _{inst} *1 – 30 ns*2	_	μs	

- *1: For information on tinst, see "(4) Instruction Cycle."
- *2: This characteristics are also applicable to the bus read timing.

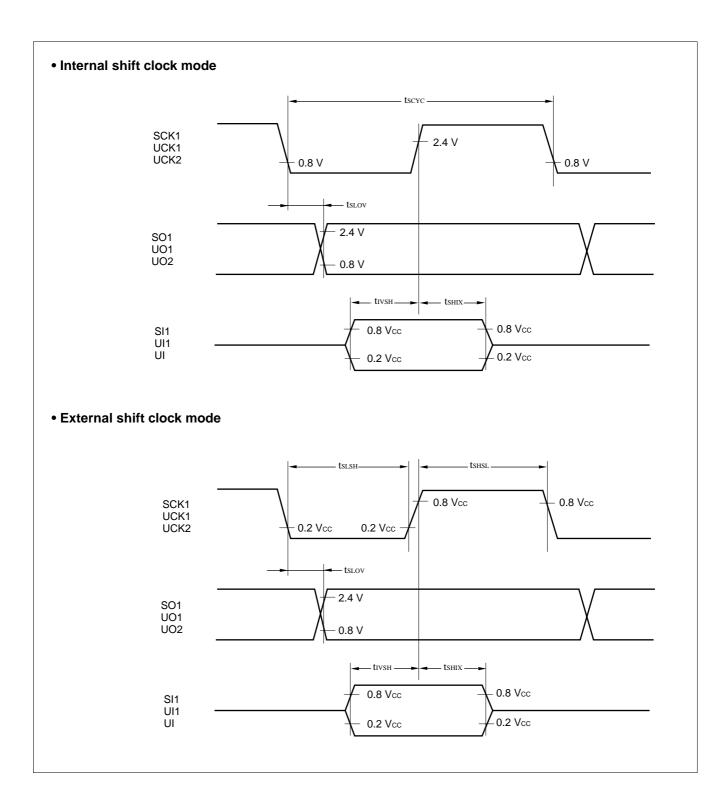


(8) Ready Input Timing

 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ FcH} = 10 \text{ MHz}, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ Ta} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Farameter	Symbol	Fili liaille	Condition	Min.	Max.	Oill	iveillai ka	
RDY valid \rightarrow CLK \uparrow time	tуvcн	RDY, CLK	_	60	_	ns	*	
$CLK \uparrow \to RDY$ loss time	tchyx	INDI, CLIX	_	0	_	ns	*	

*: This characteristics are also applicable to the read cycle.

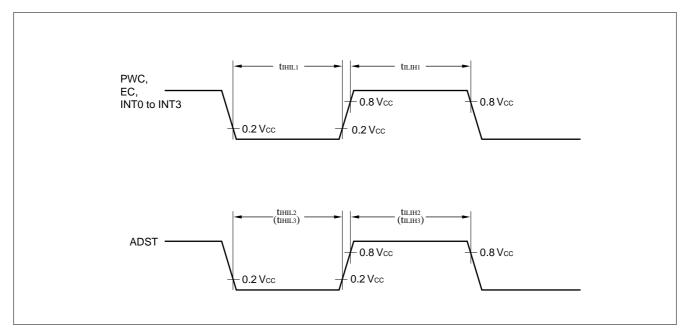


(9) Serial I/O Timing

(Vcc = $5.0 \text{ V} \pm 10\%$, FcH = 10 MHz, AVss = Vss= 0.0 V, TA = -40°C to $+85^{\circ}\text{C}$)

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
rarameter	Symbol	Fill Hallie	Condition	Min.	Max.	Oilit	Remarks
Serial clock cycle time	tscyc	SCK1, UCK1, UCK2		2 tinst*	_	μs	
$\begin{array}{c} SCK1 \downarrow \to SO1 \; time \\ UCK1 \downarrow \to UO1 \; time \\ UCK2 \downarrow \to UO2 \; time \end{array}$	tsLov	SCK1, SO1 UCK1, UO1 UCK2, UO2	Internal	-200	200	ns	
Valid SI1 → SCK1 ↑ Valid UI1 → UCK1 ↑ Valid UI2 → UCK2 ↑	tıvsh	SI1, SCK1 UI1, UCK1 UI2, UCK2	shift clock mode	1/2 t inst*	_	μs	
$\begin{array}{c} SCK1 \uparrow \to valid \; SI1 \; hold \; time \\ UCK1 \uparrow \to valid \; UI1 \; hold \; time \\ UCK2 \uparrow \to valid \; UI2 \; hold \; time \\ \end{array}$	tsнıx	SCK1, SI1 UCK1, UI1 UCK2, UI2		1/2 t inst*	_	μs	
Serial clock "H" pulse width	tshsl	SCK1, UCK1, UCK2		1 tinst*	_	μs	
Serial clock "L" pulse width	tslsh	SCK1, UCK1, UCK2		1 tinst*	_	μs	
$\begin{array}{c} SCK1 \downarrow \to SO1 \; time \\ UCK1 \downarrow \to UO1 \; time \\ UCK2 \downarrow \to UO2 \; time \end{array}$	tsLov	SCK1, SO1 UCK1, UO1 UCK2, UO2	External shift clock	0	200	ns	
Valid SI1 → SCK1 ↑ Valid UI1 → UCK1 ↑ Valid UI2 → UCK2 ↑	tıvsн	SI1, SCK1 UI1, UCK1 UI2, UCK2	mode	1/2 t inst*	_	μs	
$\begin{array}{c} SCK1 \downarrow \to valid \; SI1 \; hold \; time \\ UCK1 \downarrow \to valid \; UI1 \; hold \; time \\ UCK2 \downarrow \to valid \; UI2 \; hold \; time \\ \end{array}$	tsніх	SCK1, SI1 UCK1, UI1 UCK2, UI2		1/2 t inst*	1	μs	

^{*:} For information on tinst, see "(4) Instruction Cycle."



(10) Peripheral Input Timing

 $(Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Val	ue	Unit	Remarks	
raiametei	Symbol	Finitianie	Min.	Max.	Offic		
Peripheral input "H" pulse width 1	tılıH1	PWC, INT0 to INT3,EC	2 tinst*	_	μs		
Peripheral input "L" pulse width 1	t _{IHIL1}	2 tinst*	_	μs			
Peripheral input "H" pulse width 2	tilih2		28 tinst*	_	μs	A/D mode	
Peripheral input "L" pulse width 2	t _{IHIL2}	ADST	28 tinst*		μs	A/D mode	
Peripheral input "H" pulse width 3	t ıLıH3	ADST	28 tinst*	_	μs	Sense mode	
Peripheral input "L" pulse width 3	t IHIL3	ADST	28 tinst*		μs	Sense mode	

*: For information on tinst, see "(4) Instruction Cycle."

5. A/D Converter Electrical Characteristics

 $(AVcc = Vcc = 3.5 \text{ V to } 6.0 \text{ V}, FcH = 10 \text{ MHz}, AVss = Vss = 0.0 \text{ V}, TA = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

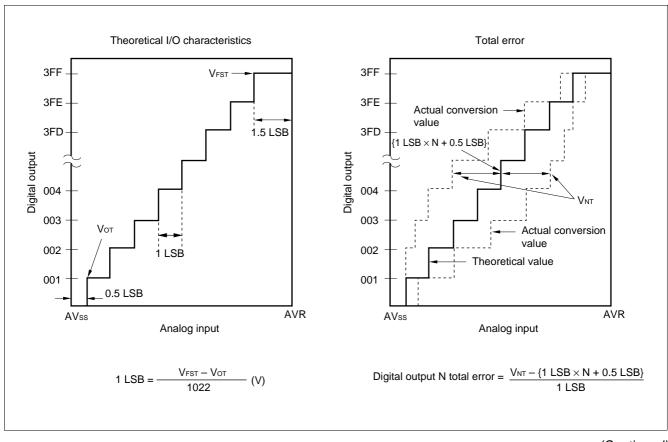
Parameter	Symbol	Pin		Value		Unit	Remarks
raiailletei	Symbol	name	Min.	Тур.	Max.	Oilit	Remarks
Resolution			_	_	10	bit	
Linearity error			_	_	±2.0	LSB	
Differential linearity error	_	_	_	_	±1.5	LSB	
Total error			_	_	±3.0	LSB At AVcc = Vcc	
Zero transition voltage	Vот	AN0 to	AVss – 1.5 LSB	AVss+0.5 LSB	AVss + 2.5 LSB	mV	7.1.7.1.00
Full-scale transition voltage	VFST	AN7	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	.SB mV	
Interchannel disparity			_	_	4	LSB	
A/D mode conversion time	_	_	_	13.2	_	μs	At 10 MHz oscillation
Analog port input current	IAIN	AN0	_	_	10	μΑ	
Analog input voltage		to AN7	0.0	_	AVR	V	
Reference voltage	_		0.0	_	AVcc	V	
Reference voltage supply current	I R	_	_	200	_	μА	AVR = 5.0 V

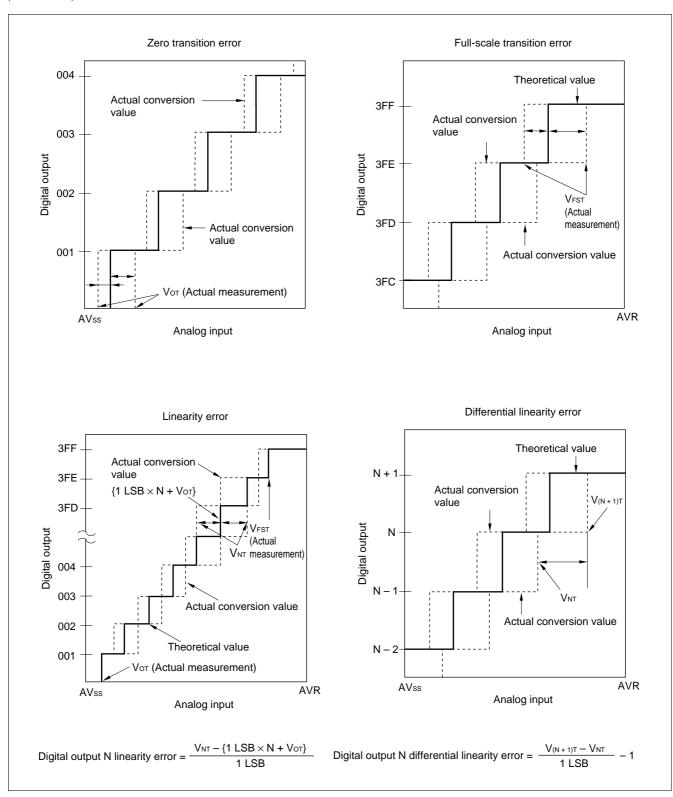
6. A/D Converter Glossary

Resolution

Analog changes that are identifiable with the A/D converter

· Linearity error

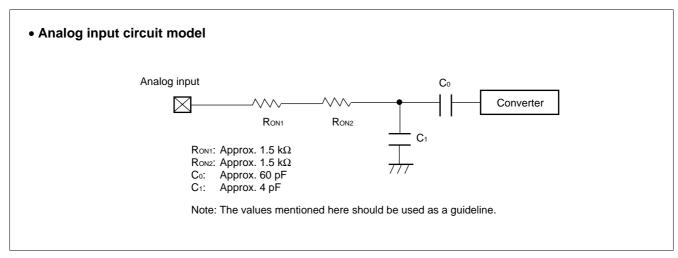

The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics


· Differential linearity error

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error (unit: LSB)

The difference between theoretical and actual conversion values caused by the zero transition error, full-scale transition error, linearity error, quantization error, and noise

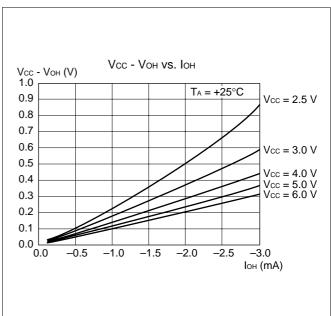


7. Notes on Using A/D Converter

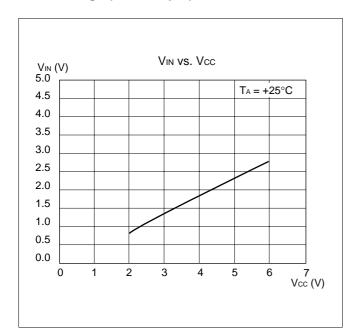
· Input impedance of the analog input pins

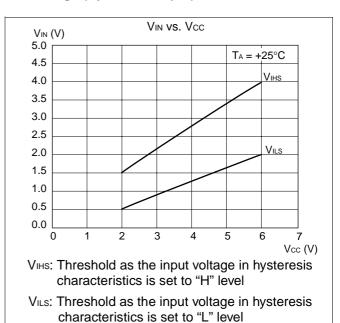
The output impedance of the external circuit for the analog input must satisfy the following conditions. If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient (sampling time = 6 μs at 10MHz oscillation.) Therefore, it is recommended to keep the output impedance of the external circuit below 10 $k\Omega$.

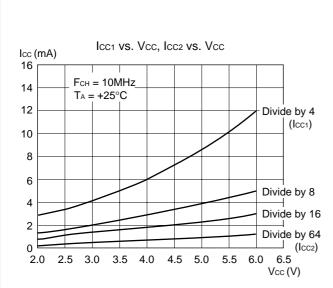
• Error

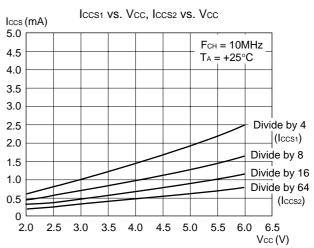

The smaller the | AVR-AVss |, the greater the error would become relatively.

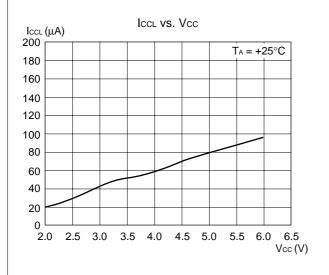
■ CHARACTERISTICS EXAMPLE

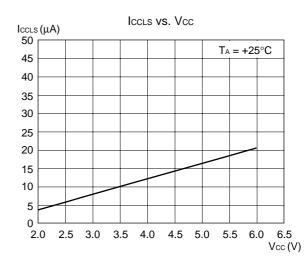

(1) "L" Level Output Voltage


(2) "H" Level Output Voltage

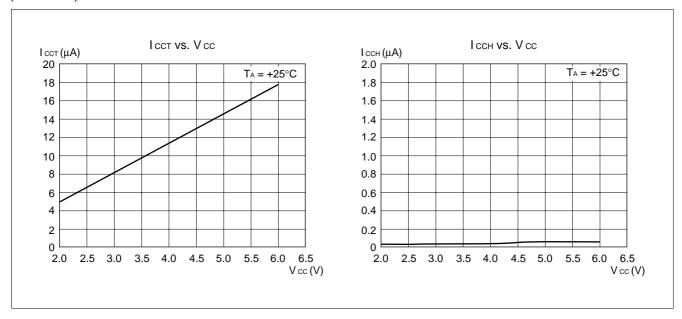

(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

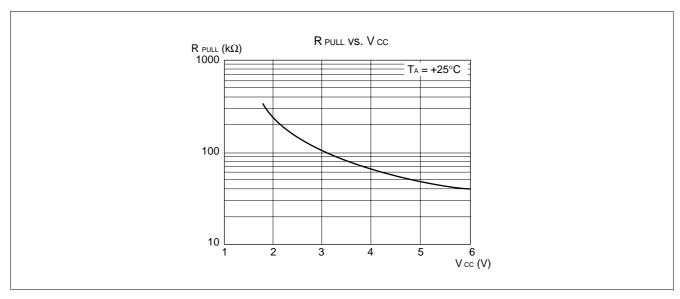



(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)



(5) Power Supply Current (External Clock)





(Continued)

(6) Pull-up Resistance

■ INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
А	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

Symbol	Meaning
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

~: The number of instructions

#: The number of bytes

Operation: Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

• dH is the 8 upper bits of operation description data.

• AL and AH must become the contents of AL and AH prior to the instruction executed.

• 00 becomes 00.

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column,

the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

Example: 48 to 4F \leftarrow This indicates 48, 49, ... 4F.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
MOV dir,A	3	2	$(dir) \leftarrow (A)$	_	_	_		45
MOV @IX +off,A	4	2	$((IX) + off) \leftarrow (A)$	_	_	_		46
MOV ext,A	4	3	$(ext) \leftarrow (A)$	_	_	_		61
MOV @EP,A	3	1	$((EP)) \leftarrow (A)$	_	_	_		47
MOV Ri,A	3	1	$(Ri) \leftarrow (A)$	_	_	_		48 to 4F
MOV A,#d8	2	2	(A) ← d8	AL	_	_	++	04
MOV A,dir	3	2	$(A) \leftarrow (dir)$	AL	_	_	++	05
MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	_	++	06
MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
MOV A,@A	3	1	$(A) \leftarrow ((A))$	AL	_	_	++	92
MOV A,@EP	3	1	$(A) \leftarrow ((EP))$	AL	_	_	++	07
MOV A,Ri	3	1	$(A) \leftarrow (Ri)$	AL	_	_	++	08 to 0F
MOV dir,#d8	4	3	(dír) ← d8	_	_	_		85
MOV @IX +off,#d8	5	3	$((IX) + off) \leftarrow d8$	_	_	_		86
MOV @EP,#d8	4	2	((EP)) ← d8	_	_	_		87
MOV Ri,#d8	4	2	((Zi /) \ d8 (Ri) ← d8	_	_	_		88 to 8F
MOVW dir,A	4	2	$(dir) \leftarrow (AH), (dir + 1) \leftarrow (AL)$	_	_	_		D5
MOVW @IX +off,A	5	2	$((IX) + off) \leftarrow (AH),$	_	_	_		D6
INOVVI @IX FOII,A	J		$((IX) + OII) \leftarrow (AII),$ $((IX) + Off + 1) \leftarrow (AL)$	_	_	_		D0
MOVW ext,A	_	3						D4
	5 4		$(ext) \leftarrow (AH), (ext + 1) \leftarrow (AL)$	-	_	_		D4 D7
MOVW @EP,A MOVW EP,A		1	$((EP)) \leftarrow (AH), ((EP) + 1) \leftarrow (AL)$	_	_	_		
· · · · · · · · · · · · · · · · · · ·	2	1	$(EP) \leftarrow (A)$	_		-11.1		E3
MOVW A,#d16	3	3	$(A) \leftarrow d16$	AL	AH	dH	++	E4
MOVW A,dir	4	2	$(AH) \leftarrow (dir), (AL) \leftarrow (dir + 1)$	AL	AH	dH	++	C5
MOVW A,@IX +off	5	2	$(AH) \leftarrow ((IX) + off),$	AL	AH	dH	++	C6
140,044	_	_	$(AL) \leftarrow ((IX) + off + 1)$					0.4
MOVW A,ext	5	3	$(AH) \leftarrow (ext), (AL) \leftarrow (ext + 1)$	AL	AH	dH	++	C4
MOVW A,@A	4	1	$(AH) \leftarrow ((A)), (AL) \leftarrow ((A)) + 1)$	AL	AH	dH	++	93
MOVW A,@EP	4	1	$(AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1)$	AL	AH	dH	++	C7
MOVW A,EP	2	1	(A) ← (EP)	_	_	dH		F3
MOVW EP,#d16	3	3	(EP) ← d16	_	_	_		E7
MOVW IX,A	2	1	$(IX) \leftarrow (A)$	-	_	_		E2
MOVW A,IX	2	1	$(A) \leftarrow (IX)$	-	_	dH		F2
MOVW SP,A	2	1	$(SP) \leftarrow (A)$	_	_	_		E1
MOVW A,SP	2	1	$(A) \leftarrow (SP)$	_	_	dΗ		F1
MOV @A,T	3	1	$((A)) \leftarrow (T)$	_	_	_		82
MOVW @A,T	4	1	$((A)) \leftarrow (TH), ((A) + 1) \leftarrow (TL)$	_	_	_		83
MOVW IX,#d16	3	3	$(IX) \leftarrow d16$	_	_	_		E6
MOVW A,PS	2	1	(A) ← (PS)	_	_	dΗ		70
MOVW PS,A	2	1	$(PS) \leftarrow (A)$	_	_	_	++++	71
MOVW SP,#d16	3	3	(SP) ← d16	_	_	_		E5
SWAP	2	1	$(AH) \leftrightarrow (AL)$	_	_	AL		10
SETB dir: b	4	2	(dir): b \leftarrow 1	_	_	_		A8 to AF
CLRB dir: b	4	2	$(dir): b \leftarrow 0$	_	_	_		A0 to A7
XCH A,T	2	1	$(AL) \leftrightarrow (TL)$	AL	_	_		42
XCHW A,T	3	1	$(A) \leftrightarrow (T)$	AL	АН	dH		43
XCHW A,EP	3	1	$(A) \leftrightarrow (EP)$			dH		F7
XCHW A,IX	3	1	$(A) \leftrightarrow (IX)$	_	_	dH		F6
XCHW A,SP	3	1	$(A) \leftrightarrow (IA)$ $(A) \leftrightarrow (SP)$	_	_	dH		F5
MOVW A,PC	2	1	$(A) \leftrightarrow (BP)$ $(A) \leftarrow (PC)$	_	_	dH		F0
IVIOV VV A,F O		ı	(A) <= (1 O)		_	uii		10

Notes: • During byte transfer to A, T \leftarrow A is restricted to low bytes.

• Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F²MC-8 family)

 Table 3
 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$	_	_	_	++++	28 to 2F
ADDC A,#d8	2	2	$(A) \leftarrow (A) + d8 + C$	_	_	_	++++	24
ADDC A,dir	3	2	$(A) \leftarrow (A) + (dir) + C$	_	_	_	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + ((IX) + off) + C$	_	_	_	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	_	_		++++	27
ADDCW A	3 2	1	$(A) \leftarrow (A) + (T) + C$	_	_	dH	++++	23
ADDC A SUBC A,Ri	3	1	$(AL) \leftarrow (AL) + (TL) + C$ $(A) \leftarrow (A) - (Ri) - C$	_	_	_	++++	22 38 to 3F
SUBC A,KI	2	2	$(A) \leftarrow (A) - (B) - C$ $(A) \leftarrow (A) - d8 - C$		_	_	++++	34
SUBC A,#do	3	2	$(A) \leftarrow (A) - GG - G$ $(A) \leftarrow (A) - (Gir) - C$	_	_	_	++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - ((IX) + off) - C$	_	_	_	++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - ((EP)) - C$	_	_	_	++++	37
SUBCW A	3	1	$(A) \leftarrow (T) - (A) - C$	_	_	dH	++++	33
SUBC A	2	1	$(AL) \leftarrow (TL) - (AL) - C$	_	_	_	++++	32
INC Ri	4	1	(Ri) ← (Ri) + 1	_	_	_	+++-	C8 to CF
INCW EP	3	1	(EP) ← (EP) + 1	_	_	_		C3
INCW IX	3	1	$(IX) \leftarrow (IX) + 1$	_	_	_		C2
INCW A	3	1	$(A) \leftarrow (A) + 1$	_	_	dΗ	++	C0
DEC Ri	4	1	(Ri) ← (Ri) – 1	_	_	_	+++-	D8 to DF
DECW EP	3	1	(EP) ← (EP) − 1	_	_	_		D3
DECW IX	3	1	$(IX) \leftarrow (IX) - 1$	_	_	_		D2
DECW A	3	1	$(A) \leftarrow (A) - 1$	_	_	dH	++	D0
MULU A	19	1	$(A) \leftarrow (AL) \times (TL)$		_	dH		01
DIVU A	21	1	$(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	dL	00	00		11
ANDW A	3	1	$(A) \leftarrow (A) \land (T)$	_	_	dH	++R-	63
ORW A	3	1	$(A) \leftarrow (A) \lor (T)$	_	_	dH	++R-	73 53
XORW A CMP A	2	1	$(A) \leftarrow (A) \ \forall \ (T)$	_	_	dH –	++R- ++++	53 12
CMPW A	3	1	(TL) – (AL) (T) – (A)		_		++++	13
RORC A	2	1					++-+	03
		'	$\stackrel{\longrightarrow}{\longrightarrow} C \stackrel{\longrightarrow}{\longrightarrow} A \stackrel{\frown}{\longrightarrow}$			_	77-7	
ROLC A	2	1		_	_	_	++-+	02
CMP A,#d8	2	2	(A) – d8	_	_	_	++++	14
CMP A,dir	3	2	(A) – (dir)	_	_	_	++++	15
CMP A,@EP	3	1	(A) – ((EP))	_	_	_	++++	17
CMP A,@IX +off	4	2	(A) - ((IX) + off)	_	_	_	++++	16
CMP A,Ri	3	1	(A) – (Ri)	_	_	_	++++	18 to 1F
DAA	2	1	Decimal adjust for addition	_	_	_	++++	84
DAS	2	1	Decimal adjust for subtraction	_	_	_	++++	94
XOR A	2	1	$(A) \leftarrow (AL) \forall (TL)$	_	_	_	++R-	52
XOR A,#d8	2	2	$(A) \leftarrow (AL) \ \forall \ d8$ $(A) \leftarrow (AL) \ \forall \ (dir)$	_	_	_	++R-	54 55
XOR A,dir	3	2	$(A) \leftarrow (AL) \lor (all)$ $(A) \leftarrow (AL) \lor ((EP))$	_	_	_	++R-	55 57
XOR A,@EP	3	1 2	$(A) \leftarrow (AL) \lor ((LF))$ $(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	++R- ++R-	57 56
XOR A,@IX +off XOR A,Ri	3	1	$(A) \leftarrow (AL) \lor (AL) + (AL) + (AL) \lor ($	_	_	_	++R- ++R-	58 to 5F
AND A	2	1	$(A) \leftarrow (AL) \vee (III)$ $(A) \leftarrow (AL) \wedge (TL)$	_	_		++R-	62
AND A AND A,#d8	2	2	$(A) \leftarrow (AL) \wedge (BL)$	_		_	++R- ++R-	64
AND A,#do	3	2	$(A) \leftarrow (AL) \land (dir)$	_	_	_	++R-	65
AND A,uil	3		(· · / · · / · · · / · · · / · · · · /	_	_	_	+ + IX =	UJ

(Continued)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	-	-	-	+ + R –	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	+ + R –	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \land (Ri)$	_	_	_	+ + R –	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	+ + R –	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	+ + R -	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	+ + R –	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	+ + R –	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	+ + R –	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	+ + R –	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (SP) + 1	_	_	_		C1
DECW SP	3	1	(SP) ← (SP) – 1	_	_	_		D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z = 1$ then $PC \leftarrow PC + rel$	_	-	_		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If $C = 1$ then $PC \leftarrow PC + rel$	_	_	_		F9
BNC/BHS rel	3	2	If $C = 0$ then $PC \leftarrow PC + rel$	_	_	_		F8
BN rel	3	2	If N = 1 then PC \leftarrow PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	_	_	_		FA
BLT rel	3	2	If $V \forall N = 1$ then $PC \leftarrow PC + rel$	_	_	_		FF
BGE rel	3	2	If $V \forall N = 0$ then $PC \leftarrow PC + rel$	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then $PC \leftarrow PC + rel$	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) = 1 then $PC \leftarrow PC + rel$	_	_	_	-+	B8 to BF
JMP @A	2	1	(PC) ← (A)	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A), (A) \leftarrow (PC) + 1$	_	_	dΗ		F4
RET	4	1	Return from subrountine	_	_	_		20
RETI	6	1	Return form interrupt	_	_	_	Restore	30

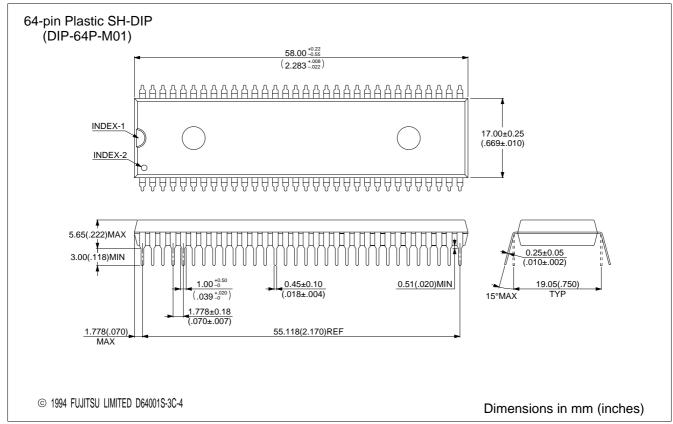
Table 5 Other Instructions (9 instructions)

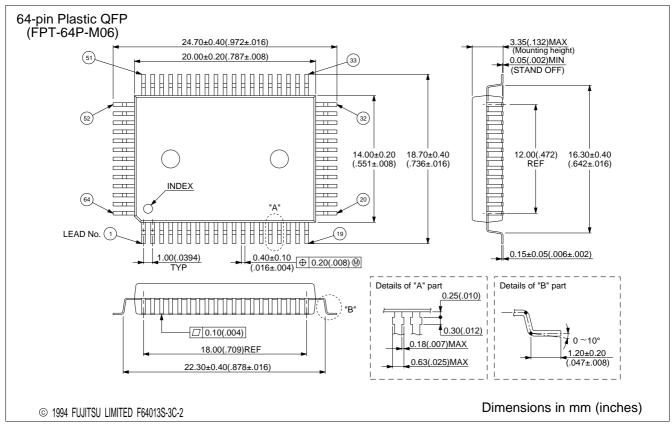
Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dΗ		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

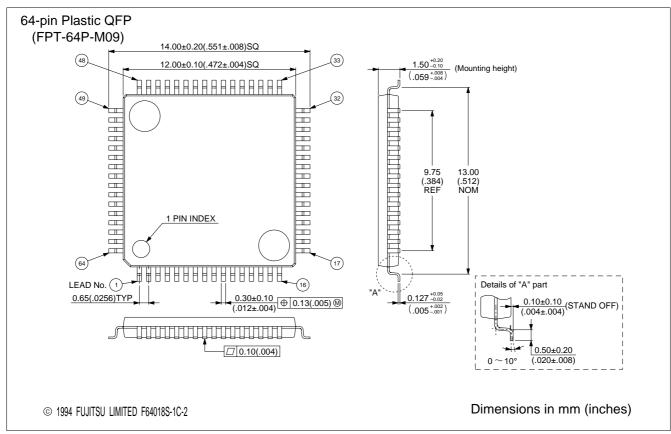
■ INSTRUCTION MAP

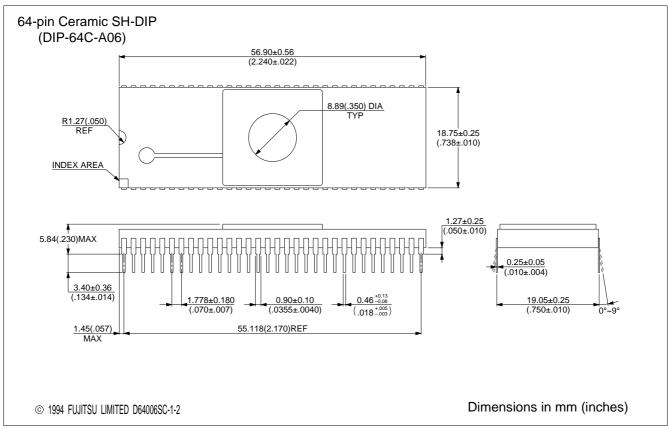
	NSIK		ON W													
F	MOVW A,PC	MOVW A,SP	MOVW A,IX	MOVW A,EP	XCHW A,PC	XCHW A,SP	XCHW A,IX	XCHW A,EP	BNC rel	BC rel	BP rel	BN rel	BNZ rel	BZ rel	BGE rel	BLT rel
Е	JMP @A	MOVW SP,A	MOVW IX,A	MOVW EP,A	MOVW A,#d16	MOVW SP,#d16	MOVW IX,#d16	MOVW EP,#d16	CALLV #0	CALLV #1	CALLV #2	CALLV #3	CALLV #4	CALLV #5	CALLV #6	CALLV #7
D	DECW	DECW	DECW	DECW	MOVW ext,A	MOVW dir,A	MOVW @IX+d,A	MOVW @EP,A	DEC R0	DEC R1	DEC R2	DEC R3	DEC R4	DEC R5	DEC R6	DEC R7
С	INCW	INCW SP	INCW	INCW	MOVW A,ext	MOVW A,dir	MOVW A,@IX+d	MOVW A,@EP	INC R0	INC R1	INC R2	INC R3	INC R4	INC R5	INC R6	INC R7
В	BBC dir: 0,rel	BBC dir: 1,rel	BBC dir: 2,rel	BBC dir: 3,rel	BBC dir: 4,rel	BBC dir: 5,rel	BBC dir: 6,rel	BBC dir: 7,rel	BBS dir: 0,rel	BBS dir: 1,rel	BBS dir: 2,rel	BBS dir: 3,rel	BBS dir: 4,rel	BBS dir: 5,rel	BBS dir: 6,rel	BBS dir: 7,rel
A	CLRB dir: 0	CLRB dir: 1	CLRB dir: 2	CLRB dir: 3	CLRB dir: 4	CLRB dir: 5	CLRB dir: 6	CLRB dir: 7	SETB dir: 0	SETB dir: 1	SETB dir: 2	SETB dir: 3	SETB dir: 4	SETB dir: 5	SETB dir: 6	SETB dir: 7
6	SETI	SETC	MOV A,@A	MOVW A,@A	DAS	CMP dir,#d8	CMP @IX +d,#d8	CMP @EP;#d8	CMP R0,#d8	CMP R1,#d8	CMP R2,#d8	CMP R3,#d8	CMP R4,#d8	CMP R5,#d8	CMP R6,#d8	CMP R7,#d8
8	CLRI	CLRC	MOV @A,T	MOVW @A,T	DAA	MOV dir,#d8	MOV @IX +d,#d8	MOV @EP,#d8	MOV R0,#d8	MOV R1,#d8	MOV R2,#d8	MOV R3,#d8	MOV R4,#d8	MOV R5,#d8	MOV R6,#d8	MOV R7,#d8
7	MOVW A,PS	MOVW PS,A	OR A	ORW A	OR A,#d8	OR A,dir	OR A,®IX+d	OR A,@EP	OR A,R0	OR A,R1	OR A,R2	OR A,R3	OR A,R4	OR A,R5	OR A,R6	OR A,R7
9	MOV A,ext	MOV ext,A	AND A	ANDW A	AND A,#d8	AND A,dir	AND A,@IX+d	AND A,@EP	AND A,R0	AND A,R1	AND A,R2	AND A,R3	AND A,R4	AND A,R5	AND A,R6	AND A,R7
2	POPW A	POPW IX	XOR	XORW	XOR A,#d8	XOR A,dir	XOR A@,IX+d	XOR A,@EP	XOR A,R0	XOR A,R1	XOR A,R2	XOR A,R3	XOR A,R4	XOR A,R5	XOR A,R6	XOR A,R7
4	PUSHW A	NHSU4 XI	XCH A, T	XCHW A, T		MOV dir,A	MOV @IX+d,A	MOV @EP,A	MOV R0,A	MOV R1,A	MOV R2,A	MOV R3,A	MOV R4,A	MOV R5,A	MOV R6,A	MOV R7,A
3	RETI	CALL addr16	SUBC	SUBCW XCHW A A,	SUBC A,#d8	SUBC A,dir	SUBC A,@IX+d	SUBC A,@EP	SUBC A,R0	SUBC A,R1	SUBC A,R2	SUBC A,R3	SUBC A,R4	SUBC A,R5	SUBC A,R6	SUBC A,R7
2	RET	JMP addr16	ADDC A	ADDCW A	ADDC A,#d8	ADDC A,dir	ADDC A,@IX +d	ADDC A,@EP	ADDC A,R0	ADDC A,R1	ADDC A,R2	ADDC A,R3	ADDC A,R4	ADDC A,R5	ADDC A,R6	ADDC A,R7
1	SWAP	DIVU A	CMP A	CMPW	CMP A,#d8	CMP A,dir	CMP A,@IX+d	CMP A, @EP	CMP A,R0	CMP A,R1	CMP A,R2	CMP A,R3	CMP A,R4	CMP A,R5	CMP A,R6	CMP A,R7
0	NOP	MULU A	ROLC	RORC	MOV A,#d8	MOV A,dir	MOV A,®IX +d	MOV A,@EP	MOV A,R0	MOV A,R1	MOV A,R2	MOV A,R3	MOV A,R4	MOV A,R5	MOV A,R6	MOV A,R7
LH	0	-	2	3	4	2	9	7	∞	6	4	B	ပ	О	ш	ш

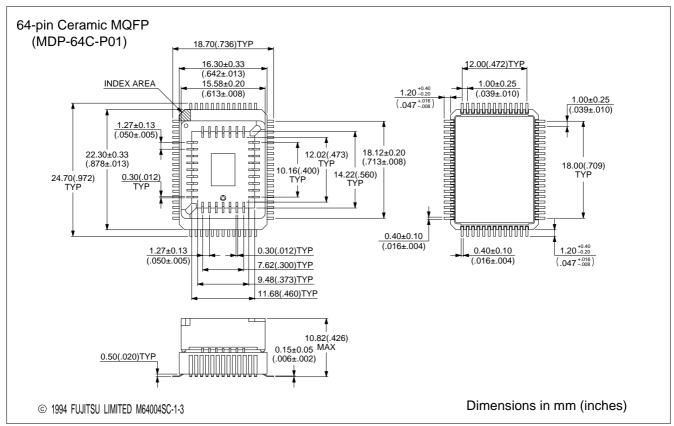
■ MASK OPTIONS

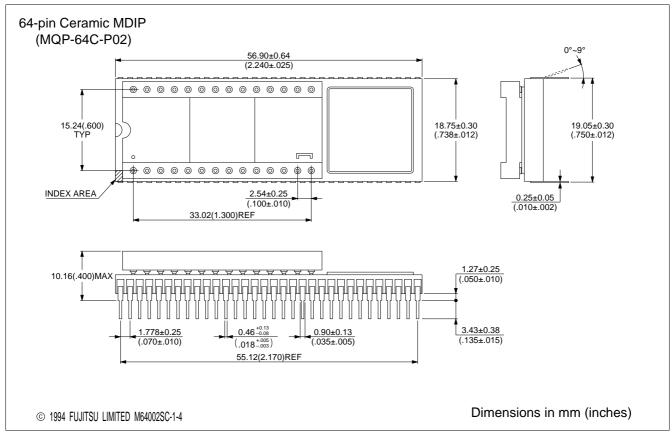

No.	Part number	MB89635R MB89636R MB89637R	MB89P637 MB89W637	MB89PV630 MB89T635R MB89T637R		
140.	Specifying procedure	Specify when ordering masking	Set with EPROM programmer	Setting not possible		
1	Pull-up resistors P00 to P07, P10 to P17, P30 to P37, P40 to P43, P50 to P53, P72 to P74	Selectable by pin	Can be set per pin*	Fixed to "without pull-up resistor"		
2	Power-on reset selection With power-on reset Without power-on reset	Selectable	Setting possible	Fixed to "with power-on reset"		
3	Selection of the main clock oscillation stabilization time (at 10 MHz) Approx. 2 ¹⁸ /Fch (Approx. 26.2 ms) Approx. 2 ¹⁷ /Fch (Approx. 13.1 ms) Approx. 2 ¹⁴ /Fch (Approx. 1.6 ms) Approx. 2 ⁴ /Fch (Approx. 0 ms) Fch: Main clock frequency	Selectable	Setting possible	Fixed to 2 ¹⁸ /Fcн (Approx. 26.2 ms)		
4	Reset pin output Reset output provided No reset output	Selectable	Setting possible	Fixed to "with reset output"		
5	Single/dual-clock system option Single clock Dual clock	Selectable	Setting possible	MB89PV630-101 Single-clock system MB89T635R-101 Single-clock system MB89T637R-101 Single-clock system		
		Jeleciable	octuring possible	MB89PV630-102 Dual-clock systems MB89T635R-102 Dual-clock systems MB89T637R-102 Dual-clock systems		


^{*:} Pull-up resistors cannot be set for P50 to P53.


■ ORDERING INFORMATION


Part number	Package	Remarks		
MB89635RP-SH MB89636RP-SH MB89637RP-SH MB89P637-SH MB89T635P-SH	64-pin Plastic SH-DIP (DIP-64P-M01)			
MB89635RPF MB89636RPF MB89637RPF MB89P637PF MB89T635PF	64-pin Plastic QFP (FPT-64P-M06)			
MB89635RPFM MB89636RPFM MB89637RPFM MB89T635PFM	64-pin Plastic QFP (FPT-64P-M09)			
MB89W637C-SH	64-pin Ceramic SH-DIP (DIP-64C-A06)			
MB89PV630CF	64-pin Ceramic MQFP (MQP-64C-P01)			
MB89PV630C-SH	64-pin Ceramic MDIP (MDP-64C-P02)			


■ PACKAGE DIMENSIONS



FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED

Corporate Global Business Support Division

Electronic Devices

KAWASAKI PLANT, 4-1-1, Kamikodanaka

Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC.

Semiconductor Division 3545 North First Street

San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center

Mon. - Fri.: 7 am - 5 pm (PST)

Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH

Am Siebenstein 6-10

D-63303 Dreieich-Buchschlag

Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD

#05-08, 151 Lorong Chuan

New Tech Park Singapore 556741

Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sq/

F9801

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.