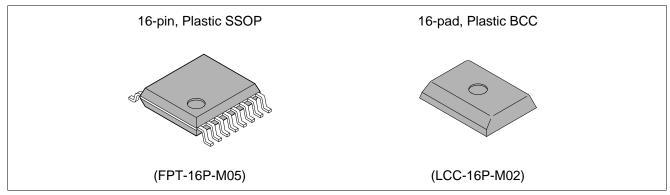
DS04-21359-2E

ASSP

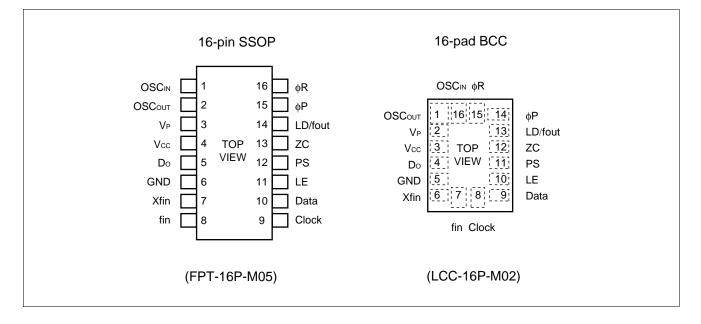
Single Serial Input PLL Frequency Synthesizer On-chip 1.2 GHz Prescaler

MB15E03SL

DESCRIPTION

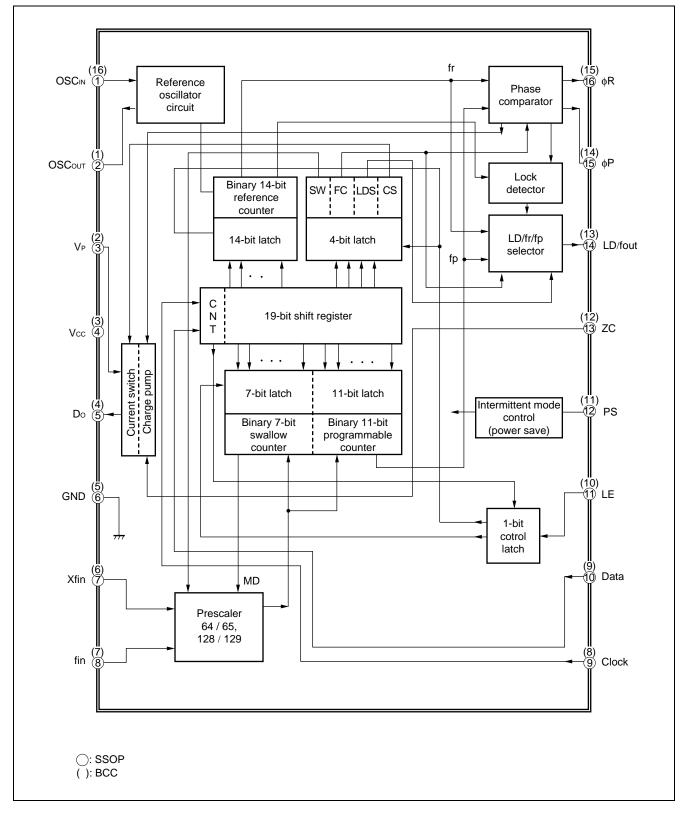

The Fujitsu MB15E03SL is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 1.2 GHz prescaler. The 1.2 GHz prescaler has a dual modulus division ratio of 64/65 or 128/129 enabling pulse swallowing operation. The supply voltage range is between 2.4 V and 3.6 V. The MB15E03SL uses the latest BiCMOS process, as a result, the supply current is typically 2.0 mA at 2.7 V. A refined charge pump supplies a well balanced output currents of 1.5 mA or 6 mA. The charge pump current is electable by serial data.

MB15E03SL is ideally suited for wireless mobile communications, such as GSM.


■ FEATURES

- High frequency operation: 1.2 GHz max
- Low power supply voltage: $V_{CC} = 2.4 \text{ V to } 3.6 \text{ V}$
- Ultra Low power supply current: Icc = 2.0 mA typ. (Vcc = Vp = 2.7 V, Ta = +25°C, in locking state)
 - Icc = 2.5 mA typ. (Vcc = Vp = 3 V, Ta = $+25^{\circ}$ C, in locking state)
- Direct power saving function: Power supply current in power saving mode
 - Typ. 0.1 μ A (Vcc = Vp = 3 V, Ta = +25°C), Max. 10 μ A (Vcc = Vp = 3 V)
- Dual modulus prescaler: 64/65 or 128/129
- Serial input 14-bit programmable reference divider: R = 3 to 16,383
- Serial input programmable divider consisting of:
 Binary 7-bit swallow counter: 0 to 127
- Binary 11-bit programmable counter: 3 to 2,047
- Selectable charge pump current
- On-chip phase control for phase comparator
- Operating temperature: Ta = -40 to +85°C
- Pin compatible with MB15E03, MB15E03L

PACKAGES


■ PIN ASSIGNMENTS

■ PIN DESCRIPTION

Pin	No.	Pin	I/O	Descriptions
SSOP	BCC	Name	1/0	Descriptions
1	16	OSCIN	I	Programmable reference divider input. Oscillator input connection to a TCXO.
2	1	OSCOUT	0	Oscillator output.
3	2	VP		Power supply voltage input for the charge pump.
4	3	Vcc	_	Power supply voltage input.
5	4	Do	0	Charge pump output. Phase of the charge pump can be selected via programming of the FC bit.
6	5	GND	—	Ground.
7	6	Xfin	I	Prescaler complementary input which should be grounded via a capacitor.
8	7	fin	Ι	Prescaler input. Connection to an external VCO should be done via AC coupling.
9	8	Clock	I	Clock input for the 19-bit shift register. Data is shifted into the shift register on the rising edge of the clock. (Open is prohibited.)
10	9	Data	I	Serial data input using binary code. The last bit of the data is a control bit. (Open is prohibited.)
11	10	LE	I	Load enable signal input. (Open is prohibited.) When LE is set high, the data in the shift register is transferred to a latch according to the control bit in the serial data.
12	11	PS	I	Power saving mode control. This pin must be set at "L" at Power-ON. (Open is prohibited.) PS = "H"; Normal mode PS = "L"; Power saving mode
13	12	ZC	I	Forced high-impedance control for the charge pump (with internal pull up resistor.) ZC = "H"; Normal Do output. ZC = "L"; Do becomes high impedance.
14	13	LD/fout	0	Lock detect signal output (LD)/phase comparator monitoring output (fout). The output signal is selected via programming of the LDS bit. LDS = "H"; outputs fout (fr/fp monitoring output) LDS = "L"; outputs LD ("H" at locking, "L" at unlocking.)
15	14	φP	0	Phase comparator N-channel open drain output for an external charge pump. Phase can be selected via programming of the FC bit.
16	15	φR	0	Phase comparator CMOS output for an external charge pump. Phase can be selected via programming of the FC bit.

■ BLOCK DIAGRAM

Parameter	Symbol	Condition	Ra	ting	Unit	Remark
Farameter	Symbol	Condition	Min.	Min. Max.		Reindik
Power supply voltage	Vcc	—	-0.5	4.0	V	
Fower supply voltage	Vp		Vcc	6.0	V	
Input voltage	Vı		-0.5	Vcc +0.5	V	
	Vo	Except Do	GND	Vcc	V	
Output voltage	Vo	Do	GND	VP	V	
Storage temperature	Tstg	—	-55	+125	°C	

ABSOLUTE MAXIMUM RATINGS

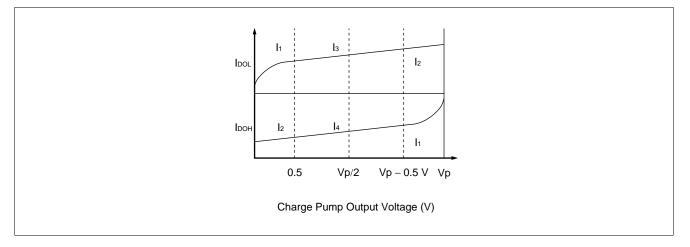
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Value	Unit	Remark	
Falameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Power supply veltage	Vcc	2.4	3.0	3.6	V	
Power supply voltage	VP	Vcc	_	5.5	V	
Input voltage	Vı	GND	_	Vcc	V	
Operating temperature	Та	-40		+85	°C	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.


No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

			_			Value		
Parameter		Symbol	Con	dition	Min.	Тур.	Max.	Unit
Power supply current*1		Icc*1	$V_{CC} = V_{P} = 2.7 V_{CC}$ $(V_{CC} = V_{P} = 3.0)$		_	2.0 (2.5)		mA
Power saving current		PS	ZC = "H" or ope	ก		0.1 ^{*2}	10	μA
	fin	fin	-		100		1200	MHz
Operating frequency	OSCIN	OSCIN	-		3		40	MHz
Input sensitivity	fin⁺³	Vfin	50 Ω system (Refer to the Me cicuit.)	easurment	-15	—	+2	dBm
	$OSC_{IN^{\star 3}}$	Vosc	-		0.5	—	Vcc	Vp-p
"H" level input voltage	Data,	Vін	-		$V\text{cc}\times0.7$			
"L" level input voltage	Clock, LE, PS, ZC	VIL	-			_	Vcc imes 0.3	V
"H" level input current	Data,	I ін ^{*4}	-		-1.0	_	+1.0	
"L" level input current	Clock, LE, PS	I IL ^{*4}	-		-1.0		+1.0	μA
"H" level input current		Ін	-		0	_	+100	
"L" level input current	OSCIN	I IL ^{*4}	-		-100		0	μA
"H" level input current		IIH ^{*4}	-	_	-1.0	_	+1.0	
"L" level input current	ZC	I IL ^{*4}	Pull up input		-100	_	0	μA
"L" level output voltage	φP	Vol	Open drain out	out		_	0.4	V
"H" level output voltage	φR,	Vон	$V_{CC} = V_P = 3 V,$	Іон = –1 mA	Vcc - 0.4			N
"L" level output voltage	LD/fout	Vol	$V_{CC} = V_P = 3 V,$	lo∟ = 1 mA		_	0.4	V
"H" level output voltage	De	Vdoh	$V_{CC} = V_P = 3 V,$	Іоон = -0.5 mA	V _P – 0.4	_		V
"L" level output voltage	Do	Vdol	$V_{CC} = V_P = 3 V,$	IDOL = 0.5 mA	—	_	0.4	V
High impedance cutoff current	Do	IOFF	$V_{CC} = V_P = 3 V,$ $V_{OFF} = 0.5 V to V$	VP – 0.5 V	_	—	2.5	nA
"L" level output current	φP	lo∟	Open drain out	out	1.0			mA
"H" level output current	φR,	Іон	-			_	-1.0	mA
"L" level output current	LD/fout	lol	-		1.0	—	_	IIIA
"H" level output current		DOH ^{*4}	$V_{CC} = 3 V, \qquad \frac{CS \text{ bit} = "H"}{CS \text{ bit} = "H"}$			-6.0		
	Do	IDOH .	$V_{P} = 3 V,$	CS bit = "L"	—	-1.5		mA
"L" level output current			V _{DO} = V _P /2 Ta = +25°C	CS bit = "H"		6.0	—	
		IDOL	14 - 120 0	CS bit = "L"	— 1.5			
IDOL/IDO		DOMT ^{*5}	$V_{DD} = V_P/2$		—	3		%
Charge pump current rate	vs Vdo	DOVD ^{*6}	$0.5~V \leq V_{\text{DO}} \leq V$	P – 0.5 V	—	10	—	%
	vs Ta	DOTA ^{*7}	– 40°C ≤ Ta ≤ +	85°C	_	10	_	%

- *1: Conditions; fin = 1200 MHz, fosc = 12 MHz, Ta = +25°C, in locking state.
- *2: $V_{CC} = V_P = 3.0 \text{ V}$, fosc = 12.8 MHz, Ta = +25°C, in power saving mode
- *3: AC coupling. 1000 pF capacitor is connected under the condition of min. operating frequency.
 *4: The symbol "–" (minus) means direction of current flow.

- *5: $V_{CC} = V_P = 3.0 \text{ V}, \text{ Ta} = +25^{\circ}\text{C} (|I_3| |I_4|) / [(|I_3| + |I_4|) /2] \times 100(\%)$ *6: $V_{CC} = V_P = 3.0 \text{ V}, \text{ Ta} = +25^{\circ}\text{C} [(|I_2| |I_1|) /2] / [(|I_1| + |I_2|) /2] \times 100(\%)$ (Applied to each IDOL, IDOH)
- *7: $V_{CC} = V_P = 3.0 \text{ V}, V_{DO} = V_P/2 (|I_{DO(+85^\circ C)} I_{DO(-40^\circ C)}|/2) / (|I_{DO(+85^\circ C)} + I_{DO(-40^\circ C)}|/2) \times 100(\%)$ (Applied to each IDOL, IDOH)

■ FUNCTIONAL DESCRIPTION

1. Pulse Swallow Function

The divide ratio can be calculated using the following equation:

 $f_{VCO} = [(M \times N) + A] \times f_{OSC} \div R \quad (A < N)$

- fvco : Output frequency of external voltage controlled oscillator (VCO)
- N : Preset divide ratio of binary 11-bit programmable counter (3 to 2,047)
- A : Preset divide ratio of binary 7-bit swallow counter ($0 \le A \le 127$)
- fosc : Output frequency of the reference frequency oscillator
- R : Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)
- M : Preset divide ratio of the dual modulus prescaler (64 or 128)

2. Serial Data Input

Serial data is processed using the Data, Clock, and LE pins. Serial data controls the programmable reference divider and the programmable divider separately.

Binary serial data is entered through the Data pin.

One bit of data is shifted into the shift register on the rising edge of the Clock. When the LE pin is taken high, stored data is latched according to the control bit data as follows:

Table 1. Control Bit

Control Bit (CNT)	Destination of Serial Data
н	For the programmable reference divider
L	For the programmable divider

(1) Shift Register Configuration

	F	Progra	amma	able R	efere	nce C	Count	er											
L	SB ↓								Data	a Flov	v ——			•				l	MSB ↓
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	C N T	R 1	R 2	R 3	R 4	R 5	R 6	R 7	R 8	R 9	R 10	R 11	R 12	R 13	R 14	sw	FC	LDS	CS
	SW FC LD CS	to R1 V S	4 :	Divide Phase LD/fo Chare	e ratio e ratio e cont ut sigr ge pur	settir rol bit nal se np cu	for th lect bi rrent s	for the e pha t	e pres se co	caler	(64/65	eferer 5 or 12			(3 to	16,38	3) [Ta [Ta [Ta [Ta	uble 1] uble 2] uble 5] uble 8] uble 7] uble 6]	

	Prog	ramm	able (Count	ter													
LSB ↓								Dat	a Flov	v —	►							MSE V
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
C N T	A 1	A 2	A 3	A 4	A 5	A 6	A 7	N 1	N 2	N 3	N 4	N 5	N 6	N 7	N 8	N 9	N 10	N 11
N1 A1	I to A	: Co 11: Di 7 : Di tart da	vide r	atio s atio s	etting	bits fo	or the						2,047)	[Ta	able 1] able 3 able 4	j	

Table 2. Binary 14-bit Programmable Reference Counter Data Setting

Divide ratio (R)	R 14	R 13	R 12	R 11	R 10	R 9	R 8	R 7	R 6	R 5	R 4	R 3	R 2	R 1
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: • Divide ratio less than 3 is prohibited.

Table 3. Binary 11-bit Programmable Counter Data Setting

Divide ratio (N)	N 11	N 10	N 9	N 8	N 7	N 6	N 5	N 4	N 3	N 2	N 1
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
•	•				•	•	•				
2047	1	1	1	1	1	1	1	1	1	1	1

Note: • Divide ratio less than 3 is prohibited.

•						-	
Divide ratio (A)	A 7	A 6	A 5	A 4	A 3	A 2	A 1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
	•	•	•	•	•	•	•
127	1	1	1	1	1	1	1

Table 4. Binary 7-bit Swallow Counter Data Setting

Table 5. Prescaler Data Setting

SW	Prescaler Divide Ratio
Н	64/65
L	128/129

Table 6. Charge Pump Current Setting

CS	Current Value
Н	±6.0 mA
L	±1.5 mA

Table 7. LD/fout Output Select Data Setting

LDS	LD/fout Output Signal		
Н	fout signal		
L	LD signal		

(2) Relation between the FC Input and Phase Characteristics

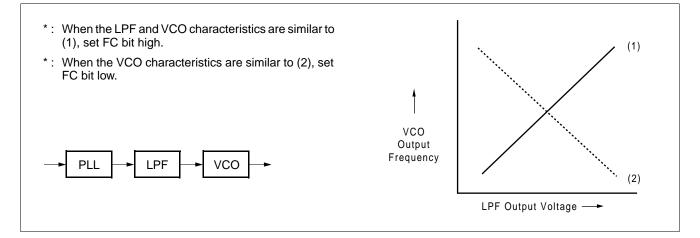

The FC bit changes the phase characteristics of the phase comparator. Both the internal charge pump output level (Do) and the phase comparator output (ϕR , ϕP) are reversed according to the FC bit. Also, the monitor pin (fout) output is controlled by the FC bit. The relationship between the FC bit and each of Do, ϕR , and ϕP is shown below.

Table 8. FC Bit Data Setting (LDS = "H")

	FC = High			FC = Low				
	Do	φR	φP	LD/fout	Do	φR	φP	LD/fout
fr > f⊳	Н	L	L		L	Н	Z*	
fr < f⊳	L	Н	Z*	fout = fr	Н	L	L	fout = fp
fr = f⊳	Z*	L	Z*		Z*	L	Z*	

* : High impedance

When designing a synthesizer, the FC pin setting depends on the VCO and LPF characteristics.

3. Do Output Control

Table 9. ZC Pin Setting

ZC pin	Do output		
Н	Normal output		
L	High impedance		

4. Power Saving Mode (Intermittent Mode Control Circuit)

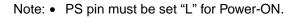
Table 10. PS Pin Setting

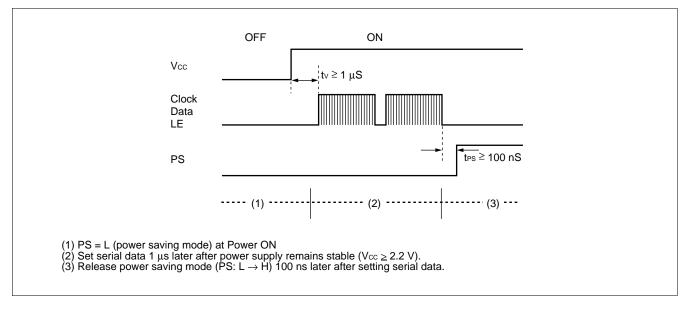
PS pin	Status		
Н	Normal mode		
L	Power saving mode		

The intermittent mode control circuit reduces the PLL power consumption.

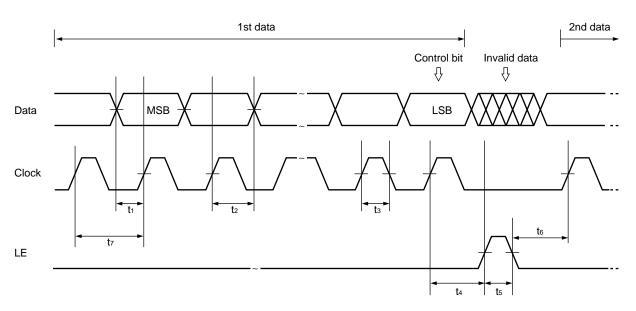
By setting the PS pin low, the device enters into the power saving mode, reducing the current consumption. See the Electrical Characteristics chart for the specific value.

The phase detector output, Do, becomes high impedance.


For the signal PLL, the lock detector, LD, remains high, indicating a locked condition.

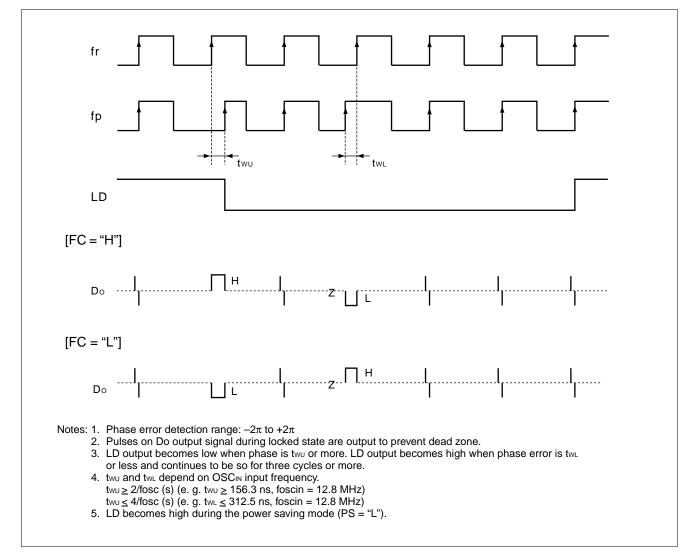

Setting the PS pin high, releases the power saving mode, and the device works normally.

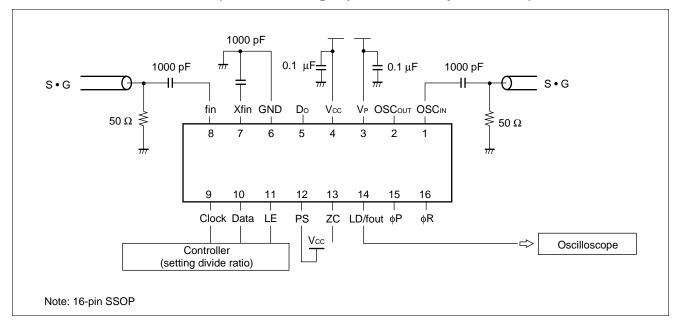
The intermittent mode control circuit also ensures a smooth startup when the device returns to normal operation. When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr) which can cause a major change in the comparator output, resulting in a VCO frequency jump and an increase in lockup time.


To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error signal from the phase detector when it returns to normal operation.

Note: When power (Vcc) is first applied, the device must be in standby mode, PS = Low, for at least 1 µs.

■ SERIAL DATA INPUT TIMING

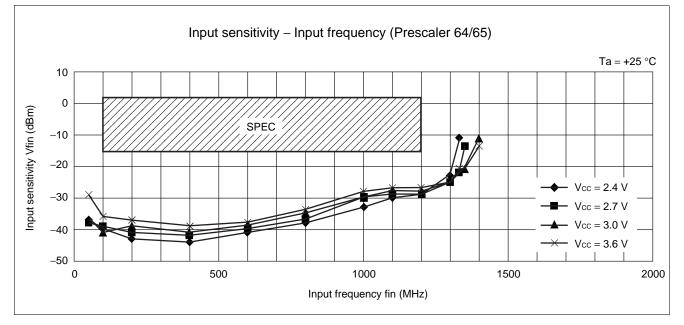

On the rising edge of the clock, one bit of data is transferred into the shift register.

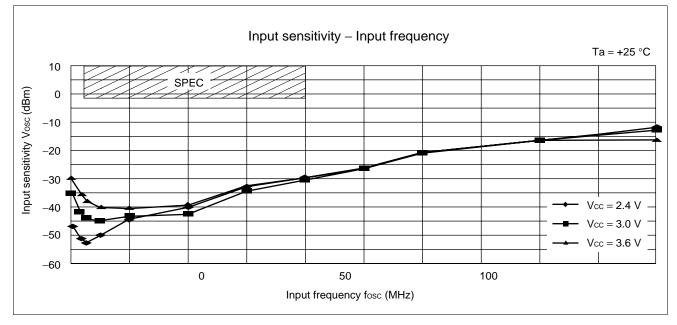

Parameter	Min.	Тур.	Max.	Unit
t1	20	_	—	ns
t2	20	—	—	ns
t3	30	_	—	ns
t4	30			ns

Parameter	Min.	Тур.	Max.	Unit
t5	100	—	—	ns
t6	20			ns
t7	100			ns

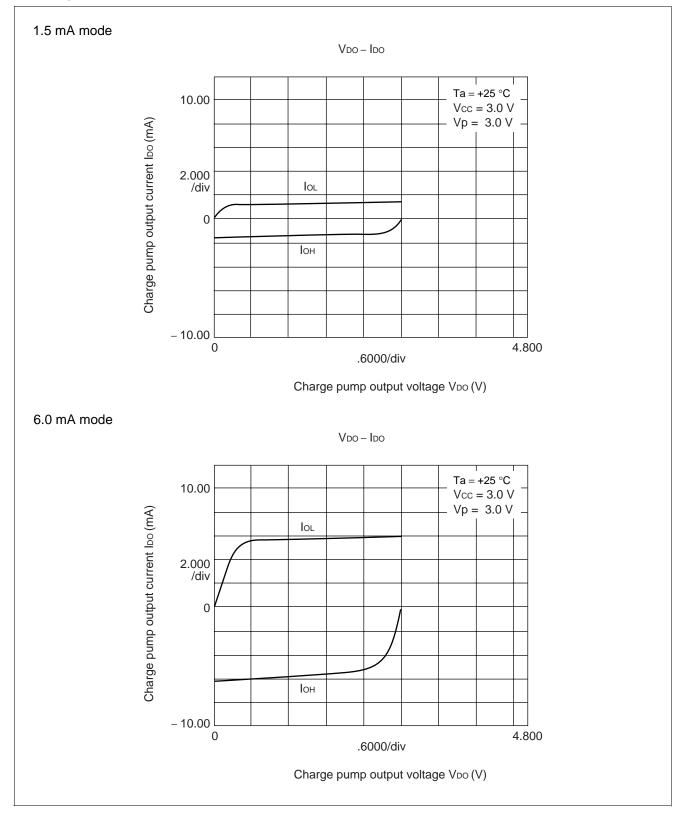
Note: LE should be "L" when the data is transferred into the shift register.

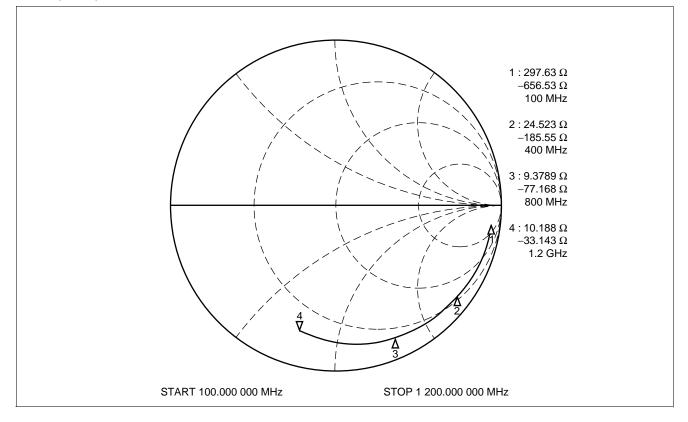
■ PHASE COMPARATOR OUTPUT WAVEFORM

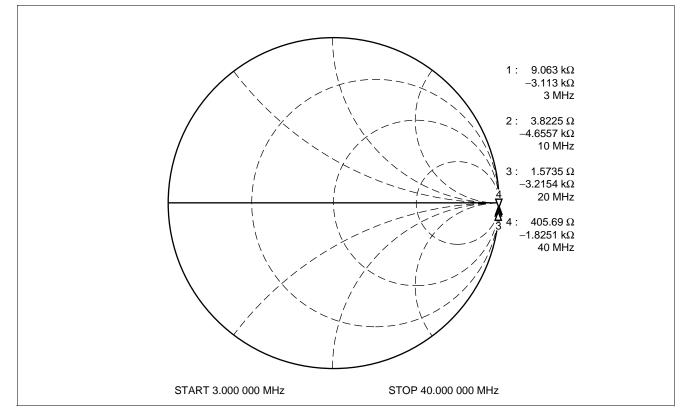


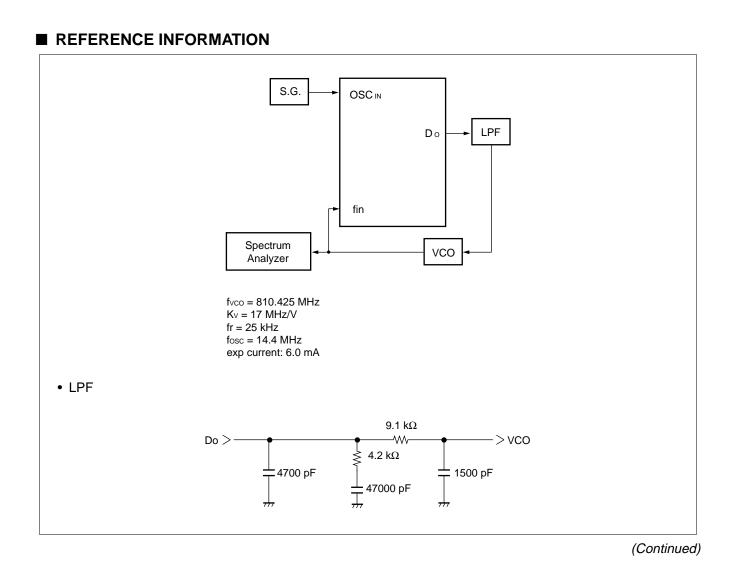

■ MEASURMENT CIRCUIT (for Measuring Input Sensitivity fin/OSC_{IN})

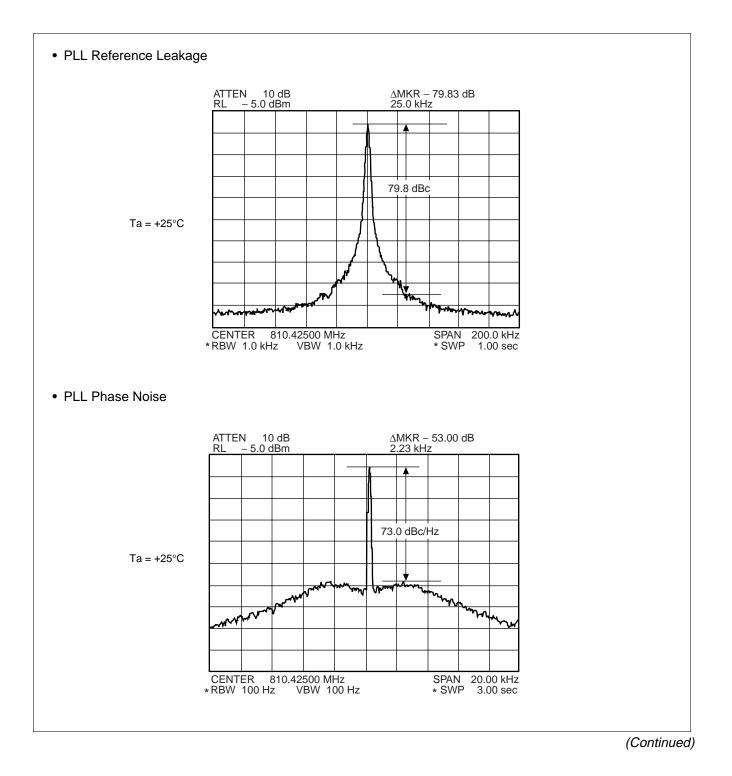
■ TYPICAL CHARACTERISTICS


1. fin input sensitivity

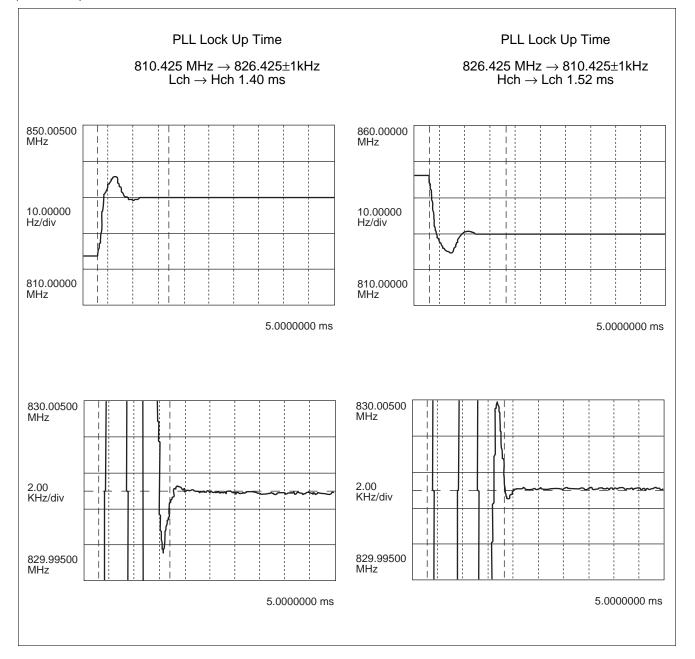

2. OSCIN input sensitivity

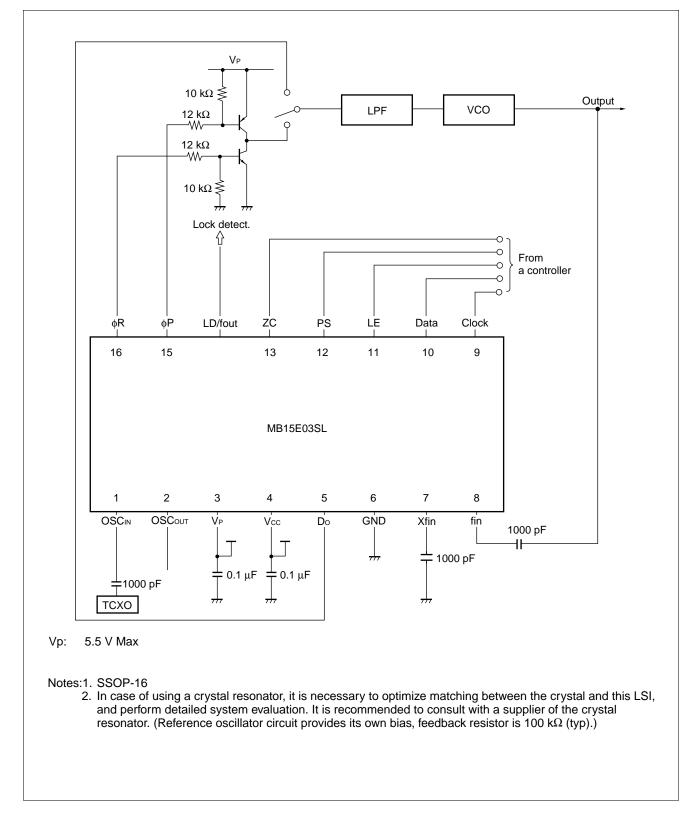

3. Do output current




4. fin input impedance

5. OSCIN input impedance




To Top / Lineup / Index

MB15E03SL

(Continued)

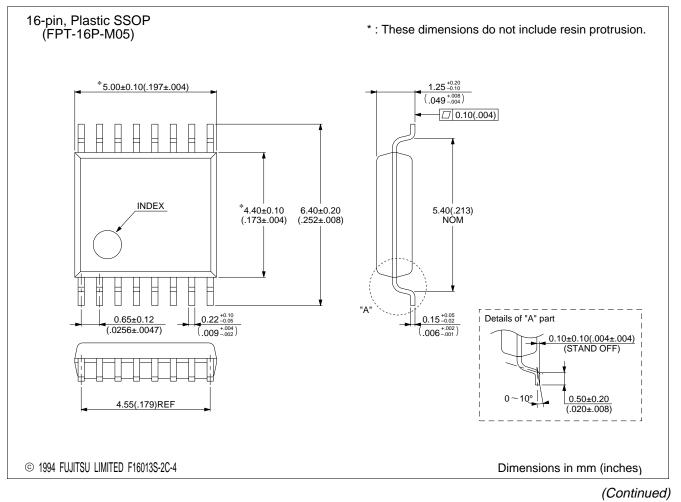
■ APPLICATION EXAMPLE

■ USAGE PRECAUTIONS

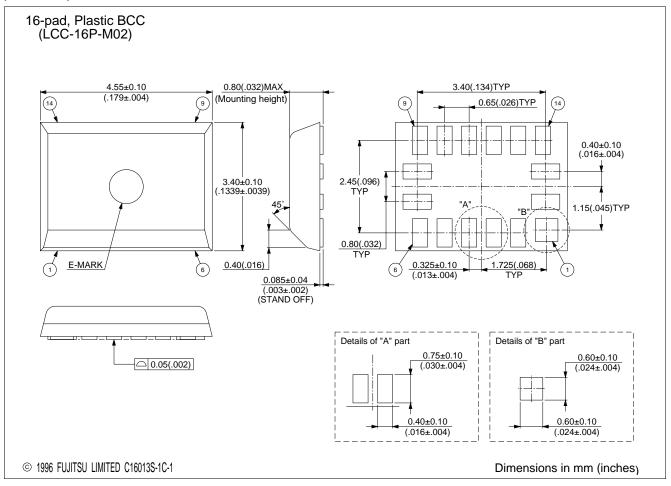
To protect against damage by electrostatic discharge, note the following handling precautions:

-Store and transport devices in conductive containers.

-Use properly grounded workstations, tools, and equipment.


-Turn off power before inserting device into or removing device from a socket.

-Protect leads with a conductive sheet when transporting a board-mounted device.


ORDERING INFORMATION

Part number	Package	Remarks
MB15E03SLPFV1	16-pin, Plastic SSOP (FPT-16P-M05)	
MB15E03SLPV	16-pad, Plastic BCC (LCC-16P-M02)	

■ PACKAGE DIMENSIONS

(Continued)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: 81(44) 754-3763 Fax: 81(44) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9811 © FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.