

LC587008, 587006, 587004

Single-Chip 4-Bit Microprocessors with LCD Driver, 2 Kb RAM, and 8, 12, or 16 KB ROM on chip

Preliminary

Overview

The LC587004, LC587006 and LC587008 are 80-pin lowvoltage CMOS 4-bit microprocessors that include LCD drivers, 2 Kb RAM and 8,12 , or 16 KB ROM on chip. These microprocessors correspond to the earlier LC5870 series with the 256 by 4-bit on-chip RAM expanded to a 512 by 4-bit capacity.

Applications

- System control and LCD display in CD players, cameras and radio tuners
- System control and LCD display in miniature test equipment and consumer health care products
- These microprocessors are optimal for products that include LCD displays and, in particular, battery operated products.
- Remote controllers for VCRs and audio equipment

Functions

- Program ROM: 8064×16 bits (LC587008), $6144 \times$ 16 bits (LC587006) and 4096×16 bits (LC587004)
- RAM: 512×4 bits on chip
- All instructions execute in a single cycle
- Cycle time and operating voltage ranges
-2μ scycle time: $\quad \mathrm{V}_{\mathrm{DD}}=2.8$ to 6.0 V 10μ s cycle time: $\quad \mathrm{V}_{\mathrm{DD}}=2.2$ to 6.0 V 122μ s cycle time: $\mathrm{V}_{\mathrm{DD}}=2.0$ to 6.0 V
- Rich set of HALT/HOLD mode clearing and interrupt functions
- Eight HALT mode clearing functions
- Seven HOLD mode clearing functions
- Seven interrupt functions (all of which can be used as external interrupts)
- Subroutines can be nested up to eight levels (including interrupt handling)
- Built-in watchdog timer function
- Powerful hardware for improved processing capacity
- Built-in segment PLA and segment decoder: LCD panel segments can be handled with no software processing of the LCD driver outputs. Also, the LCD drive pins can be switched to function as output ports.
- Built-in 8-bit synchronous serial I/O circuit
- One 8 -bit programmable timer (that can be used as an event counter)
- One 8 -bit programmable reload timer (that can be used to generate a remote control carrier signal)
- The whole RAM area can be used as working area (by using the RAM bank register)
- Built-in RAM data pointer
- Built-in clock oscillator and 15-bit divider (also used to generate the LCD alternating frequency)
- Highly flexible LCD panel drive output pins (35 pins)

LCD panel \qquad .Number of \qquad Required
drive type \qquad .segments \qquad .common pins
$1 / 3$ bias $1 / 4$ duty .140 segmentsFour pins
$1 / 3$ bias $1 / 3$ duty 105 segmentsThree pins
$1 / 2$ bias $1 / 4$ duty 140 segmentsFour pins
1/2 bias $1 / 3$ duty 105 segmentsThree pins
$1 / 2$ bias $1 / 2$ duty 70 segmentsTwo pins
Static. \qquad .35 segments \qquad One pin
The LCD output pins can be switched to function as general-purpose outputs.

- C-MOS type: Up to 35 pins
- P-channel type: Up to 35 pins
- N-channel type: Up to 35 pins
- These microprocessors allow the use of an oscillator appropriate to the application system specifications.
- Crystal oscillator: $32 \mathrm{kHz}, 65 \mathrm{kHz}$ or 38 kHz (for the time base, system clock or LCD alternating frequency)
- Ceramic oscillator: 400 kHz to 4 Mhz (for the system clock and the timers and serial counter)
- RC oscillator: 200 kHz to 1 MHz (for the system clock and the timers and serial counter)
- External clock (for the system clock and the timers and serial counter)

Features

- These microprocessors are the top end of the LC5870 series and have the following features.
Faster cycle times
— Cycle time: $2 \mu \mathrm{~s}$ for V_{DD} between 4.5 and 6.0 V
- Cycle time: 10μ for V_{DD} between 2.2 and 6.0 V

Low power dissipation HALT mode (typical)
Continuous operation (typical)

- Ceramic filter (CF) $4 \mathrm{MHz}(5.0 \mathrm{~V}) 600 \mu \mathrm{~A} 1.7 \mathrm{~mA}$ (cycle time $=2 \mu \mathrm{~s}$)
- Crystal oscillator 32 kHz (3.0 V, CF stopped) 4.0 $\mu \mathrm{A} 20 \mu \mathrm{~A}($ cycle time $=122 \mu \mathrm{~s})$
Improved timer functions
- One 8-bit programmable timer (that can be used as an event counter)
- One 8-bit programmable reload timer (that can be used to generate a remote control carrier signal)
- Time base timer (for use as a clock)
- Watchdog timer

Improved standby functions

- Clock standby function (HALT mode), software switching between low speed mode (low current) and high speed mode
- Full standby mode (HOLD mode)
- HALT and HOLD modes can be cleared by external interrupt pins, input ports (up to nine pins) and serial I/O interrupts
Improved I/O functions
- External interrupt pins
- Up to 9 input and I/O pins that can clear HALT and HOLD modes
- Up to 24 input ports with built-in software controllable input resistors (either pull-up or pulldown specified as mask options)
- Up to 25 input port pins with a built-in floating prevention circuit
- LCD driver: four common pins and 35 segment pins
- General-purpose I/O ports: 20 pins (of which 12 are p-channel open drain and 4 are n-channel open drain)
- General-purpose inputs: five pins
- General-purpose outputs (type 1): four pins (LED direct drive pins, one internal alarm signal output pin and one carrier output pin)
- General-purpose outputs (type 2): 35 pins (when all 35 LCD segment port pins are switched over to function as general-purpose outputs)
- Eight-bit serial I/O port: one set (three pins: input, output and clock)
- Delivery formats: QFP80 (QIP80) and chip

Package Dimensions
unit: mm
3044B-QFP80A

Pad Layout

Chip size:
$5.12 \mathrm{~mm} \times 5.29 \mathrm{~mm}$
Pad size: $\quad 120 \mu \mathrm{~m} \times 120 \mu \mathrm{~m}$
Chip thickness: $480 \mu \mathrm{~m}$ (chip products)

Pin Assignments/Pad Names and Coordinates

Pin No.	Pad No.	Symbol	Coordinates	
			$X \mu \mathrm{~m}$	$Y \mu \mathrm{~m}$
24	1	$V_{\text {DD }}$	2234	-2319
25	2	CFIN	2234	-1883
26	3	CFOUT	2234	-1701
27	4	S1 7	2234	-1458
28	5	S2 Input	2234	-1212
29	6	S3 port	2234	-915
30	7	S4 -	2234	-669
31	8	K1	2234	-284
32	9	K2 l/O port	2234	-101
33	10	K3 l/O port	2234	81
34	11	K4	2234	264
35	12	M1	2234	448
36	13	M2	2234	631
37	14	M3 I/O port	2234	814
38	15	M4	2234	997
39	16	N1	2234	1352
40	17	N2 Output	2234	1624
41	18	N3 port	2234	1895
42	19	N4	2234	2173
43	20	TST	1958	2449
44	21	Seg 1	1732	2449
45	22	Seg 2	1506	2449
46	23	Seg 3	1280	2449
47	24	Seg 4	1054	2449
48	25	Seg 5	874	2449
49	26	Seg 6	694	2449
50	27	Seg 7	514	2449
51	28	Seg 8	335	2449

Pin No.	Pad	No.	Symbol	Coordinates	
			$\mathrm{X} \mu \mathrm{m}$	$\mathrm{Y} \mu \mathrm{m}$	
52	29	Seg 9	155	2449	
53	30	Seg 10	-24	2449	
54	31	Seg 11	-204	2449	
55	32	Seg 12	-384	2449	
56	33	Seg 13	-564	2449	
57	34	Seg 14	-744	2449	
58	35	Seg 15	-923	2449	
59	36	Seg 16	-1103	2449	
60	37	Seg 17	-1283	2449	
61	38	Seg 18	-1463	2449	
62	39	Seg 19	-1643	2449	
-	40	Test	-1821	2449	
-	41	Test	-2001	2449	
63	42	Seg 20	-2362	2449	
64	43	Seg 21	-2362	2248	
65	44	Seg 22	-2362	1649	
66	45	Seg 23	-2362	1468	
67	46	Seg 24	-2362	1288	
68	47	Seg 25	-2362	1107	
69	48	Seg 26	-2362	799	
70	49	Seg 27	-2362	618	
71	50	Seg 28	-2362	438	
72	51	Seg 29	-2362	257	
73	52	Seg 30	-2362	77	
74	53	Seg 31	-2362	-103	
75	54	Seg 32	-2362	-283	
76	55	Seg 33	-2362	-464	
77	56	Seg 34	-2362	-664	

Pin No.	Pad No.	Symbol	Coordinates	
			X $\mu \mathrm{m}$	$Y \mu \mathrm{~m}$
78	57	Seg 35	-2362	-824
79	58	COM4	-2362	-1139
80	59	COM3	-2362	-1564
1	60	COM2	-2362	-2319
2	61	COM1	-1912	-2319
3	62	CUP1	-1730	-2319
4	63	CUP2	-1549	-2319
5	64	RES	-1327	-2319
6	65	INT	-1145	-2319
7	66	SO1 $]$	-963	-2319
8	67	SO2 I/O port,	-780	-2319
9	68	SO3 SIO port	-597	-2319
10	69	SO4 -	-414	-2319
11	70	A1 $]$	-231	-2319
12	71	A2 l/O port	-48	-2319
13	72	A3 I/O port	134	-2319
14	73	A4 -	317	-2319
15	74	P1 $]$	504	-2319
16	75	P2	687	-2319
17	76	P3 1/O port	870	-2319
18	77	P4 -	1053	-2319
19	78	XTOUT	1279	-2319
20	79	XTIN	1462	-2319
21	80	$V_{D D^{2}}$	1685	-2319
22	81	$V_{\text {DD }} 1$	1868	-2319
23	82	$\mathrm{V}_{\text {SS }}$	2050	-2319

[^0]5. For chip products either connect the substrate to V_{SS} or leave it open.

System Block Diagram

System Block Diagram for the LC587008, LC587006 and LC587004

RAM: Data memory
ROM: Program memory
DP: Data pointer register
BNK: Bank register
APG: RAM page flags
AC: Accumulator
ALU: Arithmetic and logic unit
B: B register
OPG: ROM page flag
PC: Program counter

IR: Instruction register
STS1: \quad Status register 1
STS2: Status register 2
STS3: Status register 3
STS4: Status register 4
STS5: Status register 5
PLA: Segment data and strobe programmable logic array
WAIT.C: Waiting time counter

Pin Functions

Pin	I/O	$\begin{aligned} & \text { QIP-80 } \\ & \text { Pin No. } \end{aligned}$	Function				Option	At reset
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{SS}} \end{aligned}$	-	$\begin{aligned} & 24 \\ & 23 \end{aligned}$	Power supply					
$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 1} \\ & \mathrm{~V}_{\mathrm{DD} 2} \end{aligned}$	-	$\begin{aligned} & 22 \\ & 21 \end{aligned}$	LCD drive power supply					
CUP1 CUP2	-	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	Switching pin used to supply the LCD drive voltage to the $\mathrm{V}_{\mathrm{DD}} 1$ and $V_{D D}$ pins - Connect a nonpolarized capacitor between CUP1 and CUP2 when $1 / 2$ or $1 / 3$ bias is used. - Leave open when a bias other than $1 / 2$ or $1 / 3$ is used.					
CFIN CFOUT	Input Output	25 26	System clock oscillator connections - Ceramic resonator connection (CF specifications) - RC component connection (RC specifications) - External signal input pin (CFOUT is left open) This oscillator is stopped by the execution of a STOP or SLOW instruction.				- CF specifications - RC specifications - External specifications - Not used	
XTIN XTOUT	Input Output	20 19	Reference calculation (clock specifications, LCD alternating frequency), system clock oscillator - 32 kHz crystal resonator connection - 65 kHz crystal resonator connection This oscillator is stopped by the execution of a STOP instruction.				- 32k specifications - 65k specifications - 38k specifications - Not used	
S1 S2 S3 S4	Input	$\begin{aligned} & 27 \\ & 28 \\ & 29 \\ & 30 \end{aligned}$	Input-only ports - Input pins used to read data into RAM - Built-in 7.8 ms and 1.95 ms chatter rejection circuits - Built-in pull-up/pull-down resistors Note: The 7.8 ms and 1.95 ms times are the times when $\varnothing 0$ is 32.768 kHz .				- Transistors to hold a low or high level - Selection of either pull-up or pulldown resistors	- The pull-up or pulldown resistors are on. Note: These pins go to the floating state when reset is cleared.
K1 K2 K3 K4	I/O	$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & 34 \end{aligned}$	I/O ports - Input pins used to read data into RAM - Output pins used to output data from RAM - Built-in 7.8 ms and 1.95 ms input-mode chatter rejection circuits. The selection of 7.8 or 1.95 ms is linked to that for the S ports. Note: The 7.8 ms and 1.95 ms times are the times when $\varnothing 0$ is 32.768 kHz .				- Transistors to hold a low or high level - Selection of either pull-up or pulldown resistors	- The pull-up or pulldown resistors are on. Note: These pins go to the floating state when reset is cleared. - Input mode - Output latch data is set high.
$\begin{aligned} & \text { M1 } \\ & \text { M2 } \\ & \text { M3 } \\ & \text { M4 } \end{aligned}$	I/O	$\begin{aligned} & 35 \\ & 36 \\ & 37 \\ & 38 \end{aligned}$	I/O ports - Input pins used to read data into RAM - Output pins used to output data from RAM - M4 is used as the external clock input pin in TM2 mode 3. * The minimum period for the external clock is twice the cycle time. - Built-in pull-up/pull-down resistors				The same as K1 to K4	The same as K1 to K4
A1 A2 A3 A4	I/O	$\begin{aligned} & \hline 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	I/O ports - Input pins used to read data into RAM - Output pins used to output data from RAM - Built-in pull-up/pull-down resistors				The same as K1 to K4	The same as K1 to K4
P1 P2 P3 P4	I/O	$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \end{aligned}$	I/O ports Function: The same as pins A1 to A4				The same as K1 to K4	The same as K1 to K4

Continued from preceding page.

Pin	I/O	$\begin{aligned} & \text { QIP-80 } \\ & \text { Pin No. } \end{aligned}$	Function	Option	At reset
$\begin{aligned} & \text { SO1 } \\ & \text { SO2 } \\ & \text { SO3 } \\ & \text { SO4 } \end{aligned}$	I/O	$\begin{gathered} 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	I/O ports Function: The same as for pins A1 to A4 Pins SO1 to SO3 area also used for the serial interface. - Use of these pins in serial mode can be selected under program control. - Pin functions: SO1: Serial input pin SO2: Serial output pin SO3: Serial clock pin The serial clock pin can be switched between internal and external, and between rising edge output and falling edge output.	- Transistors to hold a low or high level - Selection of either pull-up or pulldown resistors - Internal serial clock divisor selection I $1 / 1$ II $1 / 2$ III $1 / 4$	The same as for K1 to K4
$\begin{aligned} & \text { N1 } \\ & \text { N2 } \\ & \text { N3 } \\ & \text { N4 } \end{aligned}$	Output	$\begin{aligned} & 39 \\ & 40 \\ & 41 \\ & 42 \end{aligned}$	Output-only ports - Output pins used to output data from RAM - An alarm signal can be output from pin N4. (Note that this is only when the N4 output latch is low.) - An alarm signal modulated at 1,2 or 4 kHz can be output. (These frequencies are output when $\varnothing 0$ is 32.768 kHz .) - A carrier signal can be output from N3. (Note that this is only when the N3 output latch is low.)	- Pins N1 to N4 output circuit type: I CMOS II N -channel open drain - Pins N1 to N4 output level I High level II Low level	The output levels on pins N1 to N4 can be specified as an option.
INT	Input	6	Input ports - External interrupt request inputs - Input pins used to read data into RAM - Input detection can be performed on either rising or falling edges. - Built-in pull-up/pull-down resistors	- Transistors to hold a low or high level - Selection of either pull-up or pulldown resistors - Signal conversion (rising/falling) selection	
RES	Input	5	LSI internal reset input - The reset input level can be selected to be either high or low. - Built-in pull-up/pull-down resistors - Note: The reset pulse must be at least $500 \mu \mathrm{~s}$.	* Only when the input resistor open specification is selected	
TST	Input	43	Test input - QIP80 products: Connect to V_{SS}. - Chip products: Leave open or connect to $V_{S S}$.		
Seg1, Seg2 to Seg35	Output	44, 45 to 78	- LCD panel drive/general-purpose output - LCD panel drive I STATIC II $1 / 2$ bias $-1 / 2$ duty III $1 / 2$ bias $-1 / 3$ duty IV $1 / 2$ bias $-1 / 4$ duty V $1 / 3$ bias $-1 / 3$ duty VI $1 / 3$ bias $-1 / 4$ duty Types I to V can be specified as mask options. - General-purpose output mode I CMOS II P-channel open drain III N-channel open drain Types I to III can be specified as mask options. - LCD/general-purpose output control is handled by the segment PLA, and thus program control is not required. - These pins support output latch control on reset and in standby states when the oscillators are stopped. - Arbitrary combinations of LCD drive and general-purpose outputs can be used.	- LCD driver/ general-purpose output switching - LCD drive type switching - STATIC - $1 / 2$ bias $-1 / 2$ duty - $1 / 2$ bias $-1 / 3$ duty - $1 / 2$ bias - $1 / 4$ duty - $1 / 3$ bias $-1 / 3$ duty $-1 / 3$ bias $-1 / 4$ duty - General-purpose output circuit switching - CMOS - P-channel open drain - N-channel open drain - Output latch control in standby modes	- LCD drive - All segments on - All segments off *: Determined by mask options - General purpose outputs - High level - Low level *: Determined by mask options Note: When a combination of LCD drive and generalpurpose outputs, the output state is either: - All lit/high level - All off/low level. - These pins go to the static drive mode during the reset period.

Continued from preceding page.

Pin	I/O	$\begin{aligned} & \text { QIP-80 } \\ & \text { Pin No. } \end{aligned}$	Function					Option	At reset
$\begin{aligned} & \text { COM1 } \\ & \text { COM2 } \\ & \text { COM3 } \\ & \text { COM4 } \end{aligned}$	Output	218079	LCD panel drive common polarity outputs The table below shows how these pins are used depending on the duty used. (Values for alternating frequency reflect a typical specification of 32.768 MHz for $\varnothing 0$.)						The static drive waveform is output during the reset period. * There are cases where the alternating frequency stops for the CF, RC and external clock specifications. (These cases differ depending on option specifications.)
				Static duty	1/2 duty	1/3 duty	1/4 duty		
			COM1	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
			COM2	\times		\bigcirc			
			$\begin{aligned} & \text { COM3 } \\ & \text { COM4 } \end{aligned}$	\times	$\times \times$	\times	\sim		
			Alternation frequency	32 Hz	32 Hz	42.7 Hz	32 Hz		
			Note: A cross (\times) indicates that the pin is not used with that duty type.						

Sample Application Circuit

LCD: $1 / 2$ bias $-1 / 4$ duty

Unit (resistance: Ω, capacitance: F)

Oscillator Circuit Options

Option

Continued from preceding page.
Option

Crystal Oscillator Circuit Options

Option

Input Port Options

Option	Circuit configuration	Note
Selection of either the - Built-in pull-up resistor, or the - Built-in pull-down resistor option		The following ports are switched at the same time - S1 to S4, K1 to K4, M1 to M4, P1 to P4 SO1 to SO4 and A1 to A4 At reset: The resistors are on during the reset period. The resistors are turned off when reset is cleared. Options: Either A or B can be selected. One of A and B must be selected.
Selection of high or low level hold transistor	Combination examples	When the hold transistors used option is selected: - Used to reduce the current flowing in the pull-up or pull-down resistors when, for example, a push switch is used for S1 or a slide switch is used for S2. - For input open specification versions, the resistors are turned on before the input is read, the input state is read and then the resistors are turned off. If the input is floating at this point the high or low level hold transistor operates to hold the value read. When the hold transistors unused option is selected: - Use with the pull-up or pull-down resistor in the on state. - Select hold transistors unused when connecting to external control signals and the connections will never be floating

INT Pins

Option	Circuit configuration	Note
Pull-up resistor, pulldown resistor or resistor open selection		Built-in resistor selection - Pull-up resistor used - Pull-down resistor used - Used open
High or low level hold transistor selection		Input signal level hold transistor selection - High level hold transistor used - Low level hold transistor used - Level hold transistors unused
Rising edge or falling edge detection selection		Signal change edge detection switching - Change on rising signal - Change on falling signal

RES Pin

Option	Circuit configuration	Note
Pull-up resistor, pulldown resistor or resistor open and reset level selection		Built-in resistor and polarity selection - Pull-up resistor connected, low level reset - Pull-down resistor connected, high level reset - Resistors open, low level reset - Resistors open, high level reset

Pins N1 to N4

Option

Fifteen-Stage Divider Overflow Time

Option	Circuit configuration	Note
- $1000 \mathrm{~ms} / 250 \mathrm{~ms}$ - $500 \mathrm{~ms} / 125 \mathrm{~ms}$	Note: The 125 to 1000 ms times are for a divider input of 32.768 kHz .	A 15-stage (15-bit) divider is provided on chip to count the reference time. One of two types of divider overflow detection can be selected as a mask option and a further selection of two types can be made under program control. One of these mask options must be specified.

K Input Port Options

Option	Circuit configuration	Note
Pull-up/pull-down resistor selection		When the pull-up/pull-down resistor selection is made, the K port input detection switching gate is switched accordingly. A: When all of $K 1$ to $K 4$ are high and even one pin goes low a signal is applied to the edge detection circuit. (Applies to the pullup specifications.) Note: When even one of the K1 to K4 pins is low, the edge detection circuit will not operate for any combination of high or low values on the other pins. B: The opposite of item A

Mask Option Overview

1. Port resistor selection (ports $\mathrm{S}, \mathrm{K}, \mathrm{P}, \mathrm{M}, \mathrm{A}$ and SO)

- Pull-up resistor specification
- Pull-down resistor specification

2. S port high or low level hold transistors

- Level hold transistors used
- No level hold transistors

3. K port high or low level hold transistors

- Level hold transistors used
- No level hold transistors

4. M port high or low level hold transistors

- Level hold transistors used
- No level hold transistors

5. P port high or low level hold transistors

- Level hold transistors used
- No level hold transistors

6. A port high or low level hold transistors

- Level hold transistors used
- No level hold transistors

7. SO port high or low level hold transistors

- Level hold transistors used
- No level hold transistors

8. INT pin resistor selection and signal edge selection

- Pull-up resistor (negative edge)
- Pull-down resistor (positive edge)
- Open (negative edge)
- Open (positive edge)

9. INT pin level hold transistor selection

- Low or high level hold transistors used
- No low or high level hold transistors

10. RES pin

- Pull-up resistor (low level reset)
- Pull-down resistor (high level reset)
- Open (low level reset)
- Open (high level reset)

11. N1 pin

- N-channel open drain type
- CMOS type

12. N 2 pin

- N-channel open drain type
- CMOS type

13. N3 pin

- N-channel open drain type
- CMOS type

14. N4 pin

- N-channel open drain type
- CMOS type

15. N port initial level

- High level
- Low level

16. OSC specifications

- CF only (ceramic filter)
- RC only (resistor and capacitor oscillator)
- Crystal only (32 to 65 kHz crystal oscillator)
- CF + crystal
- RC + crystal
- External + crystal

17. CF/External

- 400 kHz or 800 kHz
- $1 \mathrm{MHz}, 2 \mathrm{MHz}$ or 4 MHz

18. Crystal oscillator

- 32 kHz
- 65 kHz
- 38 kHz

19. Fifteen-bit counter overflow

- $\varnothing 0 / 2048$ or $\varnothing / 8192$
- $\varnothing 0 / 4096$ or $\varnothing 0 / 16384$

20. Serial I/O internal clock period

- Cycle time $\times 1 \times 2$
- Cycle time $\times 2 \times 2$
- Cycle time $\times 4 \times 2$

21. LCD driver

- Static
- $1 / 2$ bias $-1 / 2$ duty
- $1 / 2$ bias $-1 / 3$ duty
- $1 / 2$ bias $-1 / 4$ duty
- $1 / 3$ bias $-1 / 3$ duty
- $1 / 3$ bias $-1 / 4$ duty

22. LCD alternating frequency

- Slow
- Typical
- Fast

23. Internal reset circuit

- Selection
- Disabled

24. Segment ports at reset

LCD drive pins

- All on
- All off

CMOS, p/n-channel type pins

- High level

Internal Register Functions

Continued from preceding page.

Symbol	R/W	Function	Initialization value at reset
RAM	R/W	A) B) C) \square D) : Direct specification by an 8-bit operand : When the data pointer flag is set : When one of 16 certain instructions (such as ADDI and ORI) is executed. : For the MRW W, P and MWR P, W instructions Note: In case B, data pointer RAM address specification is illegal if the RAM address specification (the DPH immediate data) has the same value as the RAM bank register (BNK). In this case immediate specification is allowed. Example: If an IPS 10 H instruction is executed when the data pointer flag is set, DPH is $5 \mathrm{H}, \mathrm{DPL}$ is 3 H and the RAM bank register (BNK) is 1 H , then the contents of the S port will be written to RAM location 10 H . Example: If BNK and DPH differ, then the following operation will be performed. If an IPS 10 H instruction is executed when DPF is 1 , DPH is 5 , DPL is 3 and BNK is 4 , then the contents of the S port will be written to RAM location 53 H .	Undefined
AC	R/W	Accumulator	Undefined
B	R/W	B register This register is used in combination with RAM as a pair for output to the LCD ports and for timer 2, serial counter and data pointer I/O.	Undefined
DP	R/W	Data pointer The data pointer register functions as a data pointer when the data pointer flag (DPF) is set, allowing control of the onchip RAM.	Undefined

Continued from preceding page.

Symbol	R/W	Function	Initialization value at reset
STACK	R/W	Stack pointer The stack consists of eight 14-bit registers and thus can be set to a depth of up to eight levels. The stack pointer is incremented by CALL instructions and interrupts, and decremented by RTS, RTSR and POP instructions.	01H
BNK	R/W	Bank register The bank register is a 4-bit register that divides RAM (from 00H to FFH) into 16 sections and is used in moving RAM data, immediate operations and setting the data pointer. LSB MSB LSB Example: ADD*_5,10.....If BNK is 6 then the operation performed will be: $\operatorname{RAM}(65 \mathrm{H})+10 \rightarrow A C \rightarrow R A M(65 H)$.	00H
APG	R/W	RAM page flags The RAM page flags consist of 2 bits that allow RAM to be expanded in 256 4-bit pages to a total of 1024 4-bit locations. Note: Pages 2 and 3 cannot be used by the LC587004, LC587006 and LC587008.	00H
TIM TIM1 TIM2	R/W	Timer counters The timers consist of 8 -bit down counters. (timer 1 and timer 2) Timer setting is performed in 8 -bit units for immediate data. (timer 1 and timer 2) Reading and writing the lower 4 bits of a timer counter is performed through a RAM location. (timer 2 only) Reading and writing the upper 4 bits of a timer counter is performed using the B register. (timer 2 only) Timer 1 Timer 2	Undefined

Continued from preceding page.

Symbol	R/W	Function	Initialization value at reset
SIO	R/W	Serial counter The serial counter is an 8-bit shift register. Reading and writing the lower 4 bits of the serial counter is performed through a RAM location. Reading and writing the upper 4 bits of the serial counter is performed using the B register.	Undefined
OPG	R/W	ROM page flags The ROM page flags consist of 2 bits that allow ROM to be expanded in 2048 16-bit pages to a total of 8063 16-bit locations. In the LC587004 the legal values are 0 and 1, in the LC587006 the legal values are 0 to 2 and in the LC587008 the legal values are 0 to 3 . (The operation when an illegal value is used is undefined.)	00H
STS1	R/O	Status register 1 (STS1) Status register 1 is a 4-bit register whose bits are used as shown below.	00H
STS2	R/W	Status register 2 (STS2) Status register 2 is a 4-bit register that is used for serial counter control and state confirmation. ICF: High when the internal clock is used OSELF: High when the SO2 pin is set to the high impedance state (Z). Low when SO2 is set to the CMOS or n-channel open drain state. SIOF: High when used as serial I/O CSTF: High on serial counter start Low during serial counter operation	OOH

Continued from preceding page.

Symbol	R/W	Function	Initialization value at reset
STS3	R/O	Status register 3 (STS3) Status register 3 is a 4-bit register that is used to confirm the HALT and STOP clear conditions.	00H
STS4	R/O	Status register 4 (STS4) Status register 4 is a 4-bit register that is used to confirm the HALT and STOP clear conditions.	00H
STS5	R/O	Status register 5 (STS5) Status register 5 is a 4-bit register whose bits are used as shown below. Bits 0 and 1: These bits are always 0 and cannot be used. INTIN: \quad Reflects in the input data on the INT pin. STBF: Strobe flag for the segment port (Set to 1 for 00 to 0 F and to 0 for 10 to 1 E .)	00H

Specifications

The electrical characteristics specified here are provisional and subject to change.

Absolute Maximum Ratings at $\mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions		min	typ	max	Unit
Maximum supply voltage	$V_{\text {DD }}$			-0.3		+7.0	V
	$\mathrm{V}_{\text {DD }}{ }^{1}$			-0.3		$V_{\text {DD }}$	V
	$\mathrm{V}_{\mathrm{DD}}{ }^{2}$			-0.3		$V_{D D}$	V
Maximum input voltage	$\mathrm{V}_{1}(1)$	Allowed in the specified circuit (Figure 1), XTIN, CFIN		Allowed up to the generated voltage			
	$\mathrm{V}_{1}(2)$	S1 to S4, K1 to K4, P1 to P4, SO1 to SO4, A1to A4,RES, INT, TST, (With the K, P, M, SO and ports in input mode)		-0.3		$V_{D D}+0.3$	V
Maximum output voltage	$\mathrm{V}_{\mathrm{O}}(1)$	Allowed in the specified circuit (Figure 1), XTOUT, CFOUT		Allowed up to the generated voltage			
	$\mathrm{V}_{\mathrm{O}}(2)$	K1 to K4, P1 CUP1, CUP2, (With the K,	P4, SO1 to SO4, A1 to A4, N1 to N4, Seg1 to Seg35, COM1 to COM4 M, SO and A ports in output mode)	-0.3		$V_{D D}+0.3$	V
	$\mathrm{V}_{\mathrm{O}}(3)$	Open drain sp	cifications, N1 to N4 (N ch)	-0.3		+13	V
Output pin current	l_{O} (1)	Per pin	N1 to N4	0		+15	mA
	1 O (2)			-10		0	mA
	10 (3)		K1 to K4, P1 to P4, M1 to M4, SO1 to SO4, A1 to A4	0		5	mA
	l_{O} (4)			-5		0	mA
	$\Sigma \mathrm{l}_{\mathrm{O}}(1)$	Total current for all pins	K1 to K4, P1 to P4, M1 to M4, SO1 to SO4, A1 to A4, N1 to N4, Seg1 to Seg35			70	mA
	$\Sigma \mathrm{l}_{\mathrm{O}}$ (2)			-70			mA
Allowable power dissipation	Pd max	QIP80 flat package				500	mW
Operating temperature	Topg			-30		+70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg			-55		+125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathbf{V}_{S S}=\mathbf{0} \mathrm{V}, \mathbf{T a}=\mathbf{- 3 0}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions			min	typ	max	Unit
Supply voltage	$V_{D D}$	LCD unused specifications: $\mathrm{V}_{\mathrm{DD}} 1=\mathrm{V}_{\mathrm{DD}}{ }^{2}=\mathrm{V}_{\mathrm{DD}}$			2.0		6.0	V
		Static specifications: $\mathrm{V}_{\mathrm{DD}} 1=\mathrm{V}_{\mathrm{DD}}{ }^{2}=\mathrm{V}_{\mathrm{DD}}$			2.0		6.0	V
		$1 / 2$ bias specifications: $V_{D D} 1=V_{D D} 2 \approx 2 \times 1 / 2 V_{D D}$			2.8		6.0	V
		$1 / 3$ bias specifications: $V_{D D} 1 \approx 2 \times 1 / 3 V_{D D}$,$V_{D D} 2 \approx 1 / 3 V_{D D}$			2.8		6.0	V
Hold supply voltage	V_{HD}	Voltage required to hold the contents of RAM and the registers*			2.0		$V_{\text {DD }}$	V
Input high level voltage	$\mathrm{V}_{\mathrm{H}}{ }^{1}$	S1 to S4, K1 to K4, P1 to P4, M1 to M4, SO1 to SO4, A1 to A4, INT, (With the K, P, M, SO and ports in input mode)			$0.7 \mathrm{~V}_{\mathrm{DD}}$		$V_{\text {DD }}$	V
Input low level voltage	$\mathrm{V}_{\text {IL }} 1$				0		$0.3 \mathrm{~V}_{\text {DD }}$	V
Input high level voltage	$\mathrm{V}_{\mathrm{IH}}{ }^{2}$	RES pin			$0.75 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V
Input low level voltage	$\mathrm{V}_{\mathrm{IL}}{ }^{2}$				0		$0.25 \mathrm{~V}_{\mathrm{DD}}$	V
Input high level voltage	$\mathrm{V}_{1 \mathrm{H}^{3}}$	CFIN pin			$0.75 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V
Input low level voltage	$\mathrm{V}_{\text {IL }}{ }^{3}$				0		$0.25 \mathrm{~V}_{\mathrm{DD}}$	V
Operating frequency 1	fopg1	$\mathrm{V}_{\mathrm{DD}}=2.0 \text { to } 6.0 \mathrm{~V}, 32 \mathrm{kHz}$		XTIN/XTOUT crystal oscillator	32		33	kHz
Operating frequency 2	fopg2	$\mathrm{V}_{\mathrm{DD}}=2.2$ to 6.0 V .38 kHz			37		39	kHz
Operating frequency 3	fopg3	$\mathrm{V}_{\mathrm{DD}}=2.2$ to $6.0 \mathrm{~V}, 65 \mathrm{kHz}$			60		70	kHz
Operating frequency 4	fopg4	$\mathrm{V}_{\mathrm{DD}}=2.2$ to 6.0 V	CFIN/CFOUT CF specifications		190		810	kHz
Operating frequency 5	fopg5	$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6.0 V			190		1200	kHz
Operating frequency 6	fopg6	$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6.0 V			190		2300	kHz
Operating frequency 7	fopg7	$\mathrm{V}_{\mathrm{DD}}=2.8$ to 6.0 V			190		4200	kHz
Operating frequency 8	fopg8	$\mathrm{V}_{\mathrm{DD}}=4.0$ to 6.0 V , CFIN/CFOUT RC specifications			100		1500	kHz
Operating frequency 9	fopg9	$\mathrm{V}_{\mathrm{DD}}=2.0$ to 6.0 V , CFIN/CFOUT EXT specifications			190		800	kHz
Operating frequency 10	fopg10	$\mathrm{V}_{\mathrm{DD}}=3.0$ to 6.0 V , O1/SO3 pins (in serial mode), Rising and falling edges on the input signals and clock waveform of the SO1/SO3 pins (in serial mode) must be $10 \mu \mathrm{~s}$ or less.			DC		200	kHz

Note: In the state where the CF/RC oscillator and/or the crystal oscillator are completely stopped and the internal circuits are completely stopped.

Electrical Characteristics at $\mathrm{V}_{\mathrm{DD}}=2.5$ to $\mathbf{3 . 2} \mathrm{V}, \mathrm{V}_{\text {SS }}=\mathbf{0} \mathrm{V}, \mathbf{T a}=-\mathbf{3 0}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions			min	typ	max	Unit
Input resistance	$\mathrm{R}_{\text {IN }} 1 \mathrm{~A}$	$\mathrm{V}_{\text {IN }}=0.2 \mathrm{~V}_{\mathrm{DD}}$, low level hold transistor* Figure 2			60	300	1200	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 1 \mathrm{~B}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, pull-down resistor* Figure 2			30	150	500	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 1 \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}_{\mathrm{DD}}$, high level hold transistor* Figure 2			60	300	1200	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 1 \mathrm{D}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$, pull-up resistor* Figure 2			30	150	500	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 2 \mathrm{~A}$	$\mathrm{V}_{\text {IN }}=0.2 \mathrm{~V}_{\mathrm{DD}}$, the INT pin low level hold transistor			60	300	1200	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 2 \mathrm{~B}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, The INT pin pull-down resistor			300	1500	5000	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 2 \mathrm{C}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}_{\mathrm{DD}}$, the INT pin high level hold transistor			60	300	1200	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 2 \mathrm{D}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$, the INT pin pull-up resistor			300	1500	5000	k Ω
	$\mathrm{R}_{\text {IN }} 3$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, the RES pin pull-down resistor			10	30	50	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 4$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$, the RES pin pull-up resistor			10	30	50	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 5$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, the TST pin pull-down resistor			60	250	1000	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 1 \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}_{\mathrm{DD}},$ Figure 2	ow level hold transistor*	$V_{D D}=2.5 \mathrm{~V}$	80	300	1200	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 1 \mathrm{~B}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, pull	wn resistor* Figure 2		40	150	500	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 1 \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}_{\mathrm{DD}}$ Figure 2	high level hold transistor*		80	300	1200	k Ω
	$\mathrm{R}_{\text {IN }} 1 \mathrm{D}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$, pull-	p resistor* Figure 2		40	150	500	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 2 \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}_{\mathrm{DD}}$, the INT pin low level hold transistor			80	300	1200	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 2 \mathrm{~B}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, the INT pin pull-down resistor			400	1500	5000	$\mathrm{k} \Omega$
	$\mathrm{R}_{\mathrm{IN}} 2 \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}_{\mathrm{DD}}$, the INT pin high level hold transistor			80	300	1200	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 2 \mathrm{D}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$, the INT pin pull-up resistor			400	1500	5000	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 3$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, the RES pin pull-down resistor			10	30	50	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 4$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$, the RES pin pull-up resistor			10	30	50	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {IN }} 5$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, the TST pin pull-down resistor			80	250	1000	k Ω
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(1)$	$\mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$	N1 to N4		$\mathrm{V}_{\mathrm{DD}}-0.5$			V
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(1)$	$\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$					0.5	V
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(2)$	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	K1 to K4, P1 to P4, M1 to M4, SO1 to SO4, A1 to A4 (with the K, P, M, SO and A ports in output mode)		$V_{D D}-0.5$			V
Output low level voltage	V_{OL} (2)	$\mathrm{I}_{\mathrm{OL}}=400 \mu \mathrm{~A}$					0.5	V
Output off leakage current	\mid IOFF \mid	$\mathrm{V}_{\mathrm{OH}}=10.5 \mathrm{~V}$	N1 to 4 (open specificatio	s), Figure 10			1.0	$\mu \mathrm{A}$
Segment port output impedances [In CMOS output port mode]								
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(3)$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	Seg1 to Seg35		$\mathrm{V}_{\mathrm{DD}}-0.5$			V
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(3)$	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$					0.5	V
[In p-channel open-drain output port mode (See Figure 11.)]								
Output high level voltage	V_{OH} (3)	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	Seg1 to Seg35		$\mathrm{V}_{\mathrm{DD}}-0.5$			V
Output off leakage current	IOFF 1	$\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{SS}}$					1.0	$\mu \mathrm{A}$
[In n-channel open-drain output port mode (See Figure 11.)]								
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(3)$	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	Seg1 to Seg35				0.5	V
Output off leakage current	I ${ }_{\text {OFF }}$ \|	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$					1.0	$\mu \mathrm{A}$
[Static drive]								
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(4)$	$\mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A}$, Seg1 to Seg35			$\mathrm{V}_{\mathrm{DD}}-0.2$			V
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(4)$	$\mathrm{I}_{\mathrm{OL}}=20 \mu \mathrm{~A}$					0.2	V
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(5)$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}, \mathrm{COM} 1$			$\mathrm{V}_{\mathrm{DD}}-0.2$			V
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(5)$	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$					0.2	V

Note: For the 24 pins S1 to S4, K1 to K4, P1 to P4, M1 to M4, SO1 to SO4 and A1 to A4.

Electrical Characteristics at $\mathbf{V}_{\mathrm{DD}}=3.0$ to $4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}, \mathbf{T a}=-\mathbf{3 0}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions			min	typ	max	Unit	
Input resistance	$\mathrm{R}_{\text {IN }} 1 \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}_{\mathrm{DD}}$, low level hold transistor* Figure 2			35	200	800	$\mathrm{k} \Omega$	
	$\mathrm{R}_{\text {IN }} 1 \mathrm{~B}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, pull-down resistor* Figure 2			15	80	300	$\mathrm{k} \Omega$	
	$\mathrm{R}_{\text {IN }} 1 \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}_{\mathrm{DD}}$, high level hold transistor* Figure 2			35	200	800	$\mathrm{k} \Omega$	
	$\mathrm{R}_{\text {IN }} 1 \mathrm{D}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$, pull-up resistor* Figure 2			15	80	300	$\mathrm{k} \Omega$	
	$\mathrm{R}_{\text {IN }} 2 \mathrm{~A}$	$\mathrm{V}_{\text {IN }}=0.2 \mathrm{~V}_{\mathrm{DD}}$, the INT pin low level hold transistor			35	200	800	$\mathrm{k} \Omega$	
	$\mathrm{R}_{\text {IN }} 2 \mathrm{~B}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, The INT pin pull-down resistor			150	800	3000	$\mathrm{k} \Omega$	
	$\mathrm{R}_{\mathrm{IN}} 2 \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}_{\mathrm{DD}}$, the INT pin high level hold transistor			35	200	800	$\mathrm{k} \Omega$	
	$\mathrm{R}_{\text {IN }} 2 \mathrm{D}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$, the INT pin pull-up resistor			150	800	3000	$\mathrm{k} \Omega$	
	$\mathrm{R}_{\text {IN }} 3$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, the RES pin pull-down resistor			10	30	50	$\mathrm{k} \Omega$	
	$\mathrm{R}_{\text {IN }} 4$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$, the RES pin pull-up resistor			10	30	50	$\mathrm{k} \Omega$	
	$\mathrm{R}_{\text {IN }} 5$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, the TST pin pull-down resistor			25	130	500	$\mathrm{k} \Omega$	
	$\mathrm{R}_{1 N^{1}} \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}_{\mathrm{DD}},$ Figure 2	w level hold transistor*	$\begin{aligned} & V_{D D}= \\ & 3.0 \text { to } 4.0 \end{aligned}$	40	200	800	$k \Omega$	
	$\mathrm{R}_{\text {IN }} 1 \mathrm{~B}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, pull	down resistor* Figure 2		20	80	300	k Ω	
	$\mathrm{R}_{\text {IN }} 1 \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}_{\mathrm{DD}},$ Figure 2	igh level hold transistor*		40	200	800	$\mathrm{k} \Omega$	
	$\mathrm{R}_{\text {IN }} 1 \mathrm{D}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$, pull	p resistor* Figure 2		20	80	300	k Ω	
	$\mathrm{R}_{\mathrm{IN}} 2 \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}_{\mathrm{DD}}$, the INT pin low level hold transistor			40	300	800	k Ω	
	$\mathrm{R}_{\text {IN }} 2 \mathrm{~B}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, the INT pin pull-down resistor			200	800	3000	k Ω	
	$\mathrm{R}_{\mathrm{IN}} 2 \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}_{\mathrm{DD}}$, the INT pin high level hold transistor			40	200	1200	k Ω	
	$\mathrm{R}_{\text {IN }} 2 \mathrm{D}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$, the INT pin pull-up resistor			200	800	3000	k Ω	
	$\mathrm{R}_{\text {IN }} 3$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, the RES pin pull-down resistor			10	30	50	k Ω	
	$\mathrm{R}_{\text {IN }} 4$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$, the RES pin pull-up resistor			10	30	50	k Ω	
	$\mathrm{R}_{\text {IN }} 5$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$, the TST pin pull-down resistor			30	130	500	$\mathrm{k} \Omega$	
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(1)$	$\mathrm{l}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$	N1 to N4		$\mathrm{V}_{\mathrm{DD}}-0.5$			V	
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(1)$	$\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$					0.5	V	
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(2)$	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	K1 to K4, P1 to P4, M1 to M4, SO1 to SO4, A1 to A4 (with the K, P, M, SO and A ports in output mode)		$V_{D D}-0.5$			V	
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(2)$	$\mathrm{I}_{\mathrm{OL}}=400 \mu \mathrm{~A}$					0.5	V	
Output off leakage current	$\left\|\mathrm{I}_{\text {OFF }}\right\|$	$\mathrm{V}_{\mathrm{OH}}=10.5 \mathrm{~V}$	N1 to 4 (open specificatio	s), Figure 10			1.0	$\mu \mathrm{A}$	
Segment port output impedances [In CMOS output port mode]									
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(3)$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	Seg1 to Seg35		$\mathrm{V}_{\mathrm{DD}}-0.5$			V	
Output low level voltage	V_{OL} (3)	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$					0.5	V	
[In p-channel open-drain output port mode (See Figure 11.)]									
Output high level voltage	V_{OH} (3)	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	Seg1 to Seg35		$\mathrm{V}_{\mathrm{DD}}-0.5$			V	
Output off leakage current	IOFF ${ }^{\prime}$	$\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{SS}}$					1.0	$\mu \mathrm{A}$	
[In n-channel open-drain output port mode (See Figure 11.)]									
Output low level voltage	V_{OL} (3)	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	Seg1 to Seg35				0.5	V	
Output off leakage current	IOFF \mid	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$					1.0	$\mu \mathrm{A}$	
[Static drive]									
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(4)$	$\mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A}$, Seg1 to Seg35			$\mathrm{V}_{\mathrm{DD}}-0.2$			V	
Output low level voltage	V_{OL} (4)	$\mathrm{l}_{\mathrm{OL}}=20 \mu \mathrm{~A}$					0.2	V	
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(5)$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}, \mathrm{COM} 1$			$\mathrm{V}_{\mathrm{DD}}-0.2$			V	
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(5)$	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$					0.2	V	
[1/2 bias drive]									
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(4)$	$\mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A}$	Seg1 to Seg35		$V_{D D}-0.2$		0.2	V	
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(4)$	$\mathrm{I}_{\mathrm{OL}}=20 \mu \mathrm{~A}$							
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(5)$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	COM1 to COM4			$\mathrm{V}_{\mathrm{DD}}-0.2$			V
Output middle level voltage	V_{OM}	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A} \end{aligned}$			$V_{D D} / 2-0.2$		$\mathrm{V}_{\mathrm{DD}} / 2+0.2$	V	
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(5)$	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$					0.2	V	

Note: For the 24 pins S1 to S4, K1 to K4, P1 to P4, M1 to M4, SO1 to SO4 and A1 to A4.

Continued from preceding page.

Parameter	Symbol	Conditions		min	typ	max	Unit
[$1 / 3$ bias drive: About $1 / 10$ of the rating for $\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V]							
Supply leakage current	$\mathrm{I}_{\text {LEK }}(1)$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Figure 3			0.2	1.0	$\mu \mathrm{A}$
Supply leakage current	ILEK (2)	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{Ta}=50^{\circ} \mathrm{C}$, Figure 3			1.0	5.0	$\mu \mathrm{A}$
Input leakage current	lofF	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	S1 to S4, K1 to K4, P1 to P4, M1 to M4, SO1 to SO4, A1 to A4, INT, RES (with the $\mathrm{K}, \mathrm{P}, \mathrm{M}, \mathrm{SO}$ and A ports in input mode, and with open specifications for the INT and RES pins)				
		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$				1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$		-1.0			$\mu \mathrm{A}$
Output voltage 1	$V_{D D 1}{ }^{1-(1)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{O}}, \\ & 1 / 2 \text { bias, fopg }=32.768 \mathrm{kHz} \text {, Figure } 4 \end{aligned}$		1.3	1.5	1.7	V
Supply current 1	$\left\|I_{\text {DD }}\right\| 1-1$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	Crystal oscillator specifications, crystal: $32 \mathrm{kHz}, \mathrm{Cg}=20 \mathrm{pF}, \mathrm{Cl}=25 \mathrm{k} \Omega$, HALT mode, Figure $6, L C D=1 / 3$ bias		4.0	8.0	$\mu \mathrm{A}$
	$\left\|I_{\text {DD }}\right\| 1-2$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ & \mathrm{Ta}=50^{\circ} \mathrm{C} \end{aligned}$				20	$\mu \mathrm{A}$
Supply current 2	$\mid I_{\text {DD }}{ }^{\text {\| }}$ 2-1	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	Crystal oscillator specifications, crystal: 38 or $65 \mathrm{kHz}, \mathrm{Cg}=10 \mathrm{pF}, \mathrm{Cl}=25 \mathrm{k} \Omega$, HALT mode, Figure 6, LCD = $1 / 3$ bias		6.0	10	V
	$\left\|I_{\text {DD }}\right\| ~ 2-2 ~$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ & \mathrm{Ta}=50^{\circ} \mathrm{C} \end{aligned}$				30	$\mu \mathrm{A}$
Supply current 3	$\left\|I_{\text {DD }}\right\|$ 3-1	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	CF oscillator specifications, CF: $400 \mathrm{kHz}, \mathrm{Ccg}=\mathrm{Ccd}=330 \mathrm{pF}$, HALT mode, Figure 7		150	300	$\mu \mathrm{A}$
	$\left\|I_{\text {DD }}\right\|$ 3-2	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ & \mathrm{Ta}=50^{\circ} \mathrm{C} \end{aligned}$				500	$\mu \mathrm{A}$
Oscillator start voltage	$\left\|\mathrm{V}_{\text {STT }}\right\|$	$\mathrm{T}_{\text {STT }} \leq 5 \mathrm{~s}$	Crystal oscillator specifications, using a 32 kHz crystal, $\mathrm{Cg}=20 \mathrm{pF}, \mathrm{CI} \leq 25 \mathrm{k} \Omega$, Figure 6			2.2	V
Oscillator hold voltage	$\left\|\mathrm{V}_{\text {HOLD }}\right\|$			2.0		6.0	V
Oscillator start time	$\left\|\mathrm{T}_{\text {STT }}\right\|$	$\mathrm{V}_{\mathrm{DD}}=2.2 \mathrm{~V}$				5	s
Oscillator stability	Δf	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.95 \text { to } \\ & 3.05 \mathrm{~V} \end{aligned}$				3	ppm
Oscillator start voltage	$\left\|\mathrm{V}_{\text {STT }}\right\|$	$\mathrm{T}_{\text {STT }} \leq 5 \mathrm{~s}$	Crystal oscillator specifications, using a 38 or 65 kHz crystal, $\mathrm{XCg}=10 \mathrm{pF}, \mathrm{Cl} \leq 25 \mathrm{k} \Omega$, Figure 6			2.4	V
Oscillator hold voltage	$\left\|\mathrm{V}_{\text {HOLD }}\right\|$			2.2		6.0	V
Oscillator start time	$\left\|\mathrm{T}_{\text {STT }}\right\|$	$\mathrm{V}_{\mathrm{DD}}=2.4 \mathrm{~V}$				5	s
Oscillator start voltage	$\left\|\mathrm{V}_{\text {STT }}\right\|$	$\mathrm{T}_{\text {STT }} \leq 30 \mathrm{~ms}$	CF oscillator specifications, using a 400 kHz ceramic filter, $\mathrm{Ccg}=\mathrm{Ccd}=330 \mathrm{pF}$, Figure 7			2.4	V
Oscillator hold voltage	$\left\|\mathrm{V}_{\text {HOLD }}\right\|$			2.2		6.0	V
Oscillator start time	$\left\|\mathrm{T}_{\text {STT }}\right\|$	$\mathrm{V}_{\mathrm{DD}}=2.4 \mathrm{~V}$				30	ms
Oscillator start voltage	$\left\|\mathrm{V}_{\text {STT }}\right\|$	$\mathrm{T}_{\text {STT }} \leq 30 \mathrm{~ms}$	CF oscillator specifications, using an 800 kHz ceramic filter, $\mathrm{Ccg}=\mathrm{Ccd}=220 \mathrm{pF}$ or 100 pF , Figure 7			2.4	V
Oscillator hold voltage	$\left\|\mathrm{V}_{\text {HOLD }}\right\|$			2.2		6.0	V
Oscillator start time	$\left\|\mathrm{T}_{\text {STT }}\right\|$	$\mathrm{V}_{\mathrm{DD}}=2.4 \mathrm{~V}$				30	ms
Oscillator correction capacitance	Cd	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{XTOUT}$ pin (built-in)		16	20	24	pF

Electrical Characteristics at $\mathbf{V}_{\text {DD }}=4.5$ to $6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}, \mathbf{T a}=-\mathbf{3 0}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$

Parameter	Symbol		Conditions	min	typ	max	Unit
Input resistance	$\mathrm{R}_{\text {IN }} 1 \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V}_{\mathrm{DD}}$, low level hold transistor* Figure 2		30	120	500	k Ω
	$\mathrm{R}_{\text {IN }} 1 \mathrm{~B}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$, pull-down resistor* Figure 2		10	50	200	k Ω
	$\mathrm{R}_{\text {IN }} 1 \mathrm{C}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}_{\mathrm{DD}}$, high level hold transistor* Figure 2		30	120	500	k Ω
	$\mathrm{R}_{\text {IN }} 1 \mathrm{D}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$, pull-up resistor* Figure 2		10	50	200	k Ω
	$\mathrm{R}_{\text {IN }} 2 \mathrm{~A}$	$\mathrm{V}_{\text {IN }}=0.2 \mathrm{~V}_{\mathrm{DD}}$, the INT pin low level hold transistor		30	120	500	k Ω
	$\mathrm{R}_{\text {IN }} 2 \mathrm{~B}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, The INT pin pull-down resistor		100	500	2000	k Ω
	$\mathrm{R}_{\text {IN }} 2 \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}_{\mathrm{DD}}$, the INT pin high level hold transistor		30	120	500	k Ω
	$\mathrm{R}_{\text {IN }} 2 \mathrm{D}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$, the INT pin pull-up resistor		100	500	2000	k Ω
	$\mathrm{R}_{\text {IN }} 3$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, the RES pin pull-down resistor		10	30	50	k Ω
	$\mathrm{R}_{\text {IN }} 4$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$, the RES pin pull-up resistor		10	30	50	k Ω
	$\mathrm{R}_{\text {IN }} 5$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$, the TST pin pull-down resistor		20	70	300	k Ω
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(1)$	$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{OH}}=-5.0 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=10.0 \mathrm{~mA} \\ \hline \end{array}$	N1 to N4	$\mathrm{V}_{\mathrm{DD}}-0.5$			V
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(1)$					0.5	V
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(2)$	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	K1 to K4, P1 to P4, M1 to M4, SO1 to SO4, A1 to A4 (with the K, P, M, SO and A ports in output mode), N1 to N4 (open specifications) Figure 10	$V_{D D}-0.5$	$V_{D D}-0.2$		V
Output low level voltage	$\mathrm{V}_{\text {OL }}(2)$	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$			0.2	0.5	V
Output off leakage current	$\|\mathrm{IOFF}\|$	$\mathrm{V}_{\mathrm{OH}}=10.5 \mathrm{~V}$				1.0	$\mu \mathrm{A}$
Segment port output impedances [In CMOS output port mode]							
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(3)$	$\mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$	Seg1 to Seg35	$\mathrm{V}_{\mathrm{DD}}-0.5$	$\mathrm{V}_{\mathrm{DD}}-0.2$		V
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(3)$	$\mathrm{I}_{\mathrm{OL}}=500 \mu \mathrm{~A}$				0.5	V
[In p-channel open-drain output port mode (See Figure 11.)]							
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(4)$	$\mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$	Seg1 to Seg35	$\mathrm{V}_{\mathrm{DD}}-0.5$	$\mathrm{V}_{\mathrm{DD}}-0.2$		V
Output off leakage current	$\left\|{ }_{\text {IOFF }}\right\|$	$\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\text {SS }}$				1.0	$\mu \mathrm{A}$
[In N-channel open-drain output port mode (See Figure 11.)]							
Output low level voltage	V_{OL} (4)	$\mathrm{I}_{\mathrm{OL}}=500 \mu \mathrm{~A}$	Seg1 to Seg35		0.2	0.5	V
Output off leakage current	$\mid \mathrm{I}$ OFF ${ }^{\text {\| }}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$				1.0	$\mu \mathrm{A}$
[Static drive]							
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(4)$	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$	Seg1 to Seg35	$\mathrm{V}_{\mathrm{DD}}-0.2$			V
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(4)$	$\mathrm{l}_{\mathrm{OL}}=40 \mu \mathrm{~A}$				0.2	V
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(6)$	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	COM1	$\mathrm{V}_{\mathrm{DD}}-0.2$			V
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(6)$	$\mathrm{I}_{\mathrm{OL}}=400 \mu \mathrm{~A}$				0.2	V
[1/2 bias drive]							
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(4)$	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$	Seg1 to Seg35	$\mathrm{V}_{\mathrm{DD}}-0.2$			V
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(4)$	$\mathrm{I}_{\mathrm{OL}}=40 \mu \mathrm{~A}$				0.2	V
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(6)$	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	COM1 to COM4	$\mathrm{V}_{\mathrm{DD}}-0.2$			V
Output middle level voltage	$\mathrm{V}_{\mathrm{OM}}{ }^{2-1}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=400 \mu \mathrm{~A} \\ & \hline \end{aligned}$		$\mathrm{V}_{\mathrm{DD}} / 2-0.2$		$\mathrm{V}_{\mathrm{DD}} / 2+0.2$	V
Output low level voltage	V_{OL} (6)	$\mathrm{I}_{\mathrm{OL}}=400 \mu \mathrm{~A}$				0.2	V
[1/3 bias drive]							
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(4)$	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$	Seg1 to Seg35	$V_{D D}-0.2$			V
Output middle level voltage	$\mathrm{V}_{\mathrm{OM}}{ }^{1-1}$	$\mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$		$\begin{array}{r} 2 \mathrm{~V}_{\mathrm{DD}} / 3 \\ -0.2 \end{array}$		$\begin{array}{r}2 \mathrm{~V}_{\mathrm{DD}} / 3 \\ +0.2 \\ \hline\end{array}$	V
	$\mathrm{V}_{\mathrm{OM}}{ }^{1-2}$	$\mathrm{I}_{\mathrm{OL}}=40 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{DD}} / 3-0.2$		$\mathrm{V}_{\mathrm{DD}} / 3+0.2$	V
Output low level voltage	V_{OL} (4)	$\mathrm{I}_{\mathrm{OL}}=40 \mu \mathrm{~A}$				0.2	V
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}(6)$	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	COM1 to COM4	$\mathrm{V}_{\mathrm{DD}}-0.2$			V
Output middle level voltage	$\mathrm{V}_{\mathrm{OM}}{ }^{2-1}$	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$		$\begin{array}{r} \hline 2 \mathrm{~V}_{\mathrm{DD}} / 3 \\ -0.2 \end{array}$		$\begin{array}{r} \hline 2 \mathrm{~V}_{\mathrm{DD}} / 3 \\ +0.2 \end{array}$	V
	$\mathrm{V}_{\mathrm{OM}}{ }^{2-2}$	$\mathrm{I}_{\mathrm{OL}}=400 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{DD}} / 3-0.2$		$\mathrm{V}_{\mathrm{DD}} / 3+0.2$	V
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}(6)$	$\mathrm{I}_{\mathrm{OL}}=400 \mu \mathrm{~A}$				0.2	V

Note: For the 24 pins S1 to S4, K1 to K4, P1 to P4, M1 to M4, SO1 to SO4 and A1 to A4.

Continued from preceding page.

Parameter	Symbol	Conditions			min	typ	max	Unit
Operating current	$\mathrm{l}_{\mathrm{OP}-1}$	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, 32 \mathrm{kHz}$ crystal oscillator, LCD $=1 / 3$ bias, Figure 6				20	30	$\mu \mathrm{A}$
	$\mathrm{IOP}^{\text {-2 }}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, 32 \mathrm{kHz}$ crystal oscillator, LCD $=1 / 3$ bias, Figure 6				40	60	$\mu \mathrm{A}$
	$\mathrm{lop}^{\text {-3 }}$	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, 400 \mathrm{kHz}$, CF oscillator, Figure 6				240	300	$\mu \mathrm{A}$
	$\mathrm{l}_{\mathrm{OP}-4}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, 400 \mathrm{kHz}$, CF oscillator, Figure 6				620	780	$\mu \mathrm{A}$
	$\mathrm{l}_{\mathrm{OP}-5}$	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, 1 \mathrm{MHz}$, CF oscillator, Figure 6				350	480	$\mu \mathrm{A}$
	$\mathrm{l}_{\mathrm{OP}-6}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, 1 \mathrm{MHz}$, CF oscillator, Figure 6				850	1200	$\mu \mathrm{A}$
	$\mathrm{lOP}^{\text {-7 }}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, 4 \mathrm{MHz}$, CF oscillator, Figure 6				1700	2500	$\mu \mathrm{A}$
Supply leakage current	lek (1)	$\mathrm{V}_{\mathrm{DD}}=6.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Figure 3				0.2	1.0	$\mu \mathrm{A}$
Supply leakage current	ILEK (2)	$\mathrm{V}_{\mathrm{DD}}=6.0 \mathrm{~V}, \mathrm{Ta}=50^{\circ} \mathrm{C}$, Figure 3				1.0	5.0	$\mu \mathrm{A}$
Input leakage current	loFF	$\mathrm{V}_{\mathrm{DD}}=6.0 \mathrm{~V}$	S1 to S4, K1 to K4, M1 to M4, SO1 to SO4, A1 to A4, INT, RES (with the K, P, M, SO and A ports in input mode and with open specifications for the INT and RES pins)					$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$					1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$			-1.0			$\mu \mathrm{A}$
Output voltage 2	$\mathrm{V}_{\mathrm{DD}}{ }^{1-(2)}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}$, Figure 4, $1 / 2$ bias, fopg $=32.768 \mathrm{kHz}$		$V_{D D^{1}}=V_{O}$	2.4	2.5	2.6	V
Output voltage 3	$\mathrm{V}_{\mathrm{DD}}{ }^{\text {- }}$ (3)	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}$, Figure 4, $1 / 3$ bias, fopg $=32.768 \mathrm{kHz}$		$\mathrm{V}_{\mathrm{DD}}{ }^{1}=\mathrm{V}_{\mathrm{O}}$,	1.4	1.67	1.8	V
	$\mathrm{V}_{\mathrm{DD}}{ }^{2-(3)}$			$V_{D D^{2}}=V_{O}$	3.1	3.33	3.5	V
Supply current 1	$\left\|I_{\text {DD }}\right\| 1-1$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Crystal oscillator specifications, crystal: 32 kHz $\mathrm{Cg}=20 \mathrm{pF}, \mathrm{C} 1=25 \mathrm{k} \Omega$, HALT mode, Figure $6, L C D=1 / 3$ bias			15	30	$\mu \mathrm{A}$
	$\left\|I_{\text {DD }}\right\| 1-2$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{Ta}=50^{\circ} \mathrm{C} \end{aligned}$					50	$\mu \mathrm{A}$
Supply current 2	$\left\|I_{\text {DD }}\right\|$ 2-1	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	Crystal oscillator specifications, crystal: 38 or $65 \mathrm{kHz}, \mathrm{Cg}=10 \mathrm{pF}$, C1 $=25 \mathrm{k} \Omega$, HALT mode, Figure 6, $L C D=1 / 3$ bias			15	30	$\mu \mathrm{A}$
	$\left\|I_{\text {DD }}\right\| 2-2$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{Ta}=50^{\circ} \mathrm{C} \end{aligned}$					50	$\mu \mathrm{A}$
Supply current 3	$\left\|I_{\text {DD }}\right\| 3-1$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	CF oscillator specifications, CF: $400 \mathrm{kHz}, \mathrm{Ccg}=\mathrm{Ccd}=330 \mathrm{pF}$, HALT mode, Figure 7			400	600	$\mu \mathrm{A}$
	$\left\|I_{\text {DD }}\right\| 3-2$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{Ta}=50^{\circ} \mathrm{C} \end{aligned}$					600	$\mu \mathrm{A}$
Supply current 4	$\left\|I_{\text {DD }}\right\| 4-1$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	CF oscillator specifications, CF: $1000 \mathrm{kHz}, \mathrm{Ccg}=\mathrm{Ccd}=100 \mathrm{pF}$, HALT mode, Figure 8 or 220 pF			450	650	$\mu \mathrm{A}$
	$\left\|I_{\text {DD }}\right\| 4-2$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{Ta}=50^{\circ} \mathrm{C} \end{aligned}$					700	$\mu \mathrm{A}$
Supply current 5	$\left\|I_{\text {DD }}\right\| 5-1$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	CF oscillator specifications, CF: $2000 \mathrm{kHz}, \mathrm{Ccg}=\mathrm{Ccd}=33 \mathrm{pF}$, HALT mode, Figure 8			500	700	$\mu \mathrm{A}$
	$\left\|I_{\text {DD }}\right\| 5-2$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{Ta}=50^{\circ} \mathrm{C} \end{aligned}$					750	$\mu \mathrm{A}$
Supply current 6	$\left\|I_{\text {DD }}\right\| 6-1$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	CF oscillator specifications, CF: $4000 \mathrm{kHz}, \mathrm{Ccg}=\mathrm{Ccd}=33 \mathrm{pF}$, HALT mode, Figure 8			700	900	$\mu \mathrm{A}$
	$\left\|I_{\text {DD }}\right\| 6-2$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{Ta}=50^{\circ} \mathrm{C} \end{aligned}$					1000	$\mu \mathrm{A}$
Oscillator correction capacitance	Cd	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, XTOUT pin (built-in)			16	20	24	pF

X tal
$32 \mathrm{k}: 32.768 \mathrm{kHz}$
$65 \mathrm{k}: 65.536 \mathrm{kHz}$
$38 \mathrm{k}: 38.2293 \mathrm{kHz}$

Figure 1-1 Oscillator Circuit (XT pins)

Figure 1-2 Oscillator Circuit (CF pins)

Figure 2 S, K, P, M, SO and A Port Input Circuit Configuration

Recommended Ceramic Filters

Manufacturer	Murata Mfg. Co., Ltd.			Kyocera Corporation		
Frequency	Catalog No.	Ccg (pF)	Ccd (pF)	Catalog No.	Ccg (pF)	Ccd (pF)
400 kHz	CSB400P	330	330	KBR-400B	330	330
800 kHz	CSB800J	220	220	KBR-800H	100	100
1 MHz	CSB1000J	220	220	KBR-1000H/Y	100	100
2 MHz	CSA2.00MG, CST2.00MG	33 (built-in)	33 (built-in)	KBR-2.0MS	33	33
4 MHz	CSA4.00MG, CSA4.00MGW	33 (built-in)	33 (built-in)	KBR-4.0MSA/MCA, KBR-4.0MKS/MWS	33 (built-in)	33 (built-in)

Figure 3 Supply Leakage Test Circuit

- Stopped state
- S-port input resistors: on state
- I/O ports: output mode, all data values high
- RES and INT pins: built-in resistor specifications, open state
- Currents due to external components connected to the LCD ports are not included.
- Crystal frequency: between 32 and 65 kHz
- CF frequency: 200 kHz to 4 MHz
- Crystal frequency: 32 kHz
- C1, C2 and C3: $0.1 \mu \mathrm{~F}$
- LCD ports: open
- CF frequency: 200 kHz to 4 MHz -

Figures 4 and 5

Figure 4 Output Voltage Test Circuit

Figure 5 Output Voltage Test Circuit

Figure 7 Supply Current Test Circuit

Figure 9 Supply Current Test Circuit

Note: With the CF oscillator in the stopped state with a 32, 38 or 65 kHz crystal. C1, C2 and C3 are $0.1 \mu \mathrm{~F}$.

Figure 6 Supply Current Test Circuit

Figure 8 Supply Current Test Circuit

Figure 10 Supply Current Test Circuit

Figure 11 Segment Pin Open Drain Circuit Configurations

Figure 12 Sample RC Oscillator Frequency Characteristics

Figure 14 Timer 1 and Timer 2
External Clock Input Timing (external clock mode, pins M3 and M4)

```
tckcr.......5\mus MIN
t
tick}\cdots\cdots.....1\mus MIN
tck1}\cdots\cdots\cdots\cdots1\mus MIN
tcko ........1 }\mu\textrm{s}\mathrm{ MAX
```

$V_{D D}=3.0$ to 6.0 V

Figure 13 Serial I/O Timing (in external clock mode)

Figure Initial Reset Timing

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1995. Specifications and information herein are subject to change without notice.

[^0]: Note: 1. Pin numbers are for QIP80 package products.
 2. Connect the test pins (TST) to V_{SS}.
 3. Pad numbers 40 and 41 must be left open in the chip specification product
 4. Do not use dip-soldering techniques to mount the QIP80 package versions

