

LC587008, 587006, 587004

CMOS LSI

Single-Chip 4-Bit Microprocessors with LCD Driver, 2 Kb RAM, and 8, 12, or 16 KB ROM on chip

Preliminary

Overview

The LC587004, LC587006 and LC587008 are 80-pin lowvoltage CMOS 4-bit microprocessors that include LCD drivers, 2 Kb RAM and 8, 12, or 16 KB ROM on chip. These microprocessors correspond to the earlier LC5870 series with the 256 by 4-bit on-chip RAM expanded to a 512 by 4-bit capacity.

Applications

- System control and LCD display in CD players, cameras and radio tuners
- System control and LCD display in miniature test equipment and consumer health care products
- These microprocessors are optimal for products that include LCD displays and, in particular, battery operated products.
- Remote controllers for VCRs and audio equipment

Functions

- Program ROM: 8064 × 16 bits (LC587008), 6144 × 16 bits (LC587006) and 4096 × 16 bits (LC587004)
- RAM: 512×4 bits on chip
- All instructions execute in a single cycle
- Cycle time and operating voltage ranges
- Rich set of HALT/HOLD mode clearing and interrupt functions
 - Eight HALT mode clearing functions
 - Seven HOLD mode clearing functions
 - Seven interrupt functions (all of which can be used as external interrupts)
 - Subroutines can be nested up to eight levels (including interrupt handling)
 - Built-in watchdog timer function

- Powerful hardware for improved processing capacity
 - Built-in segment PLA and segment decoder: LCD panel segments can be handled with no software processing of the LCD driver outputs. Also, the LCD drive pins can be switched to function as output ports.
 - Built-in 8-bit synchronous serial I/O circuit
 - One 8-bit programmable timer (that can be used as an event counter)
 - One 8-bit programmable reload timer (that can be used to generate a remote control carrier signal)
 - The whole RAM area can be used as working area (by using the RAM bank register)
 - Built-in RAM data pointer
 - Built-in clock oscillator and 15-bit divider (also used to generate the LCD alternating frequency)
- Highly flexible LCD panel drive output pins (35 pins) LCD panelNumber ofRequired
 - drive type.....segmentscommon pins
 - 1/3 bias 1/4 duty140 segmentsFour pins
 - 1/3 bias 1/3 duty105 segmentsThree pins
 - 1/2 bias 1/4 duty140 segmentsFour pins
 - 1/2 bias 1/3 duty105 segments Three pins
 - 1/2 bias 1/2 duty70 segmentsTwo pins

The LCD output pins can be switched to function as general-purpose outputs.

- C-MOS type: Up to 35 pins
- P-channel type: Up to 35 pins
- N-channel type: Up to 35 pins
- These microprocessors allow the use of an oscillator appropriate to the application system specifications.
 - Crystal oscillator: 32 kHz, 65 kHz or 38 kHz (for the time base, system clock or LCD alternating frequency)
 - Ceramic oscillator: 400 kHz to 4 Mhz (for the system clock and the timers and serial counter)
 - RC oscillator: 200 kHz to 1 MHz (for the system clock and the timers and serial counter)
 - External clock (for the system clock and the timers and serial counter)

Features

- These microprocessors are the top end of the LC5870 series and have the following features.
 - Faster cycle times
 - Cycle time: 2 μs for V_{DD} between 4.5 and 6.0 V
 - Cycle time: 10 μs for V_{DD} between 2.2 and 6.0 V

Low power dissipation HALT mode (typical) Continuous operation (typical)

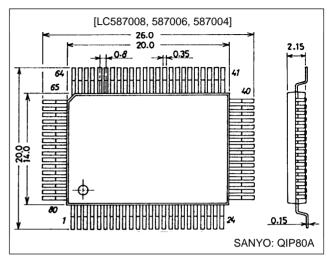
- Ceramic filter (CF) 4 MHz (5.0 V) 600 μ A 1.7 mA (cycle time = 2 μ s)
- Crystal oscillator 32 kHz (3.0 V, CF stopped) 4.0 μ A 20 μ A (cycle time = 122 μ s)

Improved timer functions

- One 8-bit programmable timer (that can be used as an event counter)
- One 8-bit programmable reload timer (that can be used to generate a remote control carrier signal)
- Time base timer (for use as a clock)
- Watchdog timer

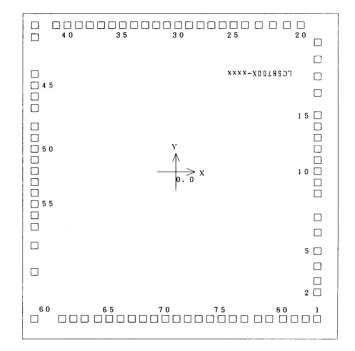
Improved standby functions

- Clock standby function (HALT mode), software switching between low speed mode (low current) and high speed mode
- Full standby mode (HOLD mode)
- HALT and HOLD modes can be cleared by external interrupt pins, input ports (up to nine pins) and serial I/O interrupts


Improved I/O functions

- External interrupt pins
- Up to 9 input and I/O pins that can clear HALT and HOLD modes
- Up to 24 input ports with built-in software controllable input resistors (either pull-up or pulldown specified as mask options)
- Up to 25 input port pins with a built-in floating prevention circuit
- LCD driver: four common pins and 35 segment pins
- General-purpose I/O ports: 20 pins (of which 12 are p-channel open drain and 4 are n-channel open drain)
- General-purpose inputs: five pins
- General-purpose outputs (type 1): four pins (LED direct drive pins, one internal alarm signal output pin and one carrier output pin)
- General-purpose outputs (type 2): 35 pins (when all 35 LCD segment port pins are switched over to function as general-purpose outputs)
- Eight-bit serial I/O port: one set (three pins: input, output and clock)
- Delivery formats: QFP80 (QIP80) and chip

Package Dimensions

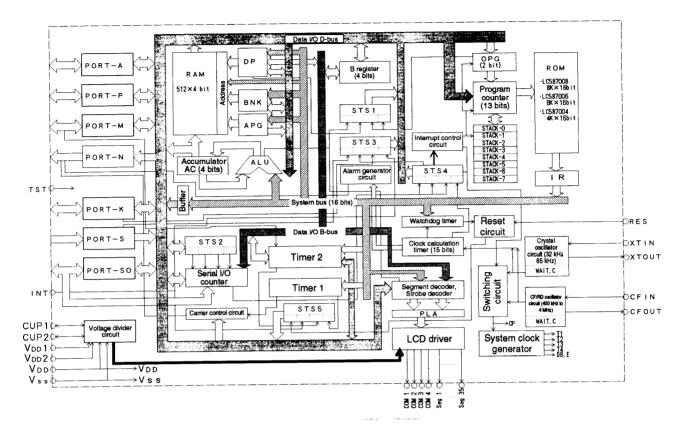

unit: mm

3044B-QFP80A

Pad Layout

Chip size: $5.12 \text{ mm} \times 5.29 \text{ mm}$ Pad size: $120 \ \mu m \times 120 \ \mu m$ Chip thickness: 480 µm (chip products)

Pin Assignments/Pad Names and Coordinates


Pin	Pad	C 1/1	nbol	Coord	linates	Pin	Pad	Symbol	Coord	linates	Pin	Pad	C 1/2	mbol	Coord	dinates
No.	No.	Syr	ndoi	Xμm	Yµm	No.	No.	Symbol	Xμm	Yµm	No.	No.	Syi	IOUI	Xμm	Yµm
24	1	V _{DD}		2234	-2319	52	29	Seg 9	155	2449	78	57	Seg 35		-2362	-824
25	2	CFIN		2234	-1883	53	30	Seg 10	-24	2449	79	58	COM4		-2362	-1139
26	3	CFOUT		2234 –1701		54	31	Seg 11	-204	2449	80			-2362	-1564	
27	4	S1 –		2234	-1458	55	32	Seg 12	-384	2449	1	60	COM2		-2362	-2319
28	5	S2	Input	2234	-1212	56	33	Seg 13	-564	2449	2	61	COM1		-1912	-2319
29	6	S3	port	2234	-915	57	34	Seg 14	-744	2449	3	62	CUP1		-1730	-2319
30	7	S4 –		2234	-669	58	35	Seg 15	-923	2449	4	63	CUP2		-1549	-2319
31	8	K1 –		2234	-284	59	36	Seg 16	-1103	2449	5	64	RES		-1327	-2319
32	9	K2		2234	-101	60	37	Seg 17	-1283	2449	6	65	INT		-1145	-2319
33	10	K3	I/O port	2234	81	61	38	Seg 18	-1463	2449	7	66	SO1 -	1	-963	-2319
34	11	К4 —		2234	264	62	39	Seg 19	-1643	2449	8	67	SO2	I/O port,	-780	-2319
35	12	M1 –		2234	448	-	40	Test	-1821	2449	9	68	SO3	SIO port	-597	-2319
36	13	M2	10	2234	631	-	41	Test	-2001	2449	10	69	SO4 -	J	-414	-2319
37	14	M3	I/O port	2234	814	63	42	Seg 20	-2362	2449	11	70	A1 —	1	-231	-2319
38	15	M4 —		2234	997	64	43	Seg 21	-2362	2248	12	71	A2		-48	-2319
39	16	N1 –		2234	1352	65	44	Seg 22	-2362	1649	13	72	A3	I/O port	134	-2319
40	17	N2	Output	2234	1624	66	45	Seg 23	-2362	1468	14	73	A4 —	J	317	-2319
41	18	N3	port	2234	1895	67	46	Seg 24	-2362	1288	15	74	P1 —	1	504	-2319
42	19	N4 —		2234	2173	68	47	Seg 25	-2362	1107	16	75	P2	1/0	687	-2319
43	20	TST		1958	2449	69	48	Seg 26	-2362	799	17	76	P3	I/O port	870	-2319
44	21	Seg 1		1732	2449	70	49	Seg 27	-2362	618	18	77	P4 —	J	1053	-2319
45	22	Seg 2		1506	2449	71	50	Seg 28	-2362	438	19	78	XTOUT	-	1279	-2319
46	23	Seg 3		1280	2449	72	51	Seg 29	-2362	257	20	79	XTIN		1462	-2319
47	24	Seg 4		1054	2449	73	52	Seg 30	-2362	77	21	80	V _{DD} 2		1685	-2319
48	25	Seg 5		874	2449	74	53	Seg 31	-2362	-103	22	81	V _{DD} 1		1868	-2319
49	26	Seg 6		694	2449	75	54	Seg 32	-2362	-283	23	82	V _{SS}		2050	-2319
50	27	Seg 7		514	2449	76	55	Seg 33	-2362	-464						
51	28	Seg 8		335	2449	77	56	Seg 34	-2362	-664						

Note: 1. Pin numbers are for QIP80 package products.

Connect the test pins (TST) to V_{SS}.
 Pad numbers 40 and 41 must be left open in the chip specification product.

4. Do not use dip-soldering techniques to mount the QIP80 package versions. 5. For chip products either connect the substrate to V_{SS} or leave it open.

System Block Diagram

System Block Diagram for the LC587008, LC587006 and LC587004

RAM:	Data memory
ROM:	Program memory
DP:	Data pointer register
BNK:	Bank register
APG:	RAM page flags
AC:	Accumulator
ALU:	Arithmetic and logic unit
B:	B register
OPG:	ROM page flag
PC:	Program counter

IR:	Instruction register
STS1:	Status register 1
STS2:	Status register 2
STS3:	Status register 3
STS4:	Status register 4
STS5:	Status register 5
PLA:	Segment data and strobe programmable logic
	array
WATTO	W

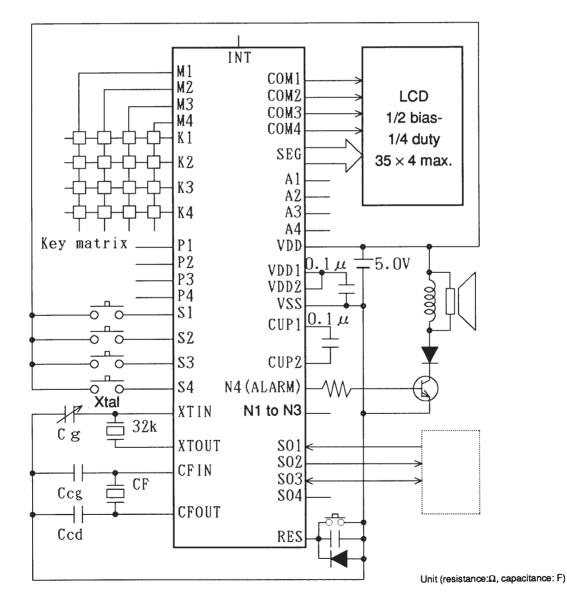
WAIT.C: Waiting time counter

LC587008, 587006, 587004

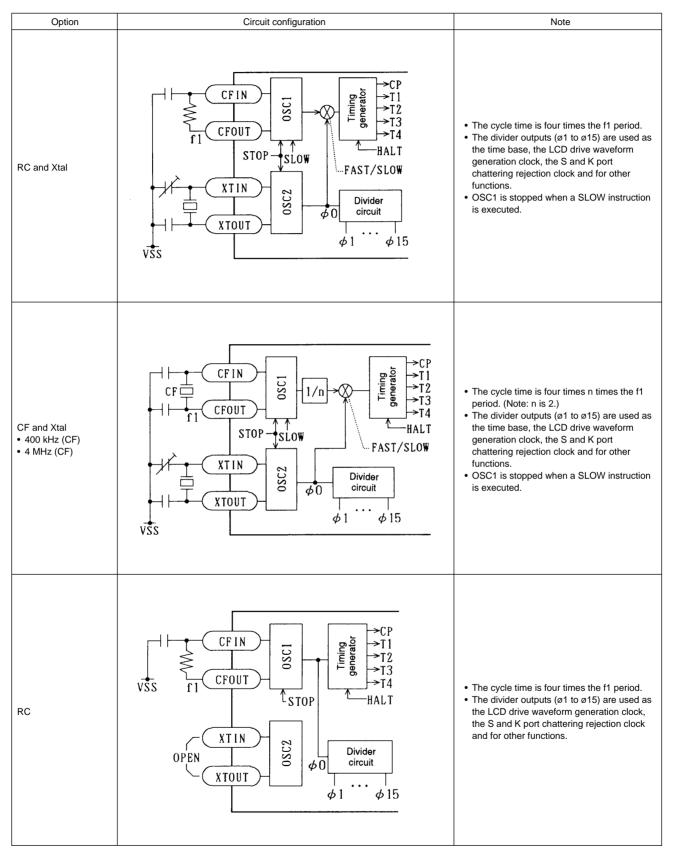
Pin Functions

Pin	I/O	QIP-80 Pin No.	Function	Option	At reset
V _{DD} V _{SS}	_	24 23	Power supply		
V _{DD} 1 V _{DD} 2		22 21	LCD drive power supply NON 1/1bias 1/2bias 1/3bias VDD VDD1 VDD2 VSS		
CUP1 CUP2	_	3 4	 Switching pin used to supply the LCD drive voltage to the V_{DD}1 and V_{DD}2 pins Connect a nonpolarized capacitor between CUP1 and CUP2 when 1/2 or 1/3 bias is used. Leave open when a bias other than 1/2 or 1/3 is used. 		
CFIN	Input	25	System clock oscillator connections Ceramic resonator connection (CF specifications) RC component connection (RC specifications) External signal input pin (CFOUT is left open) 	 CF specifications RC specifications External 	
CFOUT	Output	26	This oscillator is stopped by the execution of a STOP or SLOW instruction.	specifications Not used 	
XTIN	Input	20	Reference calculation (clock specifications, LCD alternating frequency), system clock oscillator • 32 kHz crystal resonator connection	 32k specifications 65k specifications 	
XTOUT	Output	19	• 65 kHz crystal resonator connection This oscillator is stopped by the execution of a STOP instruction.	 38k specifications Not used	
S1 S2 S3 S4	Input	27 28 29 30	Input-only ports • Input pins used to read data into RAM • Built-in 7.8 ms and 1.95 ms chatter rejection circuits • Built-in pull-up/pull-down resistors Note: The 7.8 ms and 1.95 ms times are the times when ø0 is 32.768 kHz.	 Transistors to hold a low or high level Selection of either pull-up or pull- down resistors 	The pull-up or pull- down resistors are on. Note: These pins go to the floating state when reset is cleared.
K1 K2 K3 K4	I/O	31 32 33 34	 I/O ports Input pins used to read data into RAM Output pins used to output data from RAM Built-in 7.8 ms and 1.95 ms input-mode chatter rejection circuits. The selection of 7.8 or 1.95 ms is linked to that for the S ports. Note: The 7.8 ms and 1.95 ms times are the times when ø0 is 32.768 kHz. 	 Transistors to hold a low or high level Selection of either pull-up or pull- down resistors 	 The pull-up or pull- down resistors are on. Note: These pins go to the floating state when reset is cleared. Input mode Output latch data is set high.
M1 M2 M3 M4	I/O	35 36 37 38	 I/O ports Input pins used to read data into RAM Output pins used to output data from RAM M4 is used as the external clock input pin in TM2 mode 3. * The minimum period for the external clock is twice the cycle time. Built-in pull-up/pull-down resistors 	The same as K1 to K4	The same as K1 to K4
A1 A2 A3 A4	I/O	11 12 13 14	I/O portsInput pins used to read data into RAMOutput pins used to output data from RAMBuilt-in pull-up/pull-down resistors	The same as K1 to K4	The same as K1 to K4
P1 P2 P3 P4	I/O	15 16 17 18	I/O ports Function: The same as pins A1 to A4	The same as K1 to K4	The same as K1 to K4

LC587008, 587006, 587004


Continued from preceding page.

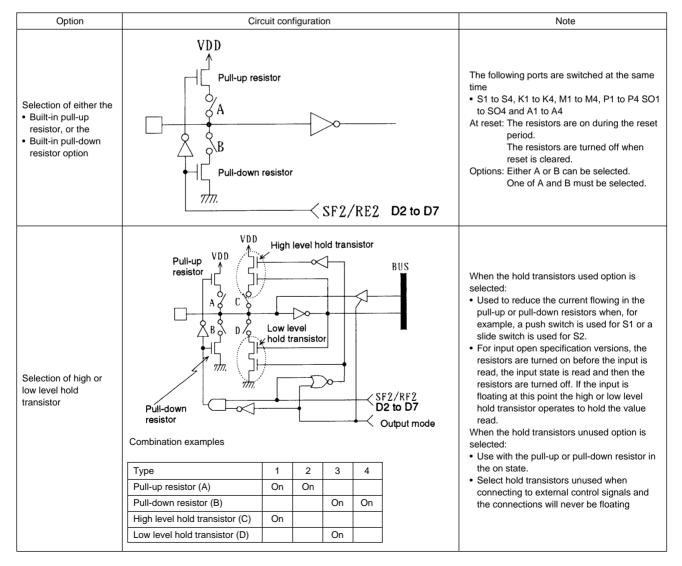
Pin	I/O	QIP-80 Pin No.	Function	Option	At reset
SO1 SO2 SO3 SO4	I/O	7 8 9 10	 I/O ports Function: The same as for pins A1 to A4 Pins SO1 to SO3 area also used for the serial interface. Use of these pins in serial mode can be selected under program control. Pin functions: SO1: Serial input pin SO2: Serial output pin SO3: Serial clock pin The serial clock pin can be switched between internal and external, and between rising edge output and falling edge output. 	 Transistors to hold a low or high level Selection of either pull-up or pull- down resistors Internal serial clock divisor selection 1/1 1/2 11 1/2 11 1/4 	The same as for K1 to K4
N1 N2 N3 N4	Output	39 40 41 42	 Output-only ports Output pins used to output data from RAM An alarm signal can be output from pin N4. (Note that this is only when the N4 output latch is low.) An alarm signal modulated at 1, 2 or 4 kHz can be output. (These frequencies are output when ø0 is 32.768 kHz.) A carrier signal can be output from N3. (Note that this is only when the N3 output latch is low.) 	 Pins N1 to N4 output circuit type: I CMOS II N-channel open drain Pins N1 to N4 output level I High level II Low level 	The output levels on pins N1 to N4 can be specified as an option.
INT	Input	6	Input ports • External interrupt request inputs • Input pins used to read data into RAM • Input detection can be performed on either rising or falling edges. • Built-in pull-up/pull-down resistors	 Transistors to hold a low or high level Selection of either pull-up or pull- down resistors Signal conversion (rising/falling) selection 	
RES	Input	5	LSI internal reset input • The reset input level can be selected to be either high or low. • Built-in pull-up/pull-down resistors • Note: The reset pulse must be at least 500 µs.	* Only when the input resistor open specification is selected	
TST	Input	43	Test input • QIP80 products: Connect to V _{SS} . • Chip products: Leave open or connect to V _{SS} .		
Seg1, Seg2 to Seg35	Output	44, 45 to 78	 LCD panel drive/general-purpose output LCD panel drive STATIC STATIC 11 1/2 bias – 1/2 duty 11 1/2 bias – 1/3 duty 1V 1/2 bias – 1/4 duty V 1/3 bias – 1/4 duty V 1/3 bias – 1/4 duty Types I to V can be specified as mask options. General-purpose output mode CMOS P-channel open drain N-channel open drain Types I to III can be specified as mask options. LCD/general-purpose output control is handled by the segment PLA, and thus program control is not required. These pins support output latch control on reset and in standby states when the oscillators are stopped. Arbitrary combinations of LCD drive and general-purpose outputs can be used. 	 LCD driver/ general-purpose output switching LCD drive type switching STATIC 1/2 bias - 1/2 duty 1/2 bias - 1/3 duty 1/2 bias - 1/4 duty 1/3 bias - 1/4 duty 1/3 bias - 1/4 duty General-purpose output circuit switching CMOS P-channel open drain N-channel open drain 	 LCD drive All segments on All segments off Determined by mask options General purpose outputs High level Low level Determined by mask options Note: When a combination of LCD drive and general- purpose outputs, the output state is either: All lit/high level These pins go to the static drive mode during the reset period.


Pin	I/O	QIP-80 Pin No.			Function			Option	At reset
			The table belo	ive common po ow shows how for alternating or ø0.)	these pins are		The static drive waveform is output during the reset period. * There are cases		
COM1		2		Static duty	1/2 duty	1/3 duty	1/4 duty		where the
COM2	Output	1	COM1	0	0	0	0		alternating
COM3	Output	80 79	COM2	×	0	0	0		frequency stops for
COM4			COM3	×	×	0			the CF, RC and
			COM4	X	×	×	0		external clock
			Alternation frequency	32 Hz	32 Hz	42.7 Hz	32 Hz		specifications. (These cases differ
			Note: A cross	s (X) indicates	that the pin is	not used with	that duty type.		depending on option specifications.)

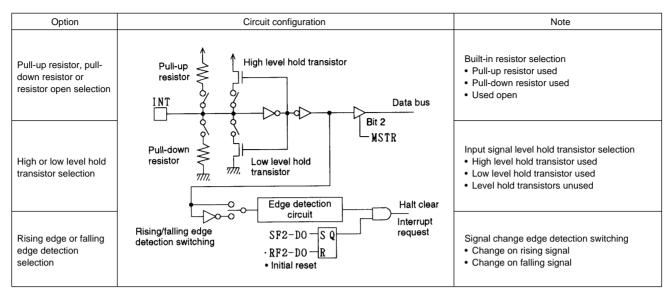
Sample Application Circuit

LCD: 1/2 bias - 1/4 duty

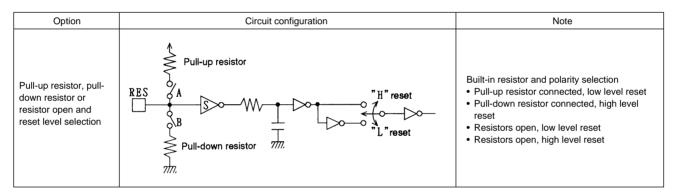
Oscillator Circuit Options

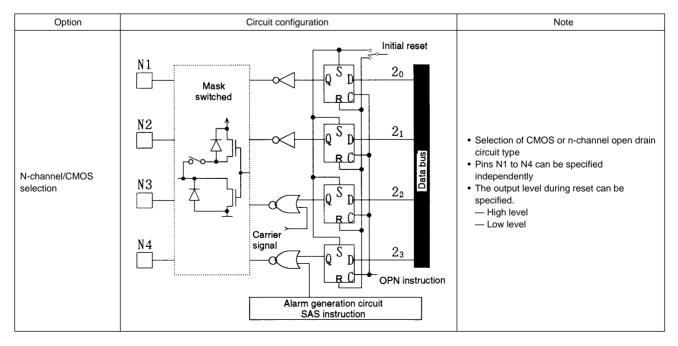


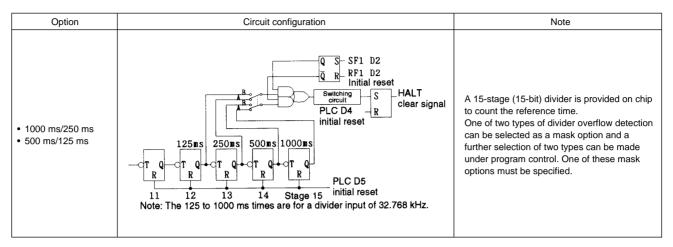
Option	Circuit configuration	Note
CF • 400 kHz • 4 MHz	$\begin{array}{c} \hline \\ CF \\ \hline \\ F1 \\ \hline \\ VSS \\ \hline \\ \\ \hline \\ \\ VSS \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	 The cycle time is four times n times the f1 period. (Note: n is 2.) The divider outputs (ø1 to ø15) are used as the LCD drive waveform generation clock, the S and K port chattering rejection clock and for other functions.
Xtal	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	 The cycle time is four times the f2 period. The divider outputs (ø1 to ø15) are used as the time base, the LCD drive waveform generation clock, the S and K port chattering rejection clock and for other functions.
External input	$\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \\$	 The cycle time is four times n times the f1 period. (Note: n is 2.) The divider outputs (ø1 to ø15) are used as the LCD drive waveform generation clock, the S and K port chattering rejection clock and for other functions.

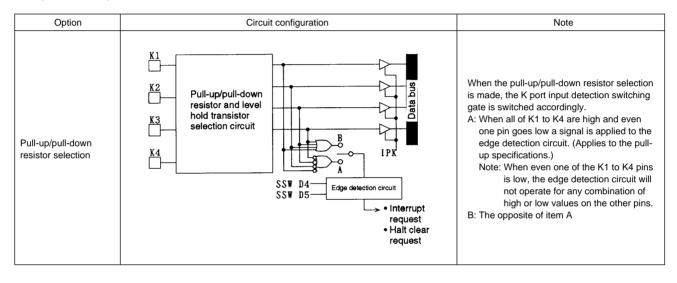

Crystal Oscillator Circuit Options

Option	Circuit configuration	Note
32 kHz oscillator	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & &$	The resistor Rd (200 kΩ typical) for use with a 32 kHz oscillator is built in.
5 kHz oscillator 38 kHz oscillator	$\begin{array}{c} & & \\$	 The cycle time is four times n times the f1 period. (Note: n is 2.) The divider outputs (ø1 to ø15) are used as the time base, the LCD drive waveform generation clock, the S and K port chattering rejection clock and for other functions. OSC1 is stopped when a SLOW instruction is executed.


Input Port Options


INT Pins


RES Pin


Pins N1 to N4

Fifteen-Stage Divider Overflow Time

K Input Port Options

Mask Option Overview

- 1. Port resistor selection (ports S, K, P, M, A and SO)
 - Pull-up resistor specification
 - Pull-down resistor specification
- 2. S port high or low level hold transistors
 - · Level hold transistors used
 - No level hold transistors
- 3. K port high or low level hold transistors
 - Level hold transistors used
 - No level hold transistors
- 4. M port high or low level hold transistors
 - Level hold transistors used
 - No level hold transistors
- 5. P port high or low level hold transistors
 - Level hold transistors used
 - No level hold transistors
- 6. A port high or low level hold transistors
 - Level hold transistors used
 - No level hold transistors
- 7. SO port high or low level hold transistors
 - Level hold transistors used
 - No level hold transistors
- 8. INT pin resistor selection and signal edge selection
 - Pull-up resistor (negative edge)
 - Pull-down resistor (positive edge)
 - Open (negative edge)
 - Open (positive edge)
- 9. INT pin level hold transistor selection
 - Low or high level hold transistors used
 - No low or high level hold transistors
- 10. RES pin
 - Pull-up resistor (low level reset)
 - Pull-down resistor (high level reset)
 - Open (low level reset)
 - Open (high level reset)
- 11. N1 pin
 - N-channel open drain type
 - CMOS type
- 12. N2 pin
 - N-channel open drain type
 - CMOS type
- 13. N3 pin
 - N-channel open drain type
 - CMOS type

- 14. N4 pin
 - N-channel open drain type
 - CMOS type
- 15. N port initial level
 - High level
 - Low level
- 16. OSC specifications
 - CF only (ceramic filter)
 - RC only (resistor and capacitor oscillator)
 - Crystal only (32 to 65 kHz crystal oscillator)
 - CF + crystal
 - RC + crystal
 - External + crystal
- 17. CF/External
 - 400 kHz or 800 kHz
 - 1 MHz, 2 MHz or 4 MHz

18. Crystal oscillator

- 32 kHz
- 65 kHz
- 38 kHz

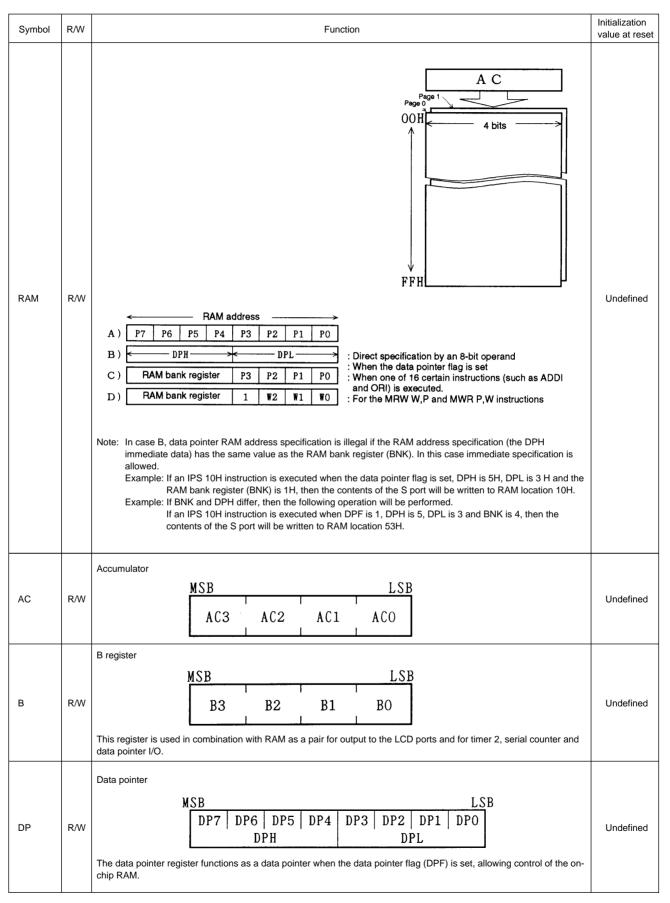
19. Fifteen-bit counter overflow

- ø0/2048 or ø/8192
- Ø0/4096 or Ø0/16384

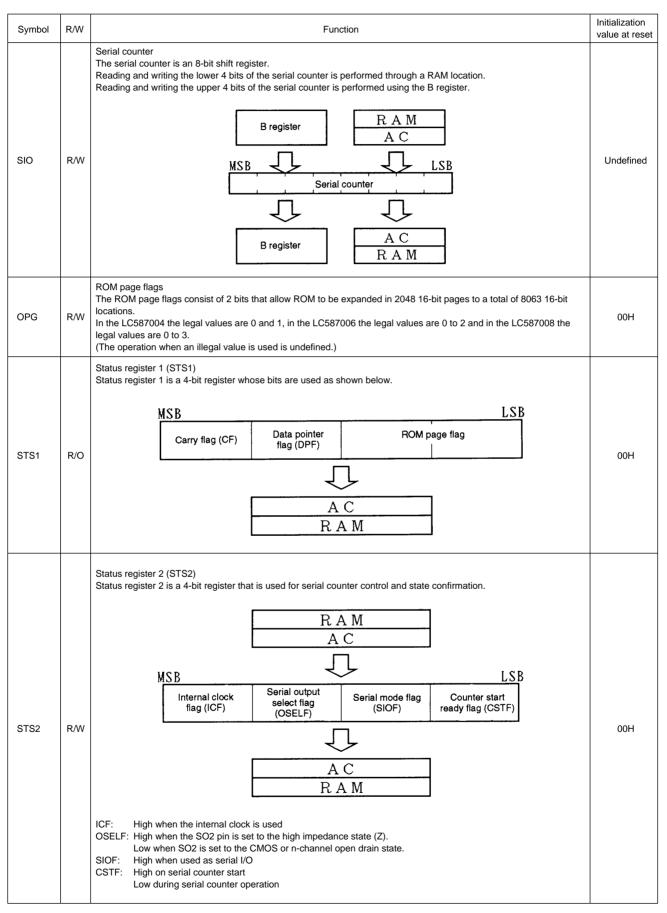
20. Serial I/O internal clock period

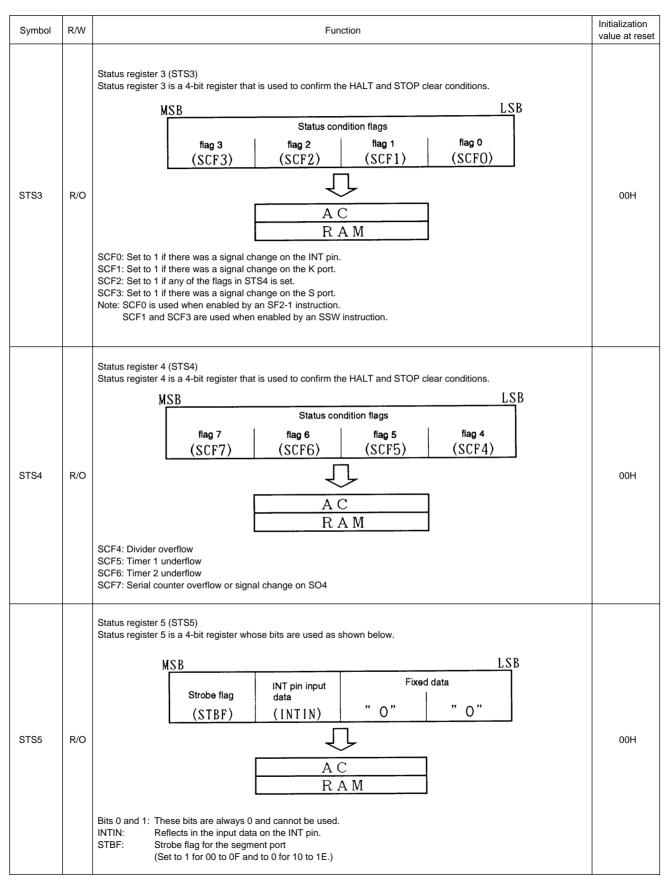
- Cycle time $\times 1 \times 2$
- Cycle time $\times 2 \times 2$
- Cycle time $\times 4 \times 2$

21. LCD driver


- Static
- 1/2 bias 1/2 duty
- 1/2 bias 1/3 duty
- 1/2 bias 1/4 duty
- 1/3 bias 1/3 duty
- 1/3 bias 1/4 duty

22. LCD alternating frequency


- Slow
- Typical
- Fast
- 23. Internal reset circuit
 - Selection
 - Disabled
- 24. Segment ports at reset
 - LCD drive pins
 - All on
 - All off
 - CMOS, p/n-channel type pins
 - High level


Internal Register Functions

Symbol	R/W					Func	tion									Initialization value at rese
		Program counter The PC is a 13-bit counter that indicates the address in program memory (ROM) of the next instruction to execute. Normally the PC is incremented on every instruction cycle in the range 000H to 1F7FH. (Addresses in the range 1F80 to 1FFF are reserved for testing and cannot be used by user programs.) However, data values are loaded into the PC by the execution of branch and subroutine instructions and on the occurrence of interrupts or an initial reset. The table below describes the data loaded for these operations.														
		PC			PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	
		Operation														
		Initializing reset	0	0	0	0	0	0	0	0	0	0	0	0	0	
		INT pin external interrupt S/K pin external interrupt	0	0	0	0	0	0	0	1	0	0	0	0	0	
PC	_	Timer 1 or timer 2 internal interrupt	0	0	0	0	0	0	0	1	1	0	0	0	0	
		Serial counter internal interrupt or SO4 pin external interrupt	0	0	0	0	0	0	0	1	1	1	0	0	0	
		Unconditional jump (JMP)	Pa	ige	P10	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0	
		Conditional jump (BAB0, BAB1, BAB2, BAB3, BAZ, BANZ, BCH, BCNH)		ige	P10	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0	
		Call instruction (CALL)	Pa	ge	P10	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0	
		Call instruction (CALL) Page P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 Return instruction (RTS, RTSR) CALL address + 1														
		Page: the ROM page flags, The page is specified P00 to P10: Bits in the instruction	with th	e MRC	OPF ar	nd SRO	OPF in									
		Program memory The ROM memory consists of 409 kbytes) in the LC587006 and 8064 executed.		,	words	or 16	kbytes	·	e LC58				·			
ROM	R/O	000H 07FFH									.c587004>	L C587006				
		OFFFH]	_		r C C			
		17FFН 1F7FН — Т 1FFFН — Т	est RO	М (са	nnot be	e used	by use	ər prog	Irams)			•	<u>/</u>			
		Data memory These microprocessors provide an on-chip RAM that consists of 512 × 4 bits (2 Kb). This RAM is accessed as two 256 × 4-bit pages. RAM addresses can be specified in four ways as listed below. • Directly specified at 00H to FFH (immediate addressing) • Indirect specification using the 8-bit data pointer. • Indirect specification by the 4-bit RAM bank register multiplied by 10H plus immediate data in the range 0 to FH. • Indirect specification by the 4-bit RAM bank register multiplied by 10H plus 8H plus immediate data in the range 0 to FH.														

Symbol	R/W	Function	Initialization value at reset
STACK	R/W	Stack pointer The stack consists of eight 14-bit registers and thus can be set to a depth of up to eight levels. The stack pointer is incremented by CALL instructions and interrupts, and decremented by RTS, RTSR and POP instructions. RTS, RTSR and POP instructions Stack register 4 Stack register 2 DPF P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 Stack register 1 CALL instruction or interrupt P0 to P11: Program counter (PC) DPF: Data pointer flag	01H
BNK	R/W	Bank registerThe bank register is a 4-bit register that divides RAM (from 00H to FFH) into 16 sections and is used in moving RAMMSBLSBMSBLSBMSBLSBMSBLSBMSBLSBP7P6P5P4P3P2P1P0Colspan="2">Colspan="2">RAM addressExample: ADD*_5,10If BNK is 6 then the operation performed will be: RAM(65H) + 10 \rightarrow AC \rightarrow RAM(65H).	00H
APG	R/W	RAM page flags The RAM page flags consist of 2 bits that allow RAM to be expanded in 256 4-bit pages to a total of 1024 4-bit locations. Note: Pages 2 and 3 cannot be used by the LC587004, LC587006 and LC587008.	00H
TIM TIM1 TIM2	R/W	Timer counters The timers consist of 8-bit down counters. (timer 1 and timer 2) Timer setting is performed in 8-bit units for immediate data. (timer 1 and timer 2) Reading and writing the lower 4 bits of a timer counter is performed through a RAM location. (timer 2 only) Reading and writing the upper 4 bits of a timer counter is performed using the B register. (timer 2 only) Reading and writing the upper 4 bits of a timer counter is performed using the B register. (timer 2 only) Immediate data MSB Timer 1 Timer 1 Timer 1 Timer 1 Timer 2 Timer 1 Timer 2	Undefined

Specifications

The electrical characteristics specified here are provisional and subject to change.

Absolute Maximum Ratings at V_{SS} = 0 V, Ta = 25 $^{\circ}\mathrm{C}$

Parameter	Symbol			Conditions	min	typ	max	Unit	
	V _{DD}				-0.3		+7.0	V	
Maximum supply voltage	V _{DD} 1				-0.3		V _{DD}	V	
	V _{DD} 2				-0.3		V _{DD}	V	
	V _I (1)	Allowed in	the	specified circuit (Figure 1), XTIN, CFIN	Allowed up	to the genera	ted voltage		
Maximum input voltage	V ₁ (2)			o K4, P1 to P4, SO1 to SO4, A1to A4,RES, th the K, P, M, SO and ports in input mode)	-0.3		V _{DD} + 0.3	V	
	V _O (1)	Allowed in CFOUT	the	specified circuit (Figure 1), XTOUT,	Allowed up to the generated voltage				
Maximum output voltage	V _O (2)	CUP1, CU	P2,	o P4, SO1 to SO4, A1 to A4, N1 to N4, Seg1 to Seg35, COM1 to COM4 , M, SO and A ports in output mode)	-0.3		V _{DD} + 0.3	V	
	V _O (3)	Open draii	n sp	pecifications, N1 to N4 (N ch)	-0.3		+13	V	
	I _O (1)		N	1 to N4	0		+15	mA	
	I _O (2)	Per pin		1 10 114	-10		0	mA	
Output pin current	I _O (3)		K1	1 to K4, P1 to P4, M1 to M4, SO1 to SO4,	0		5	mA	
Output pin current	I _O (4)		A1	1 to A4	-5		0	mA	
	$\Sigma I_{O}(1)$	Total curre	ent	K1 to K4, P1 to P4, M1 to M4, SO1 to			70	mA	
	$\Sigma I_{O}(2)$	for all pins		SO4, A1 to A4, N1 to N4, Seg1 to Seg35	-70			mA	
Allowable power dissipation	Pd max	QIP80 flat	pac	ckage			500	mW	
Operating temperature	Торд				-30		+70	°C	
Storage temperature	Tstg				-55		+125	°C	

Allowable Operating Ranges at V_{SS} = 0 V, Ta = -30 to +70 $^{\circ}C$

Parameter	Symbol	C	Conditi	ons	min	typ	max	Unit
		LCD unused specificati	ions: \	$V_{DD}1 = V_{DD}2 = V_{DD}$	2.0		6.0	V
		Static specifications: V	_{DD} 1 =	$V_{DD}2 = V_{DD}$	2.0		6.0	V
Supply voltage	V _{DD}	1/2 bias specifications:	V _{DD} 1	$= V_{DD}2 \approx 2 \times 1/2 V_{DD}$	2.8		6.0	V
		1/3 bias specifications: $V_{DD}2 \approx 1/3 V_{DD}$	V _{DD} 1	$\approx 2 \times 1/3 \text{ V}_{DD},$	2.8		6.0	V
Hold supply voltage	V _{HD}	Voltage required to hole the registers*	d the	contents of RAM and	2.0		V _{DD}	V
Input high level voltage	V _{IH} 1	· · · ·		, M1 to M4, SO1 to SO4,	0.7 V _{DD}		V _{DD}	V
Input low level voltage	V _{IL} 1	mode)	ie K, F	P, M, SO and ports in input	0		0.3 V _{DD}	V
Input high level voltage	V _{IH} 2	- RES pin			0.75 V _{DD}		V _{DD}	V
Input low level voltage	V _{IL} 2	- RES pin			0		0.25 V _{DD}	V
Input high level voltage	V _{IH} 3	- CFIN pin			0.75 V _{DD}		V _{DD}	V
Input low level voltage	V _{IL} 3				0		0.25 V _{DD}	V
Operating frequency 1	fopg1	V _{DD} = 2.0 to 6.0 V, 32	kHz		32		33	kHz
Operating frequency 2	fopg2	V _{DD} = 2.2 to 6.0 V. 38	kHz	XTIN/XTOUT crystal	37		39	kHz
Operating frequency 3	fopg3	V _{DD} = 2.2 to 6.0 V, 65	kHz	ocomator	60		70	kHz
Operating frequency 4	fopg4	V _{DD} = 2.2 to 6.0 V			190		810	kHz
Operating frequency 5	fopg5	V _{DD} = 2.5 to 6.0 V		CFOUT CF specifications	190		1200	kHz
Operating frequency 6	fopg6	V _{DD} = 2.5 to 6.0 V		CFOUT CF specifications	190		2300	kHz
Operating frequency 7	fopg7	V _{DD} = 2.8 to 6.0 V			190		4200	kHz
Operating frequency 8	fopg8	V _{DD} = 4.0 to 6.0 V, CF	IN/CF	OUT RC specifications	100		1500	kHz
Operating frequency 9	fopg9	V _{DD} = 2.0 to 6.0 V, CF	IN/CF	OUT EXT specifications	190		800	kHz
Operating frequency 10	fopg10	V _{DD} = 3.0 to 6.0 V, O1/ Rising and falling edge clock waveform of the 5 must be 10 µs or less.	s on t		DC		200	kHz

Note: In the state where the CF/RC oscillator and/or the crystal oscillator are completely stopped and the internal circuits are completely stopped.

Electrical Characteristics at V_{DD} = 2.5 to 3.2 V, V_{SS} = 0 V, Ta = -30 to +70 $^{\circ}C$

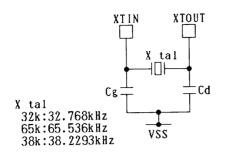
	1							1
Parameter	Symbol	Conditions			min	typ	max	Unit
	R _{IN} 1 A	$V_{IN} = 0.2 V_{DD}$, low level hold transistor* Figure 2			60	300	1200	kΩ
	R _{IN} 1 B	$V_{IN} = V_{DD}$, pull-	down resistor* Figure 2		30	150	500	kΩ
	R _{IN} 1 C	V _{IN} = 0.8 V _{DD} , ł	60	300	1200	kΩ		
	R _{IN} 1 D	$V_{IN} = V_{SS}$, pull-	up resistor* Figure 2		30	150	500	kΩ
	R _{IN} 2 A	V _{IN} = 0.2 V _{DD} , t	he INT pin low level hold tr	ansistor	60	300	1200	kΩ
	R _{IN} 2 B	$V_{IN} = V_{DD}$, The	INT pin pull-down resistor		300	1500	5000	kΩ
	R _{IN} 2 C	V _{IN} = 0.8 V _{DD} , t	he INT pin high level hold t	ransistor	60	300	1200	kΩ
	R _{IN} 2 D	$V_{IN} = V_{SS}$, the I	300	1500	5000	kΩ		
	R _{IN} 3	$V_{IN} = V_{DD}$, the I	10	30	50	kΩ		
	R _{IN} 4	$V_{IN} = V_{SS}$, the F	10	30	50	kΩ		
	R _{IN} 5	$V_{IN} = V_{DD}$, the	TST pin pull-down resistor		60	250	1000	kΩ
	R _{IN} 1 A	V _{IN} = 0.2 V _{DD} , I Figure 2	ow level hold transistor*		80	300	1200	kΩ
Input resistance	R _{IN} 1 B	V _{IN} = V _{DD} , pull-	down resistor* Figure 2		40	150	500	kΩ
	R _{IN} 1 C	V _{IN} = 0.8 V _{DD} , I Figure 2	high level hold transistor*		80	300	1200	kΩ
	R _{IN} 1 D	V _{IN} = V _{SS} , pull-	up resistor* Figure 2		40	150	500	kΩ
	R _{IN} 2 A	$V_{IN} = 0.2 V_{DD}$, the INT pin low level hold		V _{DD} = 2.5 V	80	300	1200	kΩ
	R _{IN} 2 B	$V_{IN} = V_{DD}$, the INT pin pull-down resistor			400	1500	5000	kΩ
	R _{IN} 2 C	$V_{IN} = 0.8 V_{DD}$, the INT pin high level hold transistor			80	300	1200	kΩ
	R _{IN} 2 D	$V_{IN} = V_{SS}$, the I	NT pin pull-up resistor		400	1500	5000	kΩ
	R _{IN} 3		RES pin pull-down resistor		10	30	50	kΩ
	R _{IN} 4		RES pin pull-up resistor		10	30	50	kΩ
	R _{IN} 5		ST pin pull-down resistor		80	250	1000	kΩ
Output high level voltage	V _{OH} (1)	I _{OH} = -500 μA			V _{DD} – 0.5			V
Output low level voltage	V _{OL} (1)	I _{OL} = 1.0 mA	N1 to N4				0.5	V
Output high level voltage	V _{OH} (2)	I _{OH} = -400 μA	K1 to K4, P1 to P4, M1 to		V _{DD} – 0.5			V
Output low level voltage	V _{OL} (2)	I _{OL} = 400 μA	SO4, A1 to A4 (with the k and A ports in output mod				0.5	V
Output off leakage current	I _{OFF}	V _{OH} = 10.5 V	N1 to 4 (open specification	ns), Figure 10			1.0	μA
Segment port output impedances [In CMOS output port mode]								
Output high level voltage	V _{OH} (3)	I _{OH} = −100 μA	0		V _{DD} – 0.5			V
Output low level voltage		I _{OL} = 100 μA	Seg1 to Seg35				0.5	V
[In p-channel open-drain output po					1			•
Output high level voltage	V _{OH} (3)	I _{OH} = -100 μA	Sent to Sec05		V _{DD} – 0.5			V
Output off leakage current	I _{OFF}	V _{OL} = V _{SS}	Seg1 to Seg35				1.0	μA
[In n-channel open-drain output po	ort mode (See							
Output low level voltage	V _{OL} (3)	I _{OL} = 100 μA	Sogi to Socie				0.5	V
Output off leakage current	I _{OFF}	V _{OH} = V _{DD}	Seg1 to Seg35				1.0	μA
[Static drive]								
Output high level voltage	V _{OH} (4)	I _{OH} = -20 μA, S	eg1 to Seg35		V _{DD} – 0.2			V
Output low level voltage	V _{OL} (4)	I _{OL} = 20 μA					0.2	V
Output high level voltage	V _{OH} (5)	I _{OH} = -100 μA,	COM1		V _{DD} – 0.2			V

Note: For the 24 pins S1 to S4, K1 to K4, P1 to P4, M1 to M4, SO1 to SO4 and A1 to A4.

Electrical Characteristics at V_{DD} = 3.0 to 4.5 V, V_{SS} = 0 V, Ta = -30 to +70 $^{\circ}C$

Parameter	Symbol		Conditions		min	turn	mov	Linit
Parameter	Symbol	V _{IN} = 0.2 V _{DD} , low level hold transistor* Figure 2			min	typ	max	Unit
	R _{IN} 1 A			gure 2	35	200	800	kΩ
	R _{IN} 1 B		down resistor* Figure 2		15	80	300	kΩ
	R _{IN} 1 C	$V_{IN} = 0.8 V_{DD}, I$	35	200	800	kΩ		
	R _{IN} 1 D	$V_{IN} = V_{SS}$, pull-	15	80	300	kΩ		
	R _{IN} 2 A	$V_{IN} = 0.2 V_{DD}, 1$	35	200	800	kΩ		
	R _{IN} 2 B	$V_{IN} = V_{DD}$, The	150	800	3000	kΩ		
	R _{IN} 2 C	$V_{IN} = 0.8 V_{DD}, 1$	35	200	800	kΩ		
	R _{IN} 2 D		NT pin pull-up resistor		150	800	3000	kΩ
	R _{IN} 3	$V_{IN} = V_{DD}$, the I	10	30	50	kΩ		
	R _{IN} 4		RES pin pull-up resistor	10	30	50	kΩ	
	R _{IN} 5		TST pin pull-down resistor		25	130	500	kΩ
	R _{IN} 1 A	V _{IN} = 0.2 V _{DD} , I Figure 2	ow level hold transistor*		40	200	800	kΩ
Input resistance	R _{IN} 1 B	$V_{IN} = V_{DD}$, pull-	down resistor* Figure 2		20	80	300	kΩ
	R _{IN} 1 C	V _{IN} = 0.8 V _{DD} , I Figure 2	high level hold transistor*		40	200	800	kΩ
	R _{IN} 1 D	- °	up resistor* Figure 2	1	20	80	300	kΩ
	R _{IN} 2 A		the INT pin low level hold	V _{DD} =	40	300	800	kΩ
				3.0 to 4.0 V	200	800	2000	kO
	R _{IN} 2 B		$V_{IN} = V_{DD}$, the INT pin pull-down resistor $V_{IN} = 0.8 V_{DD}$, the INT pin high level hold			800	3000	kΩ
	R _{IN} 2 C	transistor			40	200	1200	kΩ
	R _{IN} 2 D	$V_{IN} = V_{SS}$, the INT pin pull-up resistor $V_{IN} = V_{DD}$, the RES pin pull-down resistor			200	800	3000	kΩ
	R _{IN} 3	$V_{IN} = V_{DD}$, the RES pin pull-up resistor		-	10	30	50	kΩ
	R _{IN} 4			1	10	30	50	kΩ
Outeut high laugh under a	R _{IN} 5		TST pin pull-down resistor		30	130	500	kΩ
Output high level voltage	V _{OH} (1)	$I_{OH} = -500 \mu A$	N1 to N4		V _{DD} – 0.5		0.5	V
Output low level voltage	V _{OL} (1)	I _{OL} = 1.0 mA					0.5	V
Output high level voltage	V _{OH} (2)	I _{OH} = -400 μA	K1 to K4, P1 to P4, M1 to SO4, A1 to A4 (with the K		V _{DD} – 0.5			V
Output low level voltage	V _{OL} (2)	I _{OL} = 400 μA	and A ports in output mode)				0.5	V
Output off leakage current	I _{OFF}	V _{OH} = 10.5 V	N1 to 4 (open specification	ns), Figure 10			1.0	μA
Segment port output impedances								
[In CMOS output port mode]								
Output high level voltage	V _{OH} (3)	I _{OH} = -100 μA	0		V _{DD} - 0.5			V
Output low level voltage	V _{OL} (3)	I _{OL} = 100 μA	Seg1 to Seg35				0.5	V
[In p-channel open-drain output p		Figure 11.)]						
Output high level voltage	V _{OH} (3)	I _{OH} = -100 μA	Sant to Sacos		V _{DD} – 0.5			V
Output off leakage current	I _{OFF}	V _{OL} = V _{SS}	Seg1 to Seg35				1.0	μA
[In n-channel open-drain output p	ort mode (See	1			• 1		· .	
Output low level voltage	V _{OL} (3)	I _{OL} = 100 μA	0				0.5	V
Output off leakage current	I _{OFF}	$V_{OH} = V_{DD}$	Seg1 to Seg35				1.0	μA
[Static drive]			1		<u> </u>		ı — — — — — — — — — — — — — — — — — — —	
Output high level voltage	V _{OH} (4)	I _{OH} = -20 μA, S	eg1 to Seg35		V _{DD} – 0.2			V
Output low level voltage	V _{OL} (4)	I _{OL} = 20 μA					0.2	V
Output high level voltage	V _{OH} (5)	I _{OH} = -100 μA,	COM1	V _{DD} – 0.2			V	
Output low level voltage	V _{OL} (5)	I _{OL} = 100 μA					0.2	V
[1/2 bias drive]								
Output high level voltage	V _{OH} (4)	I _{OH} = -20 μA						
Output low level voltage	V _{OL} (4)	I _{OL} = 20 μA	Seg1 to Seg35		V _{DD} – 0.2		0.2	V
Output high level voltage	V _{OL} (5)	$I_{OH} = -100 \mu A$			V _{DD} – 0.2			V
Output middle level voltage	V _{OM}	I _{OH} = -100 μA	COM1 to COM4		V _{DD} /2 – 0.2		V _{DD} /2 + 0.2	v
· ·		$I_{OL} = 100 \mu A$						
Output low level voltage	V _{OL} (5)	I _{OL} = 100 μA					0.2	V

Note: For the 24 pins S1 to S4, K1 to K4, P1 to P4, M1 to M4, SO1 to SO4 and A1 to A4.


Parameter	Symbol		min	typ	max	Unit	
[1/3 bias drive: About 1/10 of the ra	ating for V _{DD}	= 4.5 to 6.0 V]		·			
Supply leakage current	I _{LEK} (1)	V _{DD} = 3.0 V, Ta		0.2	1.0	μA	
Supply leakage current	I _{LEK} (2)	V _{DD} = 3.0 V, Ta	a = 50°C, Figure 3		1.0	5.0	μA
		V _{DD} = 3.0 V	S1 to S4, K1 to K4, P1 to P4, M1 to M4,				1
Input leakage current	I _{OFF}	V _{IN} = V _{DD}	SO1 to SO4, A1 to A4, INT, RES (with the K, P, M, SO and A ports in input mode, and with open specifications for			1.0	μA
		V _{IN} = V _{SS}	the INT and RES pins)	-1.0			μA
Output voltage 1	V _{DD} 1-(1)		1 = C2 = 0.1 μF, V _{DD} 1 = V _O , 32.768 kHz, Figure 4	1.3	1.5	1.7	V
Supply current 1	I _{DD} 1-1	V _{DD} = 3.0 V, Ta = 25°C	Crystal oscillator specifications, crystal:		4.0	8.0	μA
Supply current 1	I _{DD} 1-2	V _{DD} = 3.0 V, Ta = 50°C	32 kHz, Cg = 20 pF, CI = 25 k Ω , HALT mode, Figure 6, LCD = 1/3 bias			20	μA
Supply current 2	I _{DD} 2-1	V _{DD} = 3.0 V, Ta = 25°C	Crystal oscillator specifications, crystal:		6.0	10	V
	I _{DD} 2-2	V _{DD} = 3.0 V, Ta = 50°C	38 or 65 kHz, Cg = 10 pF, Cl = 25 k Ω , HALT mode, Figure 6, LCD = 1/3 bias			30	μA
0	I _{DD} 3-1	V _{DD} = 3.0 V, Ta = 25°C	CF oscillator specifications,		150	300	μA
Supply current 3	I _{DD} 3-2	V _{DD} = 3.0 V, Ta = 50°C	CF: 400 kHz, Ccg = Ccd = 330 pF, HALT mode, Figure 7			500	μA
Oscillator start voltage	V _{STT}	T _{STT} ≤ 5 s				2.2	V
Oscillator hold voltage	V _{HOLD}		Crystal oscillator specifications,	2.0		6.0	V
Oscillator start time	T _{STT}	V _{DD} = 2.2 V	using a 32 kHz crystal,			5	s
Oscillator stability	Δf	V _{DD} = 2.95 to 3.05 V	Cg = 20 pF, Cl ≤ 25 kΩ, Figure 6			3	ppm
Oscillator start voltage	V _{STT}	T _{STT} ≤ 5 s	Crystal oscillator specifications,			2.4	V
Oscillator hold voltage	V _{HOLD}		using a 38 or 65 kHz crystal,	2.2		6.0	V
Oscillator start time	T _{STT}	V _{DD} = 2.4 V	XCg = 10 pF, CI ≤ 25 kΩ, Figure 6			5	s
Oscillator start voltage	V _{STT}	T _{STT} ≤ 30 ms	CF oscillator specifications,			2.4	V
Oscillator hold voltage	V _{HOLD}		using a 400 kHz ceramic filter,	2.2		6.0	V
Oscillator start time	T _{STT}	V _{DD} = 2.4 V	Ccg = Ccd = 330 pF, Figure 7			30	ms
Oscillator start voltage	V _{STT}	T _{STT} ≤ 30 ms	CF oscillator specifications,			2.4	V
Oscillator hold voltage	V _{HOLD}		using an 800 kHz ceramic filter,	2.2		6.0	V
Oscillator start time	T _{STT}	V _{DD} = 2.4 V	Ccg = Ccd = 220 pF or 100 pF, Figure 7			30	ms
Oscillator correction capacitance	Cd	V _{DD} = 3.0 V, X	TOUT pin (built-in)	16	20	24	pF

Electrical Characteristics at V_{DD} = 4.5 to 6.0 V, V_{SS} = 0 V, Ta = -30 to +70 $^{\circ}C$

Parameter	Symbol		Conditions	min	typ	max	Unit
Faiailielei	-		low level hold transistor* Figure 2	30			
	R _{IN} 1 A			120	500	kΩ	
	R _{IN} 1 B	==	down resistor* Figure 2	10	50	200	kΩ
	R _{IN} 1 C	V _{IN} = 0.8 V _{DD} , H	30	120	500	kΩ	
	R _{IN} 1 D		up resistor* Figure 2	10	50	200	kΩ
Input resistance	R _{IN} 2 A		the INT pin low level hold transistor	30	120	500	kΩ
	R _{IN} 2 B	$V_{IN} = V_{DD}$, The	100	500	2000	kΩ	
	R _{IN} 2 C	V _{IN} = 0.8 V _{DD} , t	the INT pin high level hold transistor	30	120	500	kΩ
	R _{IN} 2 D	$V_{IN} = V_{SS}$, the I	NT pin pull-up resistor	100	500	2000	kΩ
	R _{IN} 3	$V_{IN} = V_{DD}$, the I	10	30	50	kΩ	
	R _{IN} 4		RES pin pull-up resistor	10	30	50	kΩ
	R _{IN} 5	$V_{IN} = V_{DD}$, the	TST pin pull-down resistor	20	70	300	kΩ
Output high level voltage	V _{OH} (1)	I _{OH} = -5.0 mA	N1 to N4	V _{DD} - 0.5			V
Output low level voltage	V _{OL} (1)	I _{OL} = 10.0 mA				0.5	V
Output high level voltage	V _{OH} (2)	I _{OH} = -1.0 mA	K1 to K4, P1 to P4, M1 to M4, SO1 to	V _{DD} – 0.5	V _{DD} - 0.2		V
Output low level voltage	V _{OL} (2)	I _{OL} = 2.0 mA	SO4, A1 to A4 (with the K, P, M, SO and A ports in output mode), N1 to N4 (open specifications)		0.2	0.5	V
Output off leakage current	I _{OFF}	V _{OH} = 10.5 V	Figure 10			1.0	μA
Segment port output impedances						_	
[In CMOS output port mode]							
Output high level voltage	V _{OH} (3)	I _{OH} = -500 μA	0.44.0.05	V _{DD} – 0.5	V _{DD} - 0.2		V
Output low level voltage	V _{OL} (3)	I _{OL} = 500 μA	Seg1 to Seg35			0.5	V
[In p-channel open-drain output po	ort mode (See	Figure 11.)]	•				
Output high level voltage	V _{OH} (4)	I _{OH} = -500 μA		V _{DD} – 0.5	V _{DD} – 0.2		V
Output off leakage current	I _{OFF}	V _{OL} = V _{SS}	Seg1 to Seg35			1.0	μA
[In N-channel open-drain output p		1	L				
Output low level voltage	V _{OL} (4)	I _{OL} = 500 μA			0.2	0.5	V
Output off leakage current	I _{OFF}	V _{OH} = V _{DD}	Seg1 to Seg35			1.0	μA
[Static drive]							•
Output high level voltage	V _{OH} (4)	I _{OH} = -40 μA		V _{DD} - 0.2			V
Output low level voltage	V _{OL} (4)	I _{OL} = 40 μA	Seg1 to Seg35			0.2	V
Output high level voltage	V _{OH} (6)	I _{OH} = -400 μA		V _{DD} – 0.2		0.2	V
Output low level voltage	V _{OL} (6)	I _{OL} = 400 μA	COM1	100 0.2		0.2	V
[1/2 bias drive]	- OL (9)		I	1		0.2	v
Output high level voltage	Vou (4)	$lou = -40 \mu A$		V _{DD} - 0.2			V
Output high level voltage	V _{OH} (4)	I _{OH} = -40 μA I _{OL} = 40 μA	Seg1 to Seg35	*DD - 0.2		0.2	V
Output low level voltage	V _{OL} (4)			V== 0.2		0.2	V
	V _{OH} (6)	I _{OH} = -400 μA I _{OH} = -400 μA	1	V _{DD} - 0.2			v
Output middle level voltage	V _{OM} 2-1	I _{OL} = 400 μA	COM1 to COM4	V _{DD} /2 – 0.2		V _{DD} /2 + 0.2	V
Output low level voltage	V _{OL} (6)	I _{OL} = 400 μA				0.2	V
[1/3 bias drive]	1			,			
Output high level voltage	V _{OH} (4)	I _{OH} = -40 μA		V _{DD} - 0.2			V
Output middle level voltage	V _{OM} 1-1	I _{OH} = -40 μA	Seg1 to Seg35	2 V _{DD} /3 - 0.2		2 V _{DD} /3 + 0.2	V
	V _{OM} 1-2	I _{OL} = 40 μA		V _{DD} /3 – 0.2		V _{DD} /3 + 0.2	V
Output low level voltage	V _{OL} (4)	I _{OL} = 40 μA				0.2	V
Output high level voltage	V _{OH} (6)	I _{OH} = -400 μA		V _{DD} – 0.2			V
Output middle level voltage	V _{OM} 2-1	I _{OH} = -400 μA	COM1 to COM4	2 V _{DD} /3 - 0.2		2 V _{DD} /3 + 0.2	V
	V _{OM} 2-2	I _{OL} = 400 μA		V _{DD} /3 – 0.2		V _{DD} /3 + 0.2	V
Output low level voltage							

Note: For the 24 pins S1 to S4, K1 to K4, P1 to P4, M1 to M4, SO1 to SO4 and A1 to A4.

Parameter	Symbol		Conditions		min	typ	max	Unit
	I _{OP} -1	V_{DD} = 3 V, Ta = 25°C, 32 kHz crystal oscillator, LCD = 1/3 bias, Figure 6				20	30	μA
	I _{OP} -2	V _{DD} = 5 V, Ta = LCD = 1/3 bias		40	60	μA		
Operating current	I _{OP} -3	V _{DD} = 3 V, Ta =	= 25°C, 400 kHz, CF oscilla	tor, Figure 6		240	300	μA
	I _{OP} -4	V _{DD} = 5 V, Ta =		620	780	μA		
	I _{OP} -5	V _{DD} = 3 V, Ta =		350	480	μA		
	I _{OP} -6	V _{DD} = 5 V, Ta =		850	1200	μA		
	I _{OP} -7	V _{DD} = 5 V, Ta =	= 25°C, 4 MHz, CF oscillato		1700	2500	μA	
Supply leakage current	I _{LEK} (1)	V _{DD} = 6.0 V, Ta	a = 25°C, Figure 3			0.2	1.0	μA
Supply leakage current	I _{LEK} (2)	V _{DD} = 6.0 V, Ta	a = 50°C, Figure 3			1.0	5.0	μA
Input leakage current		V _{DD} = 6.0 V	S1 to S4, K1 to K4, M1 to I					μΑ
	I _{OFF}	$V_{IN} = V_{DD}$	SO4, A1 to A4, INT, RES (M, SO and A ports in input	mode and			1.0	μA
		V _{IN} = V _{SS}	 with open specifications for the INT and RES pins) 		-1.0			μA
Output voltage 2	V _{DD} 1-(2)	V _{DD} = 5.0 V, C1 = C2 = 0.1 μF, Figure 4, 1/2 bias, fopg = 32.768 kHz		$V_{DD}1 = V_O$	2.4	2.5	2.6	V
Output voltage 3	V _{DD} 1-(3)	V _{DD} = 5.0 V, C1 = C2 = 0.1 μF, Figure 4,		$V_{DD}1 = V_O$,	1.4	1.67	1.8	V
	V _{DD} 2-(3)	1/3 bias, fopg =	32.768 kHz	$V_{DD}2 = V_O$	3.1	3.33	3.5	V
Supply current 1	I _{DD} 1-1	V _{DD} = 5.0 V, Ta = 25°C	crystal: 32 kHz V, Cg = 20 pF, C1 = 25 k Ω , HALT mode,			15	30	μA
	I _{DD} 1-2	V _{DD} = 5.0 V, Ta = 50°C					50	μΑ
2 1 12	I _{DD} 2-1	V _{DD} = 5.0 V, Ta = 25°C	Crystal oscillator specifications, crystal: 38 or 65 kHz, Cg = 10 pF,			15	30	μΑ
Supply current 2	I _{DD} 2-2	V _{DD} = 5.0 V, Ta = 50°C	C1 = 25 k Ω , HALT mode, I LCD = 1/3 bias			50	μA	
Quere la sumert Q	I _{DD} 3-1	V _{DD} = 5.0 V, Ta = 25°C	CF oscillator specifications		400	600	μA	
Supply current 3	I _{DD} 3-2	V _{DD} = 5.0 V, Ta = 50°C	CF: 400 kHz, Ccg = Ccd = HALT mode, Figure 7			600	μA	
Quere la sument d	I _{DD} 4-1	V _{DD} = 5.0 V, Ta = 25°C	CF oscillator specifications,			450	650	μΑ
Supply current 4	I _{DD} 4-2	V _{DD} = 5.0 V, Ta = 50°C	CF: 1000 kHz, Ccg = Ccd HALT mode, Figure 8 or 22	-			700	μΑ
Supply surrent 5	I _{DD} 5-1	V _{DD} = 5.0 V, Ta = 25°C	CF oscillator specifications,			500	700	μΑ
Supply current 5	I _{DD} 5-2	V _{DD} = 5.0 V, Ta = 50°C	CF: 2000 kHz, Ccg = Ccd = HALT mode, Figure 8	= 33 pF,			750	μΑ
Supply surrent 6	I _{DD} 6-1	V _{DD} = 5.0 V, Ta = 25°C	CF oscillator specifications,			700	900	μΑ
Supply current 6	I _{DD} 6-2	V _{DD} = 5.0 V, Ta = 50°C	CF: 4000 kHz, Ccg = Ccd = HALT mode, Figure 8	= 33 pF,			1000	μΑ
Oscillator correction capacitance	Cd	V _{DD} = 5.0 V, X	TOUT pin (built-in)		16	20	24	pF

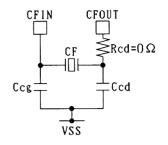
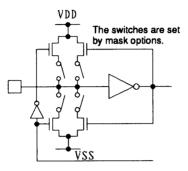



Figure 1-2 Oscillator Circuit (CF pins)

Recommended Ceramic Filters

Manufacturer Murata Mfg. Co., L				Kyocera Corporation			
Item Frequency	Catalog No.	Ccg (pF)	Ccd (pF)	Catalog No.	Ccg (pF)	Ccd (pF)	
400 kHz	CSB400P	330	330	KBR-400B	330	330	
800 kHz	CSB800J	220	220	KBR-800H	100	100	
1 MHz	CSB1000J	220	220	KBR-1000H/Y	100	100	
2 MHz	CSA2.00MG, CST2.00MG	33 (built-in)	33 (built-in)	KBR-2.0MS	33	33	
4 MHz	CSA4.00MG, CSA4.00MGW	33 (built-in)	33 (built-in)	KBR-4.0MSA/MCA, KBR-4.0MKS/MWS	33 (built-in)	33 (built-in)	

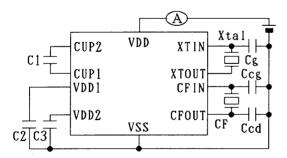


Figure 3 Supply Leakage Test Circuit

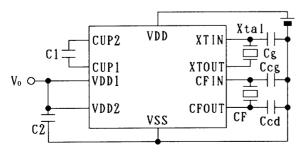


Figure 4 Output Voltage Test Circuit

- Stopped state
- S-port input resistors: on state
- I/O ports: output mode, all data values high
- RES and INT pins: built-in resistor specifications, open state
- Currents due to external components connected to the LCD ports are not included.
- Crystal frequency: between 32 and 65 kHz
- CF frequency: 200 kHz to 4 MHz
- Crystal frequency: 32 kHz
- C1, C2 and C3: 0.1 µF

• LCD ports: open

Figures 4 and 5

• CF frequency: 200 kHz to 4 MHz -

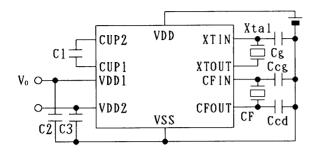


Figure 5 Output Voltage Test Circuit

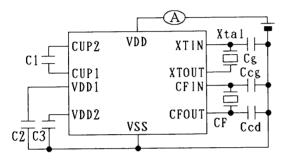
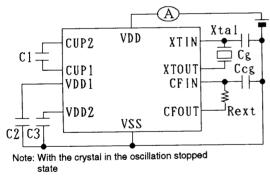



Figure 7 Supply Current Test Circuit

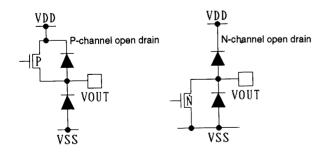
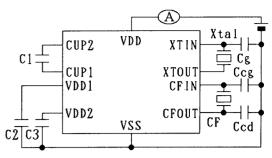



Figure 11 Segment Pin Open Drain Circuit Configurations

Note: With the CF oscillator in the stopped state, with a 32, 38 or 65 kHz crystal. C1, C2 and C3 are 0.1 µF.

Figure 6 Supply Current Test Circuit

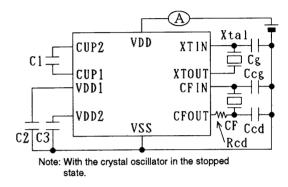


Figure 8 Supply Current Test Circuit

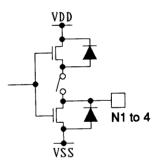


Figure 10 Supply Current Test Circuit

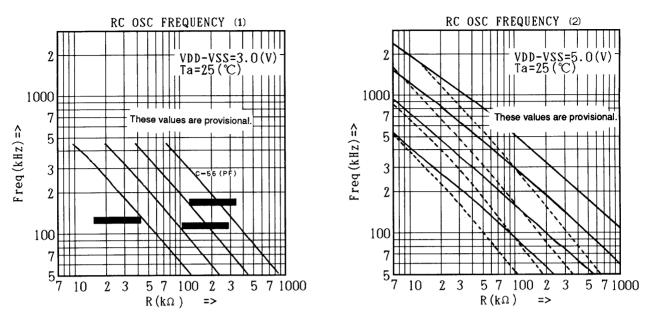
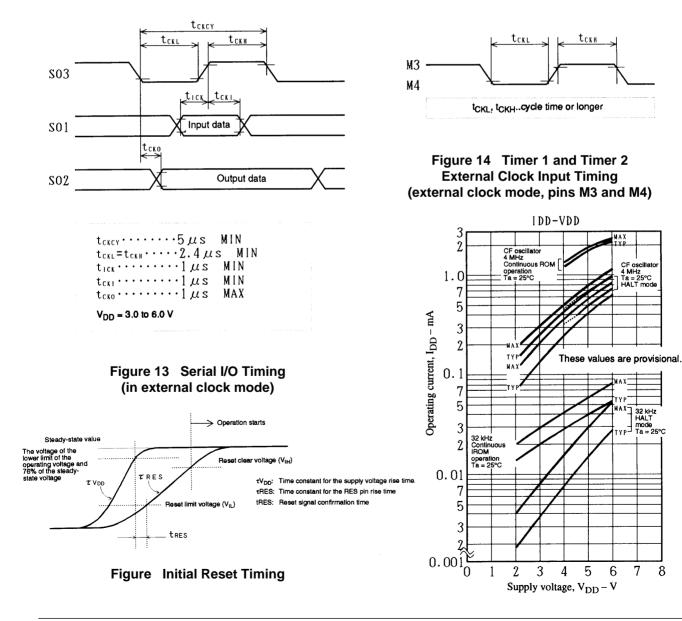



Figure 12 Sample RC Oscillator Frequency Characteristics

8

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1995. Specifications and information herein are subject to change without notice.