

Internally Synchronized Silicon Gate 8M (1,048,576-word \times 8-bit, 524,288-word \times 16-bit) Mask ROM

GGB

LC378000RP

Overview

The LC378000RP is an 8-Mbit mask ROM that can be switched between byte mode, which provides an 8-bit × 1,048,576-word structure, and word mode, which provides a 16-bit × 524,288-word structure. Since this device operates over the wide supply voltage range of 2.6 to 5.5 V and achieves access times (t_{AA}) of 100 ns (at V_{CC} = 4.5 to 5.5 V) and 200 ns (at V_{CC} = 2.6 to 5.5 V), it can be used in a wide range of systems, from 5-V systems requiring high-speed access to 3-V battery operated systems.

Features

- Supply voltage range: 2.6 to 5.5 V
- Access time (t_{AA}): 100 ns (V_{CC} = 4.5 to 5.5 V) (t_{CA}): 110 ns (V_{CC} = 4.5 to 5.5 V) 200 ns (V_{CC} = 2.6 to 5.5 V)
- Switchable between 8-bit and 16-bit data path widths Byte mode: 1,048,576 words × 8 bits Word mode: 524,288 words × 16 bits
- Operating current drain: 90 mA (maximum)
- Standby current: 30 µA (maximum)
- Fully static operation (internal synchronization)
- Three-state outputs
- Package: 42-pin DIP (600 mil) plastic package

Package Dimensions

unit: mm

3014A-DIP42

Pin Assignment

Pin Functions

A0 to A19	Address inputs
D0 to D15/A-1	Data outputs
CE	Chip enable input
ŌĒ	Output enable input
BYTE	Byte/word mode switching
V _{CC}	Power
V _{SS}	Ground

D15/A-1:In byte mode, this pin functions as the A-1 address input, and in word mode, it functions as the D15 data output pin.

Block Diagram

Function Logic Table

CE	ŌĒ	BYTE	Output pin state	Current drain
Н	Х	L	High impedance	Standby mode level
L	Н	L	High impedance	Operating mode level
L	L	L	DOUT × 8 (BYTE MODE)*	Operating mode level
Н	Х	н	High impedance	Standby mode level
L	Н	н	High impedance	Operating mode level
L	L	н	DOUT × 16 (WORD MODE)	Operating mode level

Note: X: A high-level or low-level input

D8 to 14 are high impedance and D15 functions as the A-1 address input.

Specifications

Absolute Maximum Ratings*

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		-0.3 to +7.0	V
Input pin voltage	V _{IN}		–0.3* to V _{CC} + 0.3	V
Output pin voltage	V _{OUT}		–0.3 to V _{CC} + 0.3	V
Allowable power dissipation	Pd max	Ta = 25°C	1.0	W
Operating temperature	Topr		-10 to +70	°C
Storage temperature	Tstg		-55 to +125	°C

Note: Application of stresses greater than or equal to the maximum ratings may lead to device destruction.

*: Minimum value minus 3.0 V for pulses with widths of 30 ns or less.

Capacitance Characteristics* at $Ta = 25^{\circ}C$, f = 1.0 MHz

Parameter	Symbol	Conditions	Ratings			Linit
Falameter	Symbol	Conditions	min	typ	max	Unit
Input pin capacitance	CIN	$V_{IN} = 0$ V. Reference value using the Sanyo DIP.			8	pF
Output pin capacitance	C _{OUT}	V _{OUT} = 0 V. Reference value using the Sanyo DIP.			10	pF

Note: These parameters are not tested in all units, but rather are sampled in a subset of units produced.

DC Allowable Operating Ranges at Ta = -10 to $+70^{\circ}C$

Parameter	Symbol	Conditions	Ratings			Linit
			min	typ	max	
Supply voltage	V _{CC} max		2.6	5.0	5.5	V
Input high-level voltage	VIH		2.2		V _{CC} + 0.3	V
Input low-level voltage	VIL		-0.3		0.6	V

DC Electrical Characteristics at Ta = –10 to +70°C, V_{CC} = 2.6 to 5.5 $\rm V$

Deremeter	Symbol	Conditions		Linit		
Parameter 5		Symbol Conditions	min	typ	max	Unit
Operating current drain	I _{CCA1}	$\overline{CE} = 0.2 \text{ V}, \text{ V}_{\text{I}} = \text{V}_{\text{CC}} - 0.2 \text{ V}/0.2 \text{ V}$			30	mA
	I _{CCA2}	$\overline{CE} = V_{IL}$, $I_O = 0$ mA, $V_I = V_{IH}/V_{IL}$, f = 10 MHz			90	mA
Standby current drain	I _{CCS1}	$\overline{CE} = V_{CC} - 0.2 V$			30 (1.0)	μA
	I _{CCS2}	$\overline{CE} = V_{IH}$			1.0 (0.3)	mA
Input leakage current	I _{LI}	$V_{IN} = 0$ to V_{CC}			±1.0	μA
Output leakage current	I _{LO}	$\overline{CE} \text{ or } \overline{OE} = V_{IH}, V_{OUT} = 0 \text{ to } V_{CC}$			±1.0	μA
Output high-level voltage	V _{OH}	I _{OH} = -0.5 mA	0.8 V _{CC}			V
Output low-level voltage	V _{OL}	I _{OL} = 0.5 mA			0.2	V

Note: Values in parentheses are guaranteed at Ta = 25°C.

AC Characteristics at Ta = -10 to $+70^{\circ}$ C, V_{CC} = 2.6 to 5.5 V

Doromotor	Symbol Conditions	Conditions		Linit		
Farameter		min	typ	max	Unit	
Cycle time	t _{CYC}		200 (100)			ns
Address access time	t _{AA}				200 (100)	ns
CE enable time	t _{CEON}		200 (135)			ns
CE access time	t _{CA}				200 (110)	ns
OE access time	t _{OA}				100 (40)	ns
Output hold time	t _{OH}		20			ns
Output disable time*	t _{OD}				100	ns

Note: t_{OD} is stipulated as the time from the rise of either \overline{CE} or \overline{OE} (whichever occurs first) to the point when the output goes to the high-impedance state. These parameters are not tested in all units, but rather are sampled in a subset of units produced. Values in parentheses are for $V_{CC} = 4.5$ to 5.5 V.

Test Conditions

Input voltage amplitude	0.4 V to 2.8 V
Rise and fall times	5 ns
Input discrimination level	1.5 V
Output discrimination level	1.5 V
Output load	See figure.

Output Load

Timing Waveforms

Notes on System Design

This IC adopts the ATD technique, in which operation starts when a change in either the CE or address inputs is detected. This means that the output data immediately after power is applied is invalid. When using this IC as program memory for the Z80 and similar microprocessors, applications must take into account the fact that valid data will not be output after power is first applied unless the value of either the CE line or at least one of the address lines is changed after the power supply has stabilized.

Another point due to the use of the ATD technique is that this IC is sensitive to input noise. Do not apply voltages outside the allowable DC input levels for extended periods and do not apply input voltages with large noise components.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 1998. Specifications and information herein are subject to change without notice.