Monolithic Digital IC

LB1409

Level Meter Driver for 9 LEDs

Applications

- AC level meters such as VU meters.
- DC level meters such as signal meters.

Functions

• Display

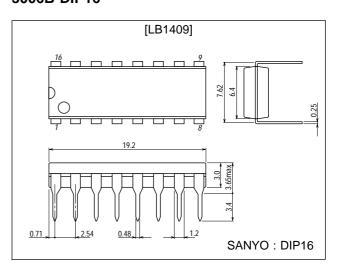
Nine red or green LEDs display the input level in the shape of a bar.

- · Input amplifier Wide application is available owing to built-in DC amplifier whose gain is variable with external resistors.
- Comparator level Setting is made by steps of 3 dB as follows. -18 dB, -15 dB, -12 dB, -9 dB, -6 dB, -3 dB, 0 dB, +3 dB, +6 dB
- · Supply voltage The recommended supply voltage range is so wide as 5.5 V to 16 V. (If pin Vref 2 is used, 7 V to 16 V.)
- · Reference voltage Constant voltage output is available with external transistor owing to pin Vref 2 = 5 V.

Specifications

Comparator Level OUT Pin Voltage at Ta = 25° C, V_{CC} = 12 V, Vref 1 = 3 V

Comparator level	Pin No.	min	typ max		Unit
D1	7	0.11	0.18*	0.25	V
D2	8	0.20	0.27*	0.34	V
D3	9	0.30	0.38*	0.46	V
D4	10	0.45	0.53*	0.61	V


- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Package Dimensions

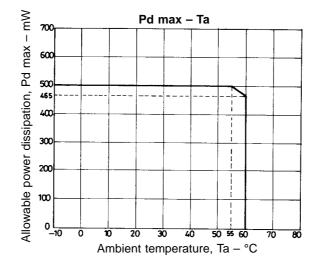
3006B-DIP16

unit : mm

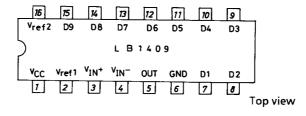
Comparator level	Pin No.	min	typ	max	Unit
D5	11	0.66	0.75	0.84	V
D6	12	0.97	1.06	1.15	V
D7	13	1.40	1.50	1.60	V
D8	14	2.02	2.12	2.22	V
D9	15	2.90	3.00	3.10	V

*: No overlap occurs in each individual IC.

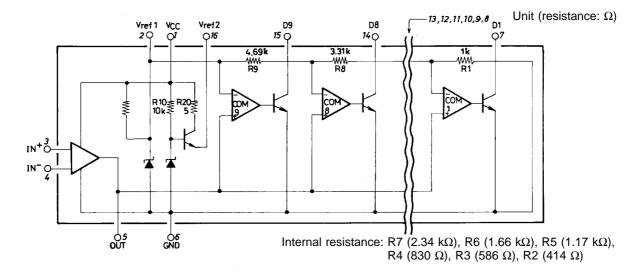
Absolute Maximum Ratings at Ta = $25^{\circ}C$


Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max	Pin 1	-0.3 to +18	V
Input voltage	V _{IN}	Pin 3, 4	-0.3 to V _{CC}	V
D1 to D9 output voltage	V _{OUT} (D)	D1 to D9 off	-0.3 to +18	V
D1 to D9 output current	I _{OL} (D)	Pin 7 to 15, D1 to D9 on	+30	mA
First reference flow-out current	Iref (1)	Pin 2	-1 to 0	mA
Second reference flow-out current	Iref (2)	Pin 16	-6 to 0	mA
V _{OUT} supply voltage	V _{OUT}	Pin 5	-0.3 to +6	V
Allowable power dissipation	Pd max	Ta = 55°C	500	mW
Operating temperature	Topr		-10 to +60	°C
Storage temperature	Tstg		-40 to +125	°C

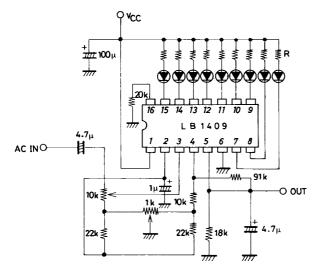
Allowable Operating Ranges at Ta = $25^{\circ}C$


Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V	Pin 1,	+5.5 to +16	V
	V _{CC}	(): Using Vref 2	(+7 to +16)	V
Input voltage	V_{IN}^+ or V_{IN}^-	Pin 3 or Pin 4	-0.3 to +V _{CC}	V
Output pin load resistance	RL	Between pin 5 OUT and pin 6 GND.	15 k to 20 k	Ω

Electrical Characteristics at Ta = 25°C, V_{CC} = 12 V


Parameter	Symbol	Conditions	min	typ	max	Unit
Input bias current (Amplifier)	I _{IN} + (A)	Pin 3, $V_{IN}^+ = 0$ V, $V_{IN}^- = 3$ V, GND = 0 V	-2		0	μA
Input bias current (Ampliner)	I _{IN} [–] (A)	Pin 4, V_{IN}^+ = 3 V, V_{IN}^- = 0 V, GND = 0 V	-2		0	μA
Input bias current (Comparator) + Output leakage current	I _{IN} + (C)+ I _{OL} (A)	Pin 5, $V_{IN}^{+} = 0$ V, $V_{IN}^{-} = 3$ V, $OUT = 0$ V, GND = 0 V	-10		0	μA
Offset voltage (1)	Voffset (1)	Pin 5, V _{CC} = 6 V, V _{IN} ⁺ = V _{IN} ⁻ = 0 V, GND = –6 V, GAIN = 20 dB	-180		+180	mV
Offset voltage (2)	Voffset (2)	Pin 5, $V_{IN}^+ = V_{IN}^- = 0$ V, GND = 0 V, GAIN = 20 dB	0		+180	mV
First reference voltage	Vref (1)	Pin 2, Iref = 0 to 1 mA	2.6		3.0	V
Second reference voltage	Vref (2)	Pin 16, Iref = 0 to 6 mA	4.2	4.7	5.2	V
Current drain	I _{CC}	Pin 1, V_{IN}^+ = 3 V, V_{IN}^- = 0 V		10	20	mA
Amplifier gain	VG	Open loop	30			dB
Output flow-out current	I _{ОН}	Pin 5, V_{IN}^+ = 3 V, V_{IN}^- = 0 V, V_{OUT} = 0 V			-10	mA
D pin output ON voltage	V _{OL} (D)	Pin 7 to 15, D1 to D9, I_{OL} = 20 mA, $V_{IN}{}^+$ = 3 V, $V_{IN}{}^-$ = 0 V			1.2	V
D pin output leak current	I _{OH} (D)	Pin 7 to 15, D1 to D9, $V_{IN}^{+} = 0 \text{ V}, V_{IN}^{-} = 3 \text{ V},$ V _{D1 to D9} = 12 V			10	μA
Output voltage (Amplifier)		Pin 5, V _{CC} = 5.5 V, V _{IN} ⁺ = 3 V, V _{IN} ⁻ = 0 V, R _L = 15 kΩ	4			V
	V _{OH}	Pin 5, V_{CC} = 12 V, V_{IN}^+ = 3 V, V_{IN}^- = 0 V, R_L =15 k Ω	9.5			V

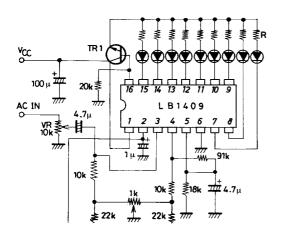
Pin Assignment


Equivalent Circuit

Sample Application Circuits

(All with offset adjustment)

• Circuit not using Vref 2



Adjusting procedures

- 1. Turn the center of 10 k Ω VR largely to 4.7 μF capacitor side.
- 2. Input AC signal of $50/\sqrt{2}$ mV from AC IN.
- 3. Adjust 1 k Ω VR so that the output at OUT becomes 500 mV DC. Equation used in the calculation of R to be inserted in series with LED. Gain : 20 dB R (red) = (V_{CC} - 2.5) / 6 k Ω R (green) = (V_{CC} - 2.8) / 18 k Ω

Unit (resistance: Ω , capacitance: F)

• Circuit using Vref 2

Unit (resistance: Ω, capacitance: F)

Adjusting procedures

• R to be inserted in series with LED is as follows irrespective of V_{CC} . R (red) = 360 Ω (Approx. 6 mA)

R (green) = 100 Ω (Approx. 18 mA)

 TR1 should be chosen with P_C considered; and the following transistors are recommended. Red LED drive 2SD400 Green LED drive 2SD325

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 1996. Specifications and information herein are subject to change without notice.