

Overview

The LA7775M is an FM receiver for CATV or FM communications equipment. In addition to functions for FM demodulation (oscillator, mixer, limiting IF amplifier, and quadrature detection circuits) it also includes on chip an FSK data shaper circuit, an RF amplifier, and a local oscillator frequency switching circuit.

Functions

- RF amplifier
- Mixer
- Oscillator
- Oscillator switching
- Limiting IF amplifier
- Quadrature detection
- Data shaper

Features

- Wideband RF input
- On-chip RF amplifier
- On-chip oscillator frequency switching circuit

Package Dimensions

unit: mm
3045B-MFP24

Specifications

Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\mathrm{CC}} \max$		7	V
Allowable power dissipation	Pd max		350	mW
Operating temperature	Topr		-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +125	${ }^{\circ} \mathrm{C}$

Operating Conditions at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V_{CC}		5	V
Operating supply voltage range	$\mathrm{V}_{\text {CCOp }}$		4.5 to 5.5	V
Input frequency	fin21, fin24		40 to 350	MHz

LA7775M

Operating Characteristics at $\mathbf{T a}=25^{\circ} \mathrm{C}\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{f}_{\mathbf{0}}=106.5 \mathrm{MHz}, \mathrm{fIF}=10.7 \mathrm{MHz}\right)$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Current drain	ICco			20	26	mA
Preamplifier input capacitance	Ci 21	100 MHz		7		pF
Preamplifier input resistance	Ri21	100 MHz		1		k ת
Preamplifier voltage gain	Gp	350 MHz		15		dB
Mixer input capacitance	Ci 24	100 MHz		7		pF
Mixer input resistance	Ri24	100 MHz		1		$\mathrm{k} \Omega$
Mixer conversion gain	Gc	350 MHz		25		dB
-3 dB limiting sensitivity	Vi	$\Delta \mathrm{F}=75 \mathrm{kHz} \mathrm{dev}$, at 1 kHz		10	16	dB μ
Demodulation output	Vo	$\Delta \mathrm{F}=75 \mathrm{kHz} \mathrm{dev}$, at 1 kHz	180	250		mVrms
SAW switching threshold level	V19TH		1.35	1.50	1.65	V
Data output high level	V18H		4.5			V
Data output low level	V18L				0.5	V
Oscillator output	V2	117.2 MHz	0.35			Vp-p

Equivalent Circuit Block Diagram and Test Circuit

LA7775M

Pin Functions

\begin{tabular}{|c|c|c|c|c|}
\hline Pin No. \& Pin \& Pin voltage(V) \& Notes \& Equivalent circuit

\hline 1 \& RFGND \& \& \&

\hline 2 \& LOOUT \& 3.3 \& Oscillator output after the limiting amplifier. This pin is used when constructing a PLL synthesizer or related circuit. A 1$\mathrm{k} \Omega$ external resistor is required when using this pin. \&

\hline 3
4
4 \& LOCOM \& 1.2
1.9
0.8 \& When pin 19 is low, pin 4 is selected, when high, pin 5 is selected. \& (4)

\hline 6 \& RFV VCC \& \& \&

\hline 7 \& IFOUT \& 4.1 \& A matching resistor for the SAW filter is built in. \&

\hline 8 \& V_{CC} \& \& \&

\hline 9

10 \& | LIMITER INPUT1 |
| :--- |
| LIMITER INPUT2 | \& 1.5

1.5 \& \multirow[t]{2}{*}{Insert a $510-\Omega$ resistor between pins 9 and 11 when using this circuit.} \& \multirow[t]{2}{*}{}

\hline 11 \& LMITER BIAS \& 1.5 \& \&

\hline 12 \& LIMITER OUTPUT \& 4.2 \& \&

\hline
\end{tabular}

Continued on next page.

Continued from preceding page.

\begin{tabular}{|c|c|c|c|c|}
\hline Pin No. \& Pin \& Pin voltage(V) \& Notes \& Equivalent circuit

\hline 13 \& QUAD INPUT \& 4.3 \& \&

\hline 14

15 \& | FILTER INPUT |
| :--- |
| DET. OUTPUT | \& 2.5

1.8 \& \&

\hline 16

17 \& | DATASHAPER INPUT1 |
| :--- |
| DATASHAPER INPUT2 | \& \& \& \multirow[t]{2}{*}{}

\hline 18 \& DATA OUTPUT \& \& \&

\hline 19 \& LOSELECT \& \& When pin 19 is low, pin 4 is selected, when high, pin 5 is selected. \& T00087

\hline 20 \& GND \& \& \&

\hline 21 \& RF AMP INPUT \& 1.6 \& \multirow{3}{*}{The optimal collector current is between 1.5 and 2 mA .} \& \multirow[t]{3}{*}{}

\hline 22 \& RF AMP BIAS \& 0.6 \& \&

\hline 23 \& RF AMP OUTPUT \& \& \&

\hline 24 \& MIX INPUT \& 1.9 \& \&

\hline
\end{tabular}

Design Notes

1. RF amplifier

This circuit is formed as a two-transistor cascode amplifier and takes an LC tank circuit as its load. The operating current is set by the external resistor connected to pin 22. The optimal operating current is between 1.5 and 2 mA . The capacitor (C2) connected between pins 23 and 24 is related to the tank circuit Q , and must not be too large.

2. Oscillator circuit

This is a grounded collector oscillator circuit, and supports using either an LC, a crystal, or a SAW resonator. Care is required when constructing this circuit, since the input sensitivity may be suppressed if the oscillator circuit output leaks into the IF limiting amplifier. It is extremely important to use a capacitor (e.g. a ceramic capacitor) with excellent high-frequency characteristics for the 1000 pF bypass capacitor inserted between the oscillator circuit power supply pin (pin 6) and the ground pin (pin 1). In addition, this capacitor must be located as close as possible to pins 1 and 6. When forming an oscillator circuit using a SAW resonator, the optimal values for C 1 through C 3 will vary with the oscillator frequency. Thus this circuit must be adjusted for optimal performance. Since the capacitor C3 between pin 3 and ground will be shared if a circuit that switches between two SAW resonators is used, the difference between the frequencies must be held to under 10 MHz . If a large frequency difference is required, design a circuit that also switches the capacitance between pin 3 and
 ground.
3. IF limiting amplifier

This circuit consists of a six-stage direct coupled differential amplifier to which DC feedback is applied. Since an internal 1-k Ω resistor is built in between the IF input pin (pin 9) and pin 11, the input and output impedance of the $330-\Omega$ IF filter can be matched with an external $510-\Omega$ resistor. No external matching resistor is required for the IF output (pin 7), since a $330-\Omega$ resistor is built in.
4. Quadrature detection circuit

An external phase shifting circuit is formed from an LC tuning circuit and a ceramic discriminator.

■ No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

■ Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.

- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1997. Specifications and information herein are subject to change without notice.

