LA5633

Satellite Broadcast (BS/CS) Tuner Regulator IC

Overview

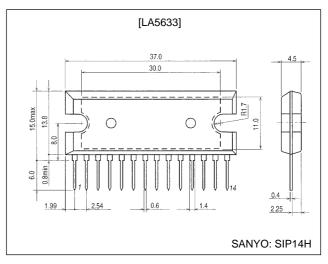
The LA5633 is a low-saturation regulator IC designed for use in satellite broadcast tuners (such as tuners for the Japanese BS and CS systems) and provides four controllable outputs.

Applications

- Power supply systems in BS/CS tuners
- Audio Video (AV) equipment that includes any type of satellite broadcast tuner
- Miniature electronic equipment

Functions

- Built-in four regulators of low-saturation output (15.7 V/350 mA, 9 V/250 mA, 12 V/100 mA, 5 V/650 mA)
- Output on/off control (active low)
- On-chip thermal protection and overcurrent protection circuits


Features

- Provides all four voltages required by BS/CS tuners, and thus can contribute to end product miniaturization.
- V_O1 can be controlled independently, and V_O2 , V_O3 , and V_O4 are controlled together, thus providing a high degree of flexibility in system design.
- The adoption of a low-saturation regulator circuit reduces internal power dissipation.
- Provides 3 inputs to make both low-power design and thermal design easy.

Package Dimensions

unit: mm

3023A-SIP14H

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

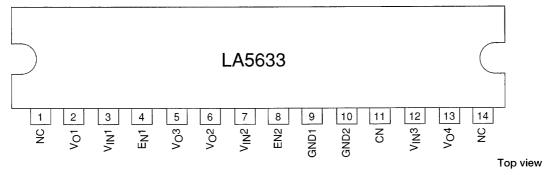
Specifications Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Input voltage	V _{IN} max	$V_{IN}1 \ge V_{IN}2 \ge V_{IN}3$	35	V
Enable pin voltage	V _{EN} max	EN1, EN2	V _{IN} max	V
Allowable power dissipation	Pd max	With an arbitrarily large heat sink	15	W
		With no heat sink	4.3	W
Junction to case thermal resistance	θj-c		3	°C/W
Junction to atmosphere thermal resistance	θj-a		29.07	°C/W
Operating temperature	Topr		-20 to +80	°C
Storage temperature	Tstg		-55 to +150	°C
Junction temperature	Tj max		150	°C

Operating Conditions at $Ta = 25^{\circ}C$

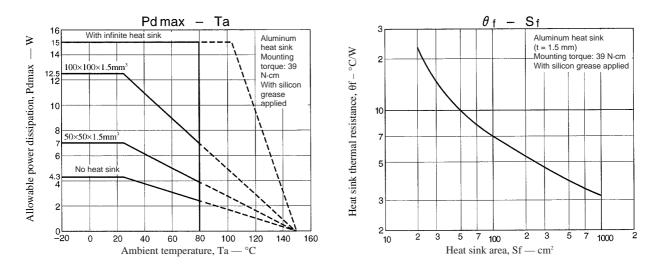
Parameter	Symbol	Conditions	Ratings	Unit
	I _O 1	Regulator 1	5 to 350	mA
Output current	I _O 2	Regulator 2	1 to 250	mA
	I _O 3	Regulator 3	1 to 100	mA
	I _O 4	Regulator 4	5 to 650	mA

Operating Characteristics at $Ta = 25^{\circ}C$ in the stipulated test circuit

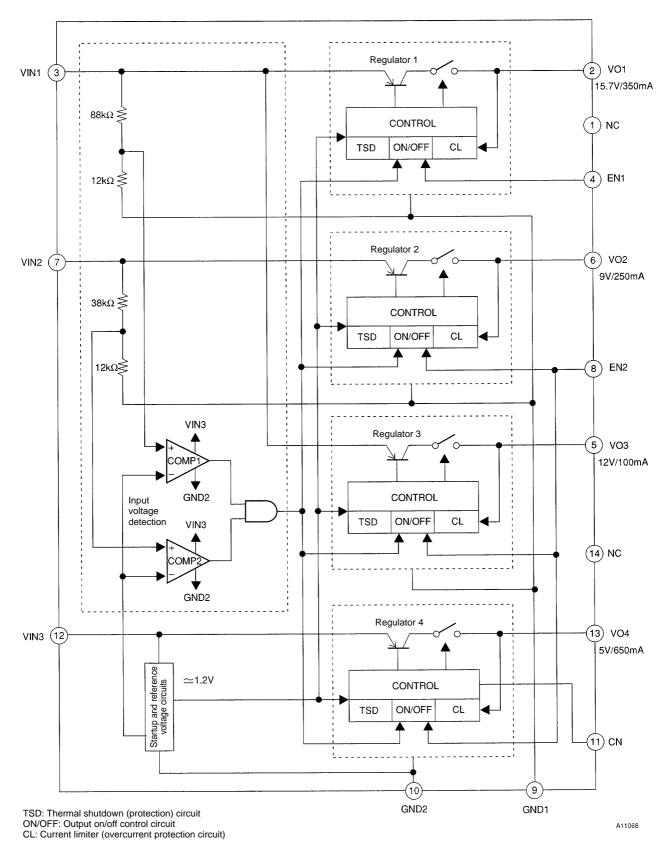

Parameter	Symbol	Symbol Conditions		Ratings		
i didilletei	Gymbol	Conditions		typ	max	- Unit
Regulator 1 [V _{EN} 1 = low, V _O 1: on	, V _{IN} 1 = 20 V, V	/ _{IN} 2 = 11 V, V _{IN} 3 = 7.0 V, I _O 1 = 350 mA				
Output voltage 1	V _O 1		14.9	15.7	16.5	V
Dropout voltage	V _{DROP} 1-1			0.3	0.5	V
Diopoul vollage	V _{DROP} 1-2	I _O 1 = 175 mA		0.15	0.3	V
Line regulation	ΔV_{OLN} 1	$17.5 \text{ V} \leq \text{V}_{\text{IN}}1 \leq 23 \text{ V}$		20	100	mV
Load regulation	ΔV_{OLD} 1	$5 \text{ mA} \leq I_O 1 \leq 350 \text{ mA}$		40	200	mV
Peak output current	I _{OP} 1		350	540		mA
Output short-circuit current	I _{OSC} 1			150		mA
Output on control voltage	V _{ENL} 1	V _O 1 : ON			1.0	V
Output off control voltage	V _{ENH} 1	V _O 1 : OFF	4.0		V _{IN} 1	V
Output low-level voltage	V _O 1 OFF				0.2	V
Output noise voltage	V _{NOISE} 1	$10 \text{ Hz} \le f \le 100 \text{ kHz}$		110		μVrms
Ripple rejection	Rrej1	f = 120 Hz, 18 V \leq V _{IN} 1 \leq 23 V		50		dB
Regulator 2 [V _{EN} 2 = low, V _O 2: on	, V _{IN} 1 = 20 V, V	/ _{IN} 2 = 11 V, V _{IN} 3 = 7.0 V, I _O 2 = 250 mA				
Output voltage 2	V _O 2		8.55	9.0	9.45	V
Dropout voltage	V _{DROP} 2			0.3	0.5	V
Line regulation	$\Delta V_{OLN} 2$	$10.45 \text{ V} \leq \text{V}_{IN} 2 \leq 23 \text{ V}$		20	100	mV
Load regulation	$\Delta V_{OLD} 2$	$1 \text{ mA} \le I_0 2 \le 250 \text{ mA}$		30	100	mV
Peak output current	I _{OP} 2		250	270		mA
Output short-circuit current	I _{OSC} 2			70		mA
Output on control voltage	V _{ENL} 2	V _O 2 : ON			1.0	V
Output off control voltage	V _{ENH} 2	V _O 2 : OFF	4.0		V _{IN} 2	V
Output low-level voltage	V _O 2 OFF				0.2	V
Output noise voltage	V _{NOISE} 2	10 Hz ≤ f ≤ 100 kHz		110		μVrms
Ripple rejection	Rrej2	$f = 120 \text{ Hz}, 11 \text{ V} \le \text{V}_{IN} 2 \le 23 \text{ V}$		50		dB
Regulator 3 [V _{EN} 2 = low, V _O 3 on,	V _{IN} 1 = 20 V, V	/ _{IN} 2 = 11 V, V _{IN} 3 = 7.0 V, I _O 3 = 100 mA				
Output voltage 3	V _O 3	· · · · · · · · · · · · · · · · · · ·	11.4	12.0	12.6	V
Dropout voltage	V _{DROP} 3			0.3	0.5	V
Line regulation	ΔV _{OLN} 3	$13.6 \text{ V} \le \text{V}_{IN} 1 \le 23 \text{ V}$		20	100	mV
Load regulation	ΔV _{OLD} 3	$1 \text{ mA} \le I_0 3 \le 100 \text{ mA}$		20	50	mV
Peak output current	I _{OP} 3	-	100	150		mA
Output short-circuit current	I _{OSC} 3			40		mA
Output on control voltage	V _{ENL} 2	V _O 3 : ON			1.0	V

Continued on next page.

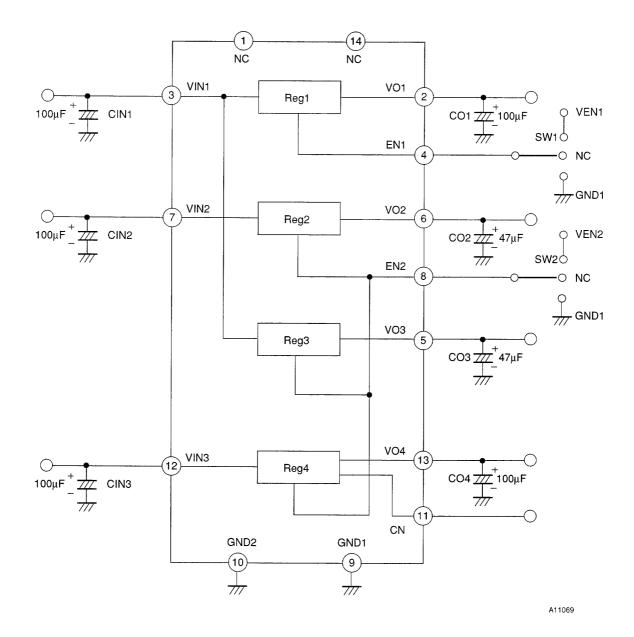
Continued from preceding page.


Parameter	O mark at	Symbol Conditions	Ratings			
	Symbol		min	typ	max	Unit
Output off control voltage	V _{ENH} 2	V _O 3 : OFF	4.0		V _{IN} 1	V
Output low-level voltage	V _O 3 OFF				0.2	V
Output noise voltage	V _{NOISE} 3	$10 \text{ Hz} \le f \le 100 \text{ kHz}$		70		μVrms
Ripple rejection	Rrej3	f = 120 Hz, 14 V \leq V _{IN} 1 \leq 23 V		55		dB
Regulator 4 [V _{EN} 2 = low, V _O 4: on, V	′ _{IN} 1 = 20 V, V	$V_{IN}2 = 11 \text{ V}, \text{ V}_{IN}3 = 7.0 \text{ V}, \text{ I}_{O}4 = 650 \text{ mA}$				
Output voltage 4	V _O 4		4.75	5.0	5.25	V
Dropout voltage	V _{DROP} 4-1			0.3	0.5	V
	V _{DROP} 4-2	I _O 1 = 325 mA		0.2	0.4	V
Line regulation	$\Delta V_{OLN}4$	$6.25 \text{ V} \leq \text{V}_{\text{IN}} \text{3} \leq 23 \text{ V}$		20	100	mV
Load regulation	$\Delta V_{OLD}4$	$5 \text{ mA} \le I_0 4 \le 650 \text{ mA}$		30	150	mV
Peak output current	I _{OP} 4		650	900		mA
Output short-circuit current	I _{OSC} 4			250		mA
Output on control voltage	V _{ENL} 2	V _O 4 : ON			1.0	V
Output off control voltage	V _{ENH} 2	V _O 4 : OFF	4.0		V _{IN} 3	V
Output low-level voltage	V _O 4 OFF				0.2	V
Output noise voltage	V _{NOISE} 1	$10 \text{ Hz} \le f \le 100 \text{ kHz}$		70		μVrms
Ripple rejection	Rrej4	$f = 120 \text{ Hz}, 7 \text{ V} \leq \text{V}_{IN} 3 \leq 23 \text{ V}$		60		dB
Current drain	l _Q 1	$I_0 1, I_0 2, I_0 3, I_0 4 = 0$		11		mA
	l _Q 2	$I_01 = 350 \text{ mA}, I_02 = 250 \text{ mA}, I_03 = 100 \text{ mA}, I_04 = 650 \text{ mA}$		65		mA

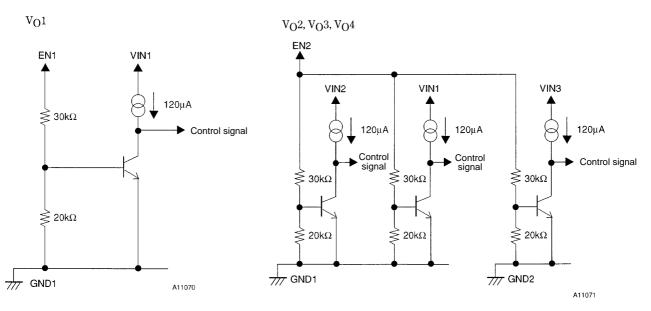
Pin Assignment



A11067


Note: NC pins must not be used (Pins 1 and 14 in the pin assignment figure.)

Stipulated Test Circuit


Function Table

This IC operates as listed in the table under the condition that $V_{IN}1 \ge V_{IN}2 \ge V_{IN}3$.

EN1, EN2	V _O 1, V _O 2/V _O 3/V _O 4
н	L
L	Н
Open	Н

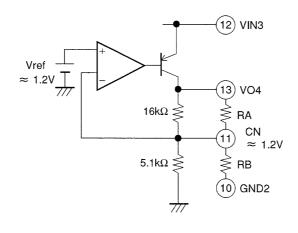
• H and L in the EN column correspond to high and low input voltage levels, respectively.

- H and L in the V_O column correspond to the output on voltage and the output off voltage, respectively.
- The output voltages are controlled independently by the EN lines as follows: EN1 controls VO1, and EN2 controls V_02 , V_03 , and V_04 in parallel.
- When a given EN is open, the corresponding output will be on.

EN (on/off control) Input Block Equivalent Circuit Block Diagram

Usage Notes

• GND1 and GND2 are connected through the IC substrate, and must be connected to the lowest potential in the system and must be connected to identical potentials.


(The functions and characteristics of this IC are not guaranteed if GND1 and GND2 are connected to different potentials.)

- The rise and fall of the $V_{IN}1$, $V_{IN}2$, and $V_{IN}3$ voltages must be simultaneous, and none of these pins may be either left open or connected to ground.
- If either $V_{IN}1$ or $V_{IN}2$ are open or at a voltage lower than the stipulated voltage, then the V_01 through V_04 outputs will be forcibly turned off to protect the IC.
- The output capacitors C_01 and C_04 must be at least 100 μ F, and C_02 and C_03 must be at least 47 μ F. Capacitors with low temperature coefficients must be use to prevent oscillation at low temperatures.
- To assure stable operation, the input capacitors $C_{IN}1$ to $C_{IN}3$ and the output capacitors C_O1 to C_O4 must be placed as close to the IC as possible.
- The NC pins (pins 1 and 14) must not be used.
- The output voltage V_04 can be adjusted by connecting resistors from the CN pin (pin 11) to either V_04 or to GND2.
- To lower V_04 : Add resistor RA between CN and V_04 .
- To raise V_04 : Add resistor RB between CN and GND2.

Also note that external noise suppression and ripple rejection can be improved by adding an external capacitor at V_04 . However, care is required to assure that the system stability (phase margin) is adequate.

• Note that these power supplies can be influenced by load fluctuations in the other power supplies.

Sample CN Pin Application Circuit

A11072

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of October, 1998. Specifications and information herein are subject to change without notice.