GaAs Infrared Emitting Diode with Metal Socket

Description

CQX19 is a high power GaAs infrared emitting diode in a special case, consisting of a solid metal TO–5 header with a molded clear plastic lens.

This allows the user to mount the device on a heatsink and thus reduce the thermal resistance to one tenth. Unlike standard IR diodes, drive currents up to 250 mA

DC or pulse currents up to 10 amps are possible.

Features

- Extremely high radiant power
- High loading capability in pulse operation
- Suitable for pulse operation till 10 A
- Metal base with waterclear plastic lens
- Angle of half intensity $\varphi = \pm 15^{\circ}$
- Peak wavelength $\lambda_p = 950 \text{ nm}$

94 8392

Applications

Radiation source in near infrared range, i.e. remote control, light barrier and telecommunication

Absolute Maximum Ratings

 $T_{amb} = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Value	Unit
Reverse Voltage		V _R	5	V
DC Forward Current		I _F	250	mA
Peak Forward Current	$t_p/T=0.001, t_p \le 20 \ \mu s$	I _{FM}	10	А
Power Dissipation		P _V	300	mW
Junction Temperature		Тj	100	°C
Storage Temperature Range		T _{stg}	-25+85	°C
Thermal Resistance Junction/Ambient		R _{thJA}	250	K/W
Thermal Resistance Junction/Case		R _{thJC}	25	K/W

Basic Characteristics

 $T_{amb}=25\,^{\circ}C$

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Forward Voltage	$I_{\rm F} = 250 \text{ mA}, t_{\rm p} \le 100 \text{ ms}$	V _F		1.2		V
Forward Voltage at Pulse Operation	$I_F = 4 A$	V _F		2.2	3	V
Breakdown Voltage	$I_R = 100 \ \mu A$	V _(BR)	5			V
Junction Capacitance	$V_{R} = 0$ V, f = 1 MHz, E = 0	Cj		600		pF
Radiant Intensity	$I_{\rm F} = 250 \text{ mA}, t_{\rm p} \le 100 \text{ ms}$	Ie		40		mW/sr
	$I_F=4A, t_p/T=0.0003, t_p=20\mu s$	Ie	330	500		mW/sr
	$I_F=10A$, $t_p/T=0.0003$, $t_p=20\mu s$	Ie		1000		mW/sr
Radiant Power	$I_F = 250 \text{ mA}, t_p \leq 100 \text{ ms}$	φ _e		20		mW
	$I_F=10A$, $t_p/T=0.0003$, $t_p=20\mu s$	φ _e		500		mW
Temp. Coefficient of ϕ_e		ΤK _{φe}		-1		%/K
Angle of Half Intensity		φ		±15		deg
Peak Wavelength	$I_F = 100 \text{ mA}$	λ _p		950		nm
Spectral Bandwidth	$I_F = 100 \text{ mA}$	Δλ		50		nm
Rise Time	$I_F=1.5A, t_p/T=0.01, t_p \le 100 \mu s$	t _r		700		ns
Fall Time	$I_F=1.5A, t_p/T=0.01, t_p \le 100 \mu s$	t _f		830		ns

Typical Characteristics ($T_{amb} = 25^{\circ}C$ unless otherwise specified)

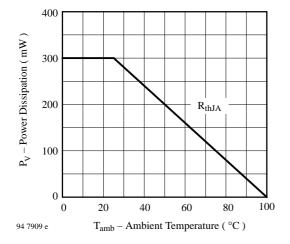


Figure 1. Power Dissipation vs. Ambient Temperature

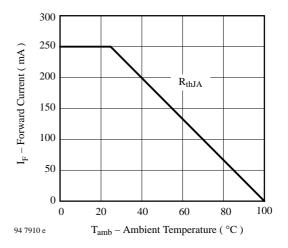


Figure 2. Forward Current vs. Ambient Temperature

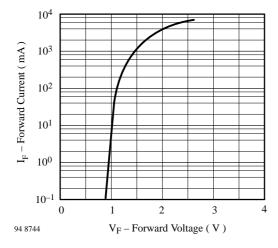
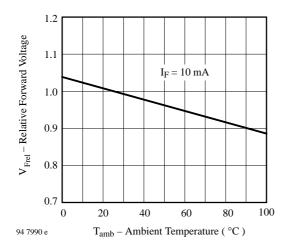



Figure 3. Forward Current vs. Forward Voltage

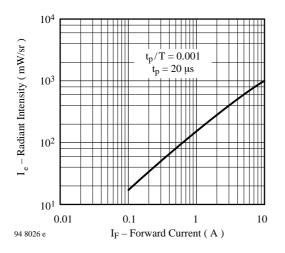


Figure 5. Radiant Intensity vs. Forward Current

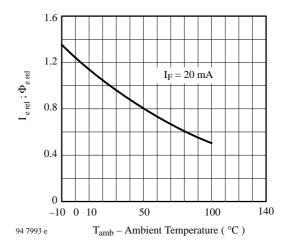
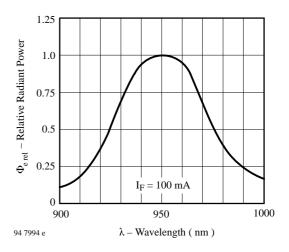



Figure 6. Rel. Radiant Intensity\Power vs. Ambient Temperature

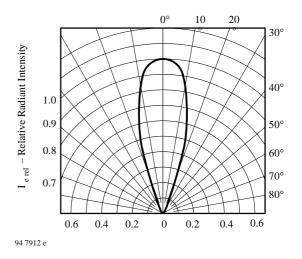
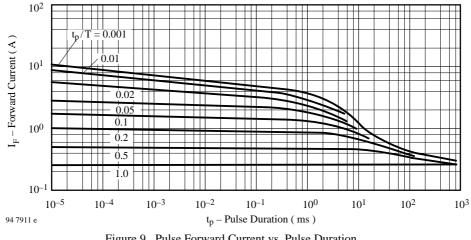
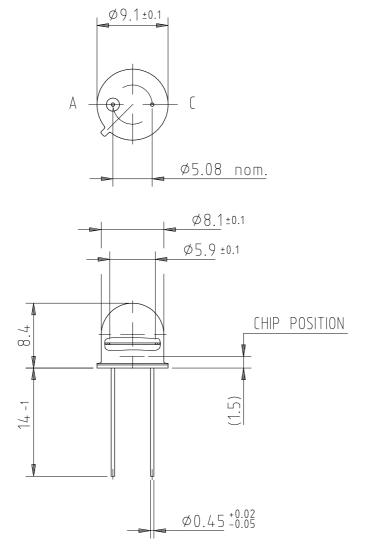




Figure 8. Relative Radiant Intensity vs. Angular Displacement

Dimensions in mm

technical drawings according to DIN specifications

Ozone Depleting Substances Policy Statement

It is the policy of **TEMIC TELEFUNKEN microelectronic GmbH** to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423