
Very Fast Soft-Recovery Avalanche Rectifier

Features

- Glass passivated junction
- Hermetically sealed package
- Very low switching losses
- Low reverse current
- High reverse voltage

Applications

Switched mode power supplies High–frequency inverter circuits

Absolute Maximum Ratings

 $T_i = 25^{\circ}C$

Parameter	Test Conditions	Туре	Symbol	Value	Unit
Repetitive peak reverse voltage		BYV26A	V_{RRM}	200	V
		BYV26B	V _{RRM}	400	V
		BYV26C	V_{RRM}	600	V
		BYV26D	V _{RRM}	800	V
		BYV26E	V _{RRM}	1000	V
Reverse voltage		BYV26A	V_{R}	200	V
		BYV26B	V_{R}	400	V
		BYV26C	V_R	600	V
		BYV26D	V_R	800	V
		BYV26E	V_R	1000	V
Peak forward surge current	t _p =10ms, half sinewave		I _{FSM}	30	A
Average forward current			I _{FAV}	1	A
Non repetitive reverse avalanche energy	I _{(BR)R} =400mA, inductive load		E_R	10	mJ
Junction temperature			T_j	175	°C
Storage temperature range			T _{stg}	-55+175	°C

Maximum Thermal Resistance

 $T_j = 25^{\circ}C$

Parameter	Test Conditions	Symbol	Value	Unit
Junction ambient l=10mm, T _L =constant		R_{thJA}	45	K/W

Characteristics

 $T_j = 25^{\circ}C$

Parameter	Test Conditions	Type	Symbol	Min	Тур	Max	Unit
Forward voltage	I _F =1A		V_{F}			2.5	V
	$I_{F}=1A, T_{j}=175^{\circ}C$		V_{F}			1.3	V
Reverse current	$V_R = V_{RRM}$		I_R			5	μΑ
	$V_R = V_{RRM}, T_j = 150$ °C		I_R			100	μΑ
Reverse breakdown	I _R =100μA	BYV26A	$V_{(BR)R}$	300			V
voltage		BYV26B	$V_{(BR)R}$	500			V
		BYV26C	V _{(BR)R}	700			V
		BYV26D	$V_{(BR)R}$	900			V
		BYV26E	V _{(BR)R}	1100			V
Reverse recovery time	I _F =0.5A, I _R =1A, i _R =0.25A	BYV26A	t _{rr}			30	ns
		BYV26B	t _{rr}			30	ns
		BYV26C	t _{rr}			30	ns
		BYV26D	t _{rr}			75	ns
		BYV26E	t _{rr}			75	ns
Switching behaviour	I _F =2A, I _{RM} =1A, V _R =400V, Fig. 1		I_{SLP}			-200	mA

Typical Characteristics ($T_j = 25$ °C unless otherwise specified)

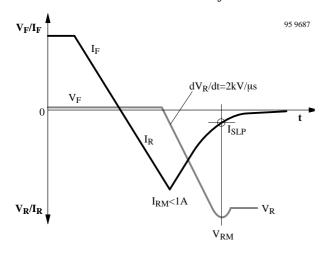


Figure 1. I_{SLP}-Definition

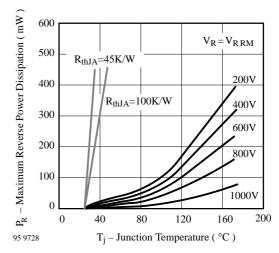


Figure 2. Maximum Reverse Power Dissipation vs. Junction Temperature

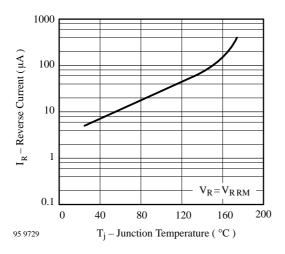


Figure 3. Reverse Current vs. Junction Temperature

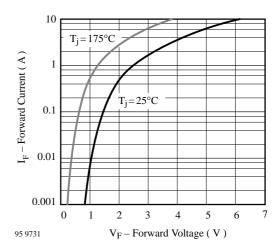


Figure 5. Forward Current vs. Forward Voltage

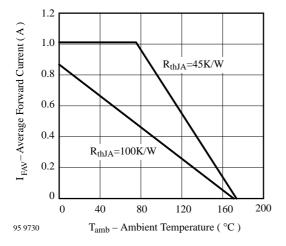
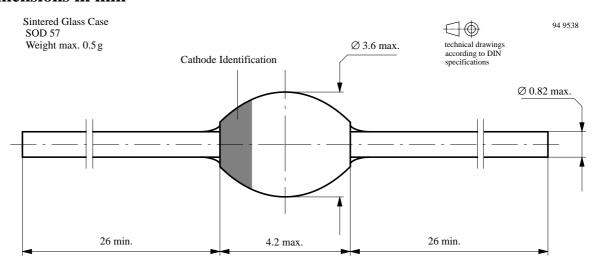



Figure 4. Average Forward Current vs. Ambient Temperature

Dimensions in mm

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423