BYT230PIV-400 BYT231PIV-400

FAST RECOVERY RECTIFIER DIODES

FEATURES

- VERY LOW REVERSE RECOVERY TIME
- VERY LOW SWITCHING LOSSES
- LOW NOISE TURN-OFF SWITCHING
- INSULATED PACKAGE:

Insulating voltage $=2500 \mathrm{~V}_{\text {RMS }}$ Capacitance $=45$ pF

DESCRIPTION

Dual high voltage rectifiers ranging from 200 V to 400V suited for Switch Mode Power Supplies and other power converters.
The devices are packaged in ISOTOP.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter			Value	Unit
Ifrm	Repetitive peak forward current	tp $\leq 10 \mu \mathrm{~s}$		500	A
1 F (RMS)	RMS forward current		Perdiode	50	A
$\mathrm{IF}_{\text {(AV) }}$	Average forward current	$\begin{gathered} \mathrm{Tc}=75^{\circ} \mathrm{C} \\ \delta=0.5 \end{gathered}$	Per diode	30	A
IFSM	Surge non repetitive forward current	$\begin{aligned} & \text { tp=10ms } \\ & \text { sinusoidal } \end{aligned}$	Per diode	350	A
$\begin{gathered} \hline \mathrm{Tstg} \\ \mathrm{Tj} \end{gathered}$	Storage and junction temperature range			$\begin{aligned} & -40 \text { to }+150 \\ & -40 \text { to }+150 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$

Symbol	Parameter	BYT230PIV-/ BYT231PIV-	Unit
VRRM 2	Repetitive peak reverse voltage	400	V

ISOTOP is a trademark of STMicroelectronics.

THERMAL RESISTANCE

Symbol	Parameter		Value	Unit
Rth (j-c)	Junction to case	Per diode	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Total	0.8	
Rth (c)	Coupling	0.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

When the diodes 1 and 2 are used simultaneously:
$\Delta \mathrm{Tj}($ diode 1$)=\mathrm{P}($ diode $) \times$ Rth $($ Per diode $)+\mathrm{P}($ diode 2$) \times$ Rth (c)
ELECTRICAL CHARACTERISTICS (Per diode)
STATIC CHARACTERISTICS

Symbol	Test Conditions		Min.	Typ.	Max.	Unit
V_{F} *	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~A}$			1.5	V
	$\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$				1.4	
$\mathrm{I}_{\mathrm{R}}{ }^{\text {** }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$V_{R}=V_{\text {RRM }}$			35	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$				6	mA

Pulse test : * tp = $380 \mu \mathrm{~s}$, duty cycle $<2 \%$
** $\mathrm{tp}=5 \mathrm{~ms}$, duty cycle $<2 \%$

RECOVERY CHARACTERISTICS

Symbol	Test Conditions			Min.	Typ.	Max.	Unit
trr	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & I_{F}=0.5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~A} \end{aligned}$	$\mathrm{lrr}=0.25 \mathrm{~A}$			50	ns
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V} \end{aligned}$	$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-15 \mathrm{~A} / \mu \mathrm{s}$			100	

TURN-OFF SWITCHING CHARACTERISTICS (Without serie inductance)

Symbol	Test Conditions			Min.	Typ.	Max.	Unit
tIRM	$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-120 \mathrm{~A} / \mu \mathrm{s}$	$\begin{aligned} & V_{C C}=200 \mathrm{~V} \\ & \mathrm{Lp} \leq 0.05 \mu \mathrm{H} \\ & \text { see fig. } 11 \end{aligned}$	$\begin{aligned} & \mathrm{IF}_{\mathrm{F}}=30 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \end{aligned}$			75	ns
	$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-240 \mathrm{~A} / \mu \mathrm{s}$				50		
IRM	$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-120 \mathrm{~A} / \mu \mathrm{s}$					9	A
	$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-240 \mathrm{~A} / \mu \mathrm{s}$				12		

TURN-OFF OVERVOLTAGE COEFFICIENT (With serie inductance)

Symbol	Test Conditions		Min.	Typ.	Max.	Unit
$C=\frac{V_{R P}}{V_{C C}}$	$\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{CC}}=60 \mathrm{~V} \quad \mathrm{dt}=-30 \mathrm{~A} / \mu \mathrm{S}$ $\mathrm{Lp}=1 \mu \mathrm{H}$$\quad \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	see note see fig. 12		3.3		$/$

Note : Applicableto BYT230PIV-400/ BYT231PIV-400 only
To evaluate the conduction losses use the following equation:
$\mathrm{P}=1.1 \times \mathrm{I}_{\mathrm{F}(\mathrm{AV})}+0.0095 \times \mathrm{I}^{2}$ (RMS)

Fig. 1 : Low frequency power losses versus average current.

Fig. 3 : Non repetitive peak surge current versus overload duration.

Fig.5: Voltage drop versus forward current.

Fig. 2 : Peak current versus form factor.

Fig. 4 : Relative variation of thermal impedance junction to case versus pulse duration.

Fig. 6 : Recovery charge versus dif/dt.

Fig. 7 : Recovery time versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$.

Fig. 9 : Peak forward voltage versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$.

Fig. 11 : TURN-OFF SWITCHING CHARACTERISTICS (Without serie inductance)

Fig. 8 : Peakreverse current versus dIF/dt.

Fig. 10 : Dynamic parameters versus junction temperature.

Fig. 12 : TURN-OFF SWITCHING CHARACTERISTICS (With serie inductance)

PACKAGE MECHANICAL DATA
ISOTOP Screw version

- Marking : Type number

- Cooling method: C
- Weight: 27 g (without screws)
- Electrical isolation : 2500 V(RMS) $^{(1)}$
- Capacitance : < 45 pF
- Inductance: < 5nH
- Recommended torque value : 1.3 N.m (MAX $1.5 \mathrm{~N} . \mathrm{m}$) for the $6 \times \mathrm{M} 4$ screws. (2 x M4 screws recommended for mounting the package on the heatsink and the 4 screws given with the screw version).
- The screws supplied with the package are adapted for mounting on a board (or other types of terminals) with a thickness of 0.6 mm min and 2.2 mm max.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responslbility for the consequences of use of such informationnor for any infringement of patents or other rights of third parties which may resultfrom its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 1998 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

