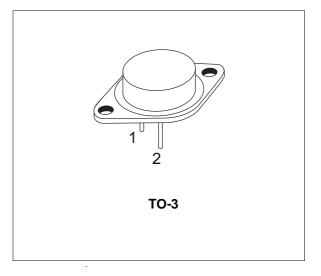
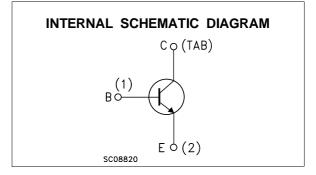


BUX12

HIGH CURRENT NPN SILICON TRANSISTOR


- SGS-THOMSON PREFERRED SALESTYPE
- NPN TRANSISTOR
- HIGH CURRENT CAPABILITY
- FAST SWITCHING SPEED


APPLICATIONS

- MOTOR CONTROL
- LINEAR AND SWITCHING INDUSTRIAL EQUIPMENT

DESCRIPTION

The BUX12 is a silicon multiepitaxial planar NPN transistor in Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

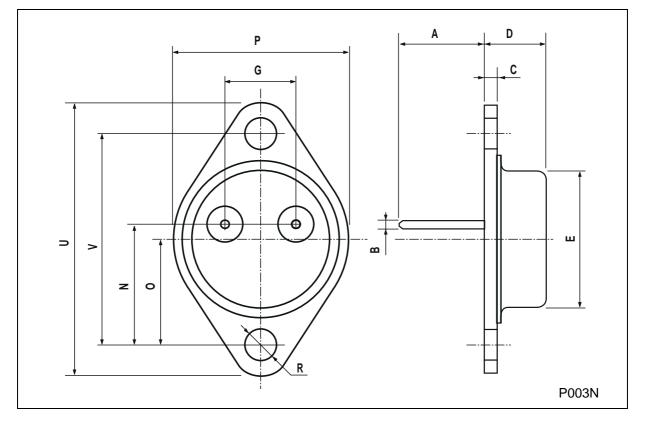
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vсво	Collector-base Voltage $(I_E = 0)$	300	V
V _{CEX}	Collector-emitter Voltage (V _{BE} = - 1.5V)	300	V
V _{CEO}	Collector-emitter Voltage $(I_B = 0)$	250	V
V _{EBO}	Emitter-base Voltage (Ic = 0)	7	V
Ι _C	Collector Current	20	A
Ісм	Collector Peak Current (t _P = 10 ms)	25	A
IB	Base Current	4	A
Ptot	Total Power Dissipation at $T_{case} \le 25 \ ^{\circ}C$	150	W
T _{stg}	Storage Temperature	-65 to 200	°C
Tj	Max Operating Junction Temperature	200	°C

THERMAL DATA

R _{thj-case} Thermal Resistance Junction-case	Max	1.17	°C/W
--	-----	------	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \ ^{o}C$ unless otherwise specified)


Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
ICEO	Collector Cut-off Current (I _B = 0)	V _{CE} = 200 V				1.5	mA
ICEX	Collector Cut-off Current	$V_{CE} = 300 V$ $T_{case} = 125 °C$ $V_{CE} = 300 V$	V _{BE} = -1.5V V _{BE} = -1.5V			1.5 6	mA mA
I _{EBO}	Emitter Cut-off Current $(I_C = 0)$	$V_{EB} = 5 V$				1	mA
$V_{CEO(sus)^*}$	Collector-Emitter Sustaining Voltage	I _C = 200 mA		250			V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	I _E = 50 mA		7			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 5 A I _C = 10 A	I _B = 0.5 A I _B = 1.25 A		0.22 0.5	1 1.5	V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 10 A	I _B = 1.25 A		1.23	1.5	V
h _{FE}	DC Current Gain	I _C = 5 A I _C = 10 A	V _{CE} = 4 V V _{CE} = 4 V	20 10		60	
I _{S/b}	Second Breakdown Collector Current	V _{CE} = 30 V V _{CE} = 140 V	t = 1 s t = 1 s	5 0.15			A A
f⊤	Transistor Frequency	I _C = 1 A f = 10 MHz	V _{CE} = 15 V	8			MHz
t _{on}	Turn-on Time See fig.2	I _C = 10 A V _{CC} = 150V	I _{B1} = 1.25 A		0.28	1	μs
t _s t _f	Storage Time See fig.2 Fall Time See fig.2	I _C = 10 A I _{B2} = -1.25 A	I _{B1} = 1.25 A V _{CC} = 150V		1.45 0.23	2 0.5	μs μs
	Clamped E _{s/b} Collector Current	V _{clamp} =250 V L = 500 μH		10			A

* Pulsed: Pulse duration = 300 μ s, duty cycle \leq 2 %

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А		11.7			0.460	
В	0.96		1.10	0.037		0.043
С			1.70			0.066
D			8.7			0.342
Е			20.0			0.787
G		10.9			0.429	
Ν		16.9			0.665	
Ρ			26.2			1.031
R	3.88		4.09	0.152		0.161
U			39.50			1.555
V		30.10			1.185	

TO-3 (H) MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

