Motor driver ICs

Fan motor driver IC BA6811F / BA6813F

The BA6811F and BA6813F are 2-phase, half-wave motor drivers suited for 12V fan motors. Built-in lock detection and automatic restart mechanisms protect motors. Compact SOP8 (BA6811F/BA6813F) packages reduce the number of external components required.

Applications2-phase fan motors

Features

- 1) Built-in power transistors.
- 2) Lock detection and automatic restart mechanisms.
- 3) Built-in thermal shutdown circuit.

- 4) Alarm output pin. (BA6811F)
- 5) Hall signal output pin. (BA6813F)
- 6) Built-in reverse current protection diode.

•Absolute maximum ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	18	V
Power dissipation	Pd	550*1	mW
Operating temperature	Topr	-25~+85	°C
Storage temperature	Tstg	-55~+150	°C
Output current	Іолт	1.0*2	А
Alarm output pin current *3	Ial	10	mA
Alarm output pin withstanding voltage *3	VAL	36	V
Hall signal output pin current *4	Іно	10	mA
Hall signal output pin withstanding voltage *4	Vно	36	V

*1 Reduced by 4.4 mW for each increase in Ta of 1°C over 25°C. When mounted on a glass epoxy board (50.0×50.0×1.6 mm).

*2 Should not exceed Pd or ASO values.

*3 BA6811F only.

*4 BA6813F only.

• Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Operating power supply voltage	Vcc	4.0~15.0	V

Block diagram

Pin descriptions

BA6811F

Pin No.	Pin name	Function
1	A2	Output 2
2	AL	Alarm output
3	LD	Capacitor connection pin for lock detection and automatic restart
4	Vcc	Power supply
5	H+	Hall input (+)
6	H-	Hall input (-)
7	A1	Output 1
8	GND	GROUND

BA6813F Pin No. Pin name Function 1 A₂ Output 2 2 HO Hall signal output Capacitor connection pin for lock З LD detection and automatic restart 4 Vcc Power supply H^+ 5 Hall input (+) 6 H^{-} Hall input (-) 7 A₁ Output 1 GND GROUND 8

•Hall input / output truth table

H ⁺	H^{-}	A1	A2	HO
Н	L	HIGH (output transistor OFF)	LOW (output transistor ON)	LOW (output transistor ON)
L	Н	LOW (output transistor ON)	HIGH (output transistor OFF)	HIGH (output transistor OFF)

Note: LD = 0 V

Input / output equivalent circuits

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 12V)

77

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply current	lcc	1.8	4.5	9.0	mA	When output is OFF
Lock detection capacitor charge current	ILDC	1.6	2.9	4.64	μA	VLD=1.2V
Lock detection capacitor discharge current	ILDD	0.26	0.52	0.87	μA	VLD=1.2V
Lock detection capacitor charge/discharge ratio	rcd	2.8	5.7	9.9	_	
Lock detection capacitor clamp voltage	VLDCL	1.27	1.93	2.60	v	
Lock detection capacitor comparator voltage	VLDCP	0.47	0.76	1.06	v	
Output low level voltage	Vol	_	0.8	1.3	V	lo=200mA
Output leakage current	lol	_	_	100	μA	Vo=20V
Output zener voltage	Voz	28	30	32	V	Clamp current = 10 mA
Alarm output pin low level voltage *1	VALL	-	0.13	0.5	V	lo=5mA
Alarm output pin leakage current *1	IALL	-	-	50	μA	V _{AL} =15V
Hall signal output pin voltage *2	VHOL	-	0.13	0.5	V	lo=5mA
Hall signal output pin leakage current *2	IHOL	-	—	50	μA	Vно=15V
Hall input pin offset voltage	Voff	_	—	10	mV	V _{COM} =6.0V

*1 BA6811F only

*2 BA6813F only

◎Not designed for radiation resistance.

(Typical value)

Circuit operation

The BA6811F and BA6813F have motor lock detection and automatic restart circuits. The timing of lock detection and automatic restart is determined by the external capacitor connected to the LD pin. The charge time of the external capacitor is given by :

$$T_{ON} \text{ (Charge time)} = \underbrace{\frac{C \cdot (V_{LDCL} - V_{LDCP})}{I_{LDC}}}_{C \cdot (V_{LDCL} - V_{LDCP})}$$

where

where	
VLDCL is the LD-pin clamp voltage	(1.93V),
VLDCP is the LD-pin comparator voltage	(0.76V),
LLDC is the LD-pin charge current	(2.9µA),
ILDD is the LD-pin discharge current	(0.52µA),
C is the capacitance of the LD-pin external of	apacitor.

For C=1 μ F, for example, the charge (output ON) and discharge (output OFF) times are 0.40s and 2.25s, respectively.

The timing chart for an occasion of motor locking is shown in Fig. 1.

Fig.1 Timing chart for motor locking

Application example

Fig.2

Operation notes

(1) Thermal shutdown circuit

The IC has a built-in thermal shutdown circuit. The is a temperature difference of 25° C (typical) between the temperatures at which the circuit is activated and deactivated.

The circuit is activated at the temperature of about $175^{\circ}C$ (typical), so that all outputs are turned OFF. Normal operation resumes when the circuit is deactivated.

(2) Power consumption

Power consumed in the IC can be calculated from the following equation :

Pc=Pc1 + Pc2 + Pc3

Pc1 is power consumed by the circuit current.

Pc1=Vcc×Icc

 $\ensuremath{\mathsf{Pc2}}$ is the output current consumption.

 $Pc2=Vol \times Io$

 V_{OL} is the LOW level output voltage of output pins 1 and 2, and I_0 is the sink current of pins 1 and 2.

 $\ensuremath{\mathsf{Pc3}}$ is power consumed by the AL and HO pins.

 $P_{C3}=V_{ALL}\times I_{AL}+V_{HOL}\times I_{HO} \ / \ 2$

where

VALL is the AL-pin LOW level voltage,

IAL is the AL-pin sink current,

 $V_{\mbox{\scriptsize HOL}}$ is the HO-pin LOW level voltage,

 $\ensuremath{\mathsf{I}}_{\ensuremath{\mathsf{HO}}}$ is the HO-pin sink current.

Make sure that your application does not exceed the allowable power dissipation of the IC.

Motor driver ICs

(3)Hall amplifier input voltage

Fig.4 Hall amplifier input bias voltage

The R1 and R2 resistances must be set so as to maintain the Hall amplifier input bias voltage within the range of 0V to $(V_{CC} - 2.8V)$ including the signal amplitude.

The Hall device may be affected by power supply noise due to the PCB conductor pattern. If you have this problem, insert a capacitor C1 as shown in Fig. 5.

If the conductor lines from the Hall device output terminals to the Hall inputs of the IC are particularly long, noise can be picked up and fed into the inputs. If you have this problem, insert a capacitor C2 as shown in Fig. 5. Note that the Hall inputs have no hysteresis in this IC.

where RH is the Hall device impedance.

rohm