3V / 35mW dual power amplifier BA5204F The BA5204F is a dual-channel power amplifier designed for 3V stereo headphone tape players. There is almost no "pop" sound generated when the power is switched on and off, so this IC is ideal for headphone applications. Input coupling capacitors are not required, and only one filter capacitor is needed which helps reduce set size. In addition to operating off low voltage, the IC has low distortion, making it suitable for Hi-Fi applications. The circuit can operate down to 1.5V, and has excellent ripple rejection ratio, so it is not adversely influenced by the motor or tape transport systems. # Applications 3V compact cassette headphone stereos players, micro cassette players, and FM stereo radios #### Features - 1) Rated output of 35mW (RL = 32Ω) off a 3V power supply. - 2) Low "pop" noise when power is switched on and off. - 3) Low quiescent current (13mA). - 4) Excellent ripple rejection ratio (38dB). - 5) Begins operating at 1.5V. - 6) Low distortion (0.05% at $P_0 = 5$ mW). - 7) Good voltage gain balance between channels. - 8) Good channel separation (60dB Typ.). - 9) Input coupling capacitors not required. - Symmetrical pin assignments facilitates PCB design. #### Block diagram # Internal circuit configuration # Circuit description (refer to the Internal Circuit diagram) ## (1) Preamplifier Stage The preamplifier is comprised of the level-shift transistor Q_{101} , a differential amplifier (Q_{102} and Q_{105}), and the active load (Q_{103} and Q_{106}). The input is a PNP transistor that does not require a coupling capacitor. ### (2) Pre-drive stage Q_{118} is the pre-drive transistor. Q_{122} and Q_{120} form the load. #### (3) Power stage Comprised of phase-inverting transistor Q_{120} , and power transistors Q_{122} and Q_{123} . #### (4) Idling current setting circuit The idling current is controlled so that the difference between the V_{BE} of the power transistor Q_{122} and the V_{BE} of the phase-inverting transistor Q_{120} is the same as the difference between the V_{F} of the constant-voltage diode Q_{117} and the V_{BE} of Q_{121} . # (5) Negative-feedback circuit The closed-circuit gain with negative feedback is determined by R_{108} , R_{102} , and the value of the resistor connected to the NFB pin. Part of the gain setting resistance is on the chip (R_{102}) to reduce variance between components. #### (6) "Pop" noise elimination circuit The IC has an internal timing circuit (with switch for operation) to reduce the "pop" noise that occurs when power is applied. # ●Absolute maximum ratings (Ta = 25°C) | Parameter | Symbol | Limits | Unit | |-----------------------|--------|------------------|------| | Power supply voltage | Vcc | 6.0 | V | | Power dissipation | Pd | 500* | mW | | Operating temperature | Topr | −25~+75 | ℃ | | Storage temperature | Tstg | −55∼ +125 | င | | Junction temperature | Tj | 125 | ဗ | ^{*} Reduced by 5.0mW for each increase in Ta of 1°C over 25°C (when mounted on a 70mm×70mm×1.6mm glass epoxy board). # • Electrical characteristics (Ta = 25 °C, V_{CC} = 3V, f= 1kHz and R_L = 32 Ω) | Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions | |--------------------------|-----------------|------|------|------|-------|---| | Quiescent current | lα | _ | 13 | 20 | mA | V _{IN} =0V _{rms} | | Closed loop voltage gain | Gvc | 32 | 35 | 38 | dB | V _{IN} =-45dBm | | Rated output power | Роит | 23 | 35 | _ | mW | THD=10% | | Distortion | THD | _ | 0.05 | 0.3 | % | P ₀ =5mW | | Output noise voltage | V _{NO} | _ | 80 | 200 | μVrms | R_g =0 Ω , G_{VC} =35dB
B.P.F.20 H_Z ~20k H_Z | | Input resistance | Rin | 2.0 | 30 | _ | kΩ | | | Ripple rejection ratio | RR | 28 | 38 | _ | dB | V_{RR} =-20dBm, f=100Hz, R_g =0 Ω | | Operation start voltage | Vs | _ | 1.5 | 1.8 | ٧ | | # Measurement circuit Fig. 1 #### Application example Fig. 2 # Attached components (Fig. 15) #### C1: filter capacitor The recommended value is $330\mu F$. If this is reduced too much, the ripple rejection ratio will drop. This capacitor also sets the muting time when power is applied. Reduce the value of this capacitor if you wish to shorten the startup time. On the other hand, if you wish to reduce the "pop" noise further, increase the value of this capacitor to lengthen the startup time. C2 and C3: bootstrap capacitors The recommended value is $47\mu F$. If the capacitance is too small, the IC will not be able to produce its rated power in the bass region and distortion will increase. C_5 and C_6 : feedback circuit DC blocking capacitors These capacitors and RNF set the bass cutoff frequency. $$\begin{array}{c} ch_1 \cdot \cdots \cdot f_{LC1} = & \frac{1}{2\pi \cdot C_5 \cdot (R_{NF1} + R_{102})} \\ ch_2 \cdot \cdots \cdot f_{LC2} = & \frac{1}{2\pi \cdot C_6 \cdot (R_{NF2} + R_{202})} \end{array}$$ R_{NF1} and R_{NF2} determine the amount of feedback for the feedback circuit. These resistors determine the closed-circuit voltage gain (G_{VC}). C_7 and C_8 : depending on the PCB design, and output circuit wiring, feedback may be applied to the IC's internal circuits and cause high-frequency oscillation. These capacitors prevent this from happening. They also increase the amount of design freedom with regard to the output wiring and PCB artwork. Design the PCB so that the length of the wiring from ch1 and ch2 to capacitors and from the capacitors to GND is as short as possible. Mylar capacitors of about $0.01\mu F$ are appropriate for this application, although active capacitors may also be used. The residual impedance and resonant frequency will differ depending on the type of capacitor and therefore have some influence on the effectiveness. C9 and C10: output coupling capacitors The recommended value is $220\mu F$. If the capacitance is too small, the IC will not be able to produce its rated power in the treble region and distortion will increase. #### Electrical characteristics curves Fig. 3 Voltage gain vs. frequency Fig. 5 Distortion vs. output power Fig. 7 Rated output power vs. frequency Fig. 4 Distortion vs. output power Fig. 6 Rated output power vs. frequency Fig. 8 Open loop voltage gain/quiescent current/rated output power vs. power supply voltage Fig. 9 Output noise voltage vs. signal source impedance Fig. 11 Ripple rejection ratio vs. power supply voltage Fig. 13 Voltage gain vs. feedback resistor value Fig. 10 Ripple rejection ratio vs. frequency Fig. 12 Channel separation vs. frequency Fig. 14 Power dissipation vs. output power Fig. 15 Quiescent current vs. ambient temperature Fig. 16 Thermal derating curve # ●External dimensions (Units: mm)