Regulator ICs

Reference voltage power supply BA3932

The BA3932 is a monolithic reference voltage power supply IC for use in CD radio cassette players.

Applications

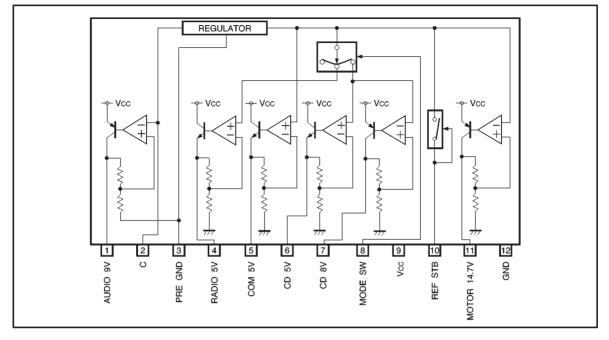
CD radio cassette players, mini-component stereo audio systems

Features

- With 9.0V output for audio power supply, 5.0V output for microcontrollers, 5.0 and 8.0V outputs for CD players, 14.7V output for motor drivers, the IC is best suited for CD radio cassette players.
- Precise power supply (5V±0.1V) can be obtained by using external reference voltage input (only AUDIO output has an internal reference voltage system).
- 3) Zero standby current. (Typ.)
- Output current limit circuit protects the IC against short-circuiting damage.
- Compact SIP-M12 package allows a large power dissipation (3W: no heat sink).
- 6) Thermal protection circuit prevents heat damage to the IC.

Parameter	Symbol	Limits	Unit
Applied voltage	Vcc	23	V
Power dissipation	Pd	3000*	mW
Operating temperature	Topr	-25~+75	ĉ
Storage temperature	Tstg	-55~+150	Ĵ

• Absolute maximum ratings (Ta = 25° C)

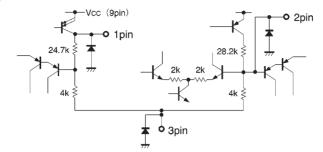

* Reduced by 24mW for each increase in Ta of 1°C over 25°C.

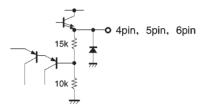
Recommended operating conditions

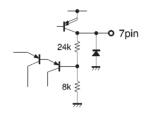
Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	6.5~22.0*1	V

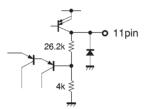
*1 For basic operation at Ta = 25 $^\circ\!\mathrm{C}$.

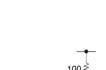
Block diagram

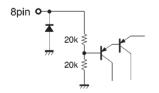


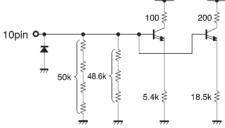

Pin descriptions


Pin No.	Pin name	Function					
1	AUDIO 9V	AUDIO 9V output					
2	С	Capacitor for regulating AUDIO 9V					
3	PRE GND	AUDIO system GND					
4	RADIO 5V	RADIO 5V output pin; output when MODE SW is 1.4V (typical)					
5	COM 5V	Microcontroller 5V output					
6	CD 5V	CD 5V output pin; output when MODE SW is 3.2V (typical)					
7	CD 8V	CD 8V output pin; output when MODE SW is 3.2V (typical)					
8	MODE SW	Pin to select CD 5V, CD 8V, or RADIO 5V output					
9	Vcc	Power supply					
10	REF STB	Reference voltage 5V output pin; also a standby SW					
11	MOTOR 14.7V	MOTOR 14.7V output					
12	GND	Large current GND, connected to the IC substrate					




Input / output circuits





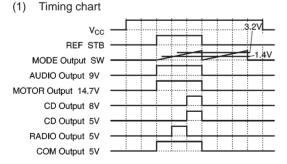
o 12pin

Units:R 〔Ω〕

Regulator ICs

●Electrical characteristics (unless otherwise noted, Ta = 25°C and Vcc = 16.0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Standby supply current	lsт	_	0	10	μA	REF STB=0V
Output voltage (AUDIO 9V)	Vo1	8.5	9.0	9.5	V	lo1=250mA
Voltage regulation	ΔV011	_	40	200	mV	$V_{CC}=11 \sim 22V$ $I_{O1}=250mA$
Load regulation	ΔV012	_	30	200	mV	$l_{01}=0 \sim 250 \text{mA}$
Minimum I/O voltage differential *	ΔV013	_	1.1	2.1	V	lo1=250mA
Output current capacity *	lo1	300	710	-	mA	Vo1≧8.5V
Ripple rejection ratio	R.R1	50	62	-	dB	f=100Hz V _{RR} =-10dBV
Output voltage (MOTOR 14.7V)	V _{O2}	14.1	14.7	15.3	V	lo2=600mA
Voltage regulation	ΔV021	_	50	200	mV	$V_{CC}=16 \sim 22V$ $I_{O2}=600mA$
Load regulation	ΔV_{022}	—	150	600	mV	$l_{02}=0 \sim 600 \text{mA}$
Minimum I/O voltage differential *	Δ V023	—	0.5	0.9	V	lo2=600mA
Output current capacity	I02	1.2	1.4	-	A	Vo2≧14.1V
Output voltage (CD 8.0V)	Vоз	7.5	8.0	8.5	V	lo3=400mA
Voltage regulation	ΔV031	_	20	200	mV	$V_{CC}=9\sim 22V$ $I_{O3}=400mA$
Load regulation	Δ V032	—	70	250	mV	$\log = 0 \sim 400 \text{mA}$
Minimum I/O voltage differential *	Δ V033	_	0.3	1.0	V	lo3=400mA
Output current capacity	Юз	0.8	1.2	-	A	V₀₃≧7.5V
Ripple rejection ratio	R.R3	40	60	-	dB	f=100Hz V _{BB} =-10dBV
Output voltage (CD 5V)	Vo4	4.90	5.0	5.10	V	lo4=180mA
Voltage regulation	ΔV041	-	20	200	mV	$V_{CC}=6.5\sim 22V$ Io ₄ =180mA
Load regulation	ΔV042	_	20	200	mV	lo₄=0 ~ 180mA
Minimum I/O voltage differential *	ΔV043	_	1.0	1.5	V	104=180mA
Output current capacity	I O4	220	400	-	mA	V₀₄≧4.90V
Ripple rejection ratio	R.R4	50	60	-	dB	f=100Hz V _{BB} =-10dBV
Output voltage (RADIO 5V)	Vo5	4.90	5.0	5.10	V	lo5=80mA
Voltage regulation	ΔV051	_	20	200	mV	$V_{CC}=6.5\sim22V$ los=80mA
Load regulation	ΔV052	_	20	200	mV	los=0~80mA
Minimum I/O voltage differential *	∆ V053	_	0.8	1.5	V	lo₅=80mA
Output current capacity	I 05	100	220	-	mA	V₀5≧4.90V
Ripple rejection ratio	R.R5	50	68	_	dB	f=100Hz V _{BB} =-10dBV

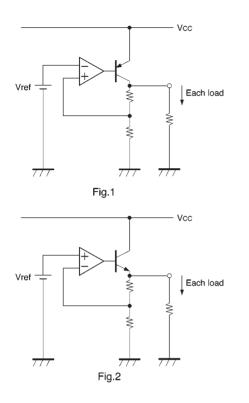

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Output voltage (COM 5V)	Vo6	4.90	5.0	5.10	V	lo6=180mA
Voltage regulation	ΔV061	_	20	200	mV	Vcc=6.5~22V Io6=180mA
Load regulation	ΔV062	_	20	200	mV	l₀6=0 ~180mA
Minimum I/O voltage differential *	ΔV063		1.0	1.5	V	Io6=180mA
Output current capacity	106	220	400	_	mA	V₀6≧4.90V
Ripple rejection ratio	R.R6	50	60	_	dB	f=100Hz V _{RR} =-10dBV
\langle Input (MODE SW) \rangle						
Voltage when RADIO MODE ON	Vмтнн	1.1	1.4	1.7	V	RADIO output voltage when switched to HIGH
Voltage when RADIO MODE OFF	VMTHL	2.9	3.2	3.5	V	RADIO output voltage when switched to LOW
Voltage when CD MODE ON	VRTHH	2.9	3.2	3.5	V	CD5V, CD8.0V output voltage when switched to HIGH
Input high level current	Іінт	80	110	140	μA	MODE SW pin=5 V
⟨Input (REF STB)⟩						
Input high level current	Iref	_	210	500	μΑ	REF=5V, STAND BY pin=5V
Output voltage differential for each 5V system	ΔV_{DEF}	_	0	0.25	V	

ONot designed for radiation resistance.

% Output current of AUDIO (9V) is theoretically 300 to 970 mA.

* Minimum I/O voltage differential refers to the difference between input and output voltage when VCC is set to the minimum output voltage (see the relationship between VCC is and each output on a separate page).

Circuit operation



AUDIO 9V, MOTOR 14.7V, and COM 5V are output regardless of MODE SW.

RADIO 5V rises when MODE SW is 1.4V (typical), and CD 8V and CD 5V rise when MODE SW is 3.2V (typical).

(2) Estimate of allowable power dissipation

Except under transitional conditions, the power dissipation of this IC is 3W per unit at 25°C. See Fig. 3 for heat reduction characteristics, including some cases where heat sinks are used.

- Operation notes
- (1) Operating power supply voltage

When operating within proper ranges of power supply voltage and ambient temperature, most circuit functions are guaranteed. Although the rated values of electrical characteristics cannot be absolutely guaranteed, characteristic values do not change drastically within the proper ranges.

(2) Power dissipation (Pd)

Refer to the heat reduction characteristics (Fig. 3) and the rough estimation of IC power dissipation given on a separate page. Make sure to use the IC within the allowable power dissipation with a sufficient margin.

(3) Preventing oscillation at each output and installing a ripple filter capacitor.

To stop oscillation of output, make sure to connect a capacitor between GND and each of the AUDIO 9V (pin 1), RADIO (pin 4), COM (pin 5), CD 5V (pin 6), CD 8V (pin 7), and MOTOR 14.7V (pin 11) output pins. We recommend using a tantalum electrolytic capacitor having a capacitance of 10μ F or greater (100μ F or greater for AU-DIO 9V) with minimal temperature susceptibility. Also,

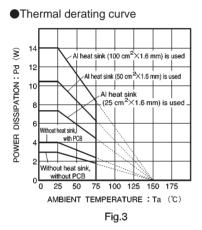
Calculation of PMAX • Power consumed by AUDIO 9V $P_1 = (V_{CC} - 9.0V) \times I1$ Power consumed by MOTOR 14.7V $P_2 = (V_{CC} - 14.7V) \times I2$ Power consumed by CD 8.0V $P_3 = (V_{CC} - 8.0V) \times I3$ Power consumed by CD 5.0V $P_4 = (V_{CC} - 5.0V) \times I4$ Power consumed by RADIO 5.0V $P_5 = (V_{CC} - 5.0V) \times I5$ • Power consumed by COM 5.0V $P_6 = (V_{CC} - 5.0V) \times I6$ · Power consumed internally by each circuit $P_7 = V_{CC} \times circuit current$ * I1 = maximum output for AUDIO 9V I₂ = maximum output for MOTOR 14.7V I_3 = maximum output for CD 8.0V I_4 = maximum output for CD 5.0V Is = maximum output for RADIO 5.0V I₆ = maximum output for COM 5.0V

sudden deterioration of the AUDIO 9V ripple rejection during a power drop can be prevented by connecting a capacitor (220μ F or greater recommended) to the C pin (pin 2).

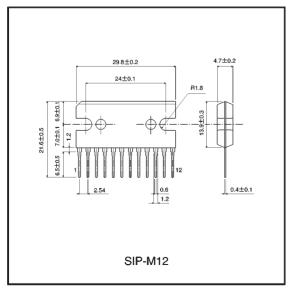
(4) Overcurrent protection circuit

An overcurrent protection circuit is installed on the AU-DIO 9V (pin 1), RADIO (pin 4), COM (pin 5), CD 5V (pin 6), CD 8V (pin 7), and MOTOR 14.7V (pin 11) outputs, based on the respective output current. This prevents IC destruction by overcurrent, by limiting the current with a curve shape of "7" in the voltage-current graph. The IC is designed with margins so that current flow will be restricted and latching will be prevented even if a large current suddenly flows through a large capacitor. Note that these protection circuits are only good for preventing damage from sudden accidents. Make sure your design does not cause the protection circuit to operate continuously under transitional conditions (for instance, if output is clamped at $1V_F$ or higher, short mode circuit operates at $1V_F$ or lower).

Regulator ICs


(5) Reference voltage

Because output voltage is dependent on the input reference voltage, unstable input results in output wavering and degradation of ripple rejection. Take care when setting the reference voltage power supply. Note that the AUDIO output, which has a built-in reference voltage system, is not affected by the external reference voltage. (6) Thermal protection circuit


A built-in thermal protection circuit prevents thermal damage to the IC. All outputs are switched OFF when the circuit operates, and revert to the original state when temperature drops to a certain level.

(7) Grounding

Each ground line in the application circuit must be adequately short regarding the PREGND (pin 3) and GND (pin 12) pins. Make sure to arrange the ground lines, the AUDIO system, and other outputs in a pattern that prevents electric interference.

•External dimensions (Units: mm)

