
MARC4
4-Bit Microcontroller

User’s Guide

1996

I. Introduction

II. Installation Guide

III. Software Development System

IV. qFORTH Compiler

V. Software Simulator

VI. Emulator

VII. Target Application Boards

VIII. Piggybacks

IX. OTP Programmer

X. Appendix

XI. Addresses

Contents

I Introduction 1.
1 Introduction 1.

II Installation 3.
2 Installation 5.

2.1 System Requirements 5.

2.2 Hard Disk Installation 5.

2.3 Listing Directories and Files 6.

2.4 Emulator Installation 6.

2.5 Operating System Support 7.

III Software Development System 9.
3 Software Development System 11.

3.1 Introduction 11.

3.2 User Interface 11.

3.2.1 Pull-down Menus 11.

3.3 Menu Line and Menu Commands 12.

IV qFORTH Compiler 13.
4 qFORTH Compiler 15.

4.1 The qFORTH Program Structure 15.

4.1.1 Compiler Directives 15.

4.1.2 Definitions 15.

4.1.3 Statements 15.

4.1.4 Kicking the Assembler Habit 15.

4.2 Using the Compiler 16.

4.2.1 Compiler Generated Messages 17.

4.2.2 Compiler Generated Files 17.

4.2.3 Compiler Switches 18.

4.3 Compiler Directives 19.

4.3.1 Conditional Compilation 19.

4.3.2 Compilation Control 20.

Index Checking 20.

Macro Expansion Control 20.

Branch Stripping Algorithm 20.

4.3.3 List-File Directives 20.

4.3.4 Stack Effect Directives 21.

4.3.5 Optimization Control 21.

4.4 Compiler Optimization Steps 22.

4.4.1 Branch Optimizer 23.

4.4.2 Call Optimizer 23.

4.4.3 Peephole Optimizer 23.

4.4.4 Register Tracking 23.

Contents (continued)

4.5 The Command-Line Compiler 23.

4.5.1 Compiler Generated Messages 24.

4.5.2 Compiler Generated Files 24.

4.5.3 Setting the Compiler Switches 24.

4.6 Error and Warning Messages 26.

4.6.1 Coded Error and Warning Messages 26.

4.6.2 Uncoded Error and Warning Messages 36.

V Software Simulator 41.
5 Software Simulator 43.

5.1 Introduction 43.

5.1.1 Simulation as an Instrument for Program Verification 43.

5.2 Getting Started 43.

5.3 Using the Simulator 44.

5.3.1 Simulator Screen 44.

5.3.2 Simulator Window Description 45.

ROM Disassembly 45.

MARC4 Registers 45.

RAM Data 45.

Expression Stack 45.

Return Stack 45.

Interrupt Status 45.

Time 45.

Port Status 45.

5.4 Simulator Commands 46.

5.4.1 Command Keys Summary 46.

5.4.2 Simulator Commands Description 47.

Single Step <F1> 47.

Step over CALL <F2> 47.

Program Execution <F3> 47.

Animation <Alt–F10> 47.

Animation Speed <Shift–F1> 47.

Source Code Window <F10> 47.

Simulator Initialization <F4> 48.

Setting Breakpoints <F5> 48.

Reset all Breakpoints <Alt–F5> 49.

Loading a New Program File <F6> 49.

Select Mode for Trace Recording <Alt-F8> 49.

Displaying of Trace Data <F8> 49.

Editing Data in a Window <F9> 51.

Pop-up Help Function <Alt–F1> 51.

Display of Symbol Table Information <F7> 52.

Search for a ROM Symbol <Alt–F2> 53.

Contents (continued)

Changing the Processor Speed <Alt–F3> 53.

Reset Elapsed Time <Alt–F6> 54.

Fill a Section of RAM <Alt–F4> 54.

Printing the Contents of RAM, ROM or Trace Memory <Alt–F9> 55.

Leaving the MARC4 Software Simulator <Alt–X>, <Alt–F7> 55.

5.5 First Steps 55.

5.5.1 Moving About Within the Simulator Screen 55.

5.5.2 Modes of Operation 56.

Step Mode <F1> 56.

Step over CALL <F2> 56.

Run Mode <F3> 56.

Animation Mode <F10> 56.

Working with Breakpoints <F5> 56.

5.5.3 Simulation of Real-time Events 56.

Hardware Interrupts 56.

Software Interrupts 56.

Prescaler Module Programming 56.

5.5.4 I/O Simulation 58.

I/O through the Port Status Window 58.

Input Polling Files 58.

I/O Capture Files 59.

5.5.5 Simulation Restrictions 59.

VI Emulator 61.
6 Emulator 63.

6.1 Introduction 63.

6.2 Features 63.

6.3 Getting Started 63.

6.4 Using the Emulator 64.

6.4.1 Emulator Screen 64.

6.4.2 Emulator Window Description 65.

Interrupt Status Window 65.

Time Window 65.

6.5 Emulator Commands 65.

6.5.1 Command Keys Summary 65.

6.5.2 Command Description 66.

Single Step <F1> 66.

Set ROM Address Break <F2> 66.

Program Execution in Real-Time <F3> 66.

Emulator Initialization <F4> 66.

Set Breakpoints <F5> 66.

ROM Addresses <Shift-F4> 67.

Breakpoints on RAM Accesses <Shift-F5> 68.

Contents (continued)

Breakpoints on I/O Activities <Shift-F6> 69.

Masking of RAM and I/O Data Accessses 69.

Break after Execution Time 69.

Sequential Trigger 70.

Posttrigger Setup 71.

Load a New Program File <F6> 71.

Display of Symbol Table <F7> 71.

Display of Trace Data <F8> 71.

Edit Data in a Window <F9> 73.

Source Code Window <F10> 73.

Pop-up Help Window <Alt–F1> 73.

Search for ROM Symbol, Address or Opcode <Alt–F2> 74.

Change Processor Speed <Alt–F3> 74.

Set Clock Delay, if VDD < 1.6 V <Alt–F4> 74.

Reset all Breakpoints <Alt–F5> 74.

Toggle Interrupt Flag <Alt–F6> 74.

Fill a Section of RAM <Alt–F7> 74.

Select Mode for Trace Recording <Alt–F8> 74.

Print the Contents of RAM, ROM or Trace Memory <Alt–F9> 74.

Animation, Continous Single Step <Alt–F10> 75.

Leaving the Emulator <Alt–X> 75.

Show Version Number <Shift–F1> 75.

Show Current Emulator Setup <Shift–F3> 75.

Select a Target Chip <Shift–F7> 75.

Display Port Window <Shift–F8> 75.

Display Memory Window <Shift–F9> 75.

VII Target Application Boards 77.
7 Target Application Boards 79.

7.1 Introduction 79.

7.2 Target Application Board TAB505 79.

7.2.1 Supply Voltages 80.

7.2.2 Periphery Connector 81.

7.2.3 Settings 82.

Optional External Trim Capacitors 82.

7.2.4 Target Board Adapters 83.

M44C510 83.

M44C636 84.

7.3 Target Application Board TAB260 85.

7.3.1 Periphery Connectors 85.

Additional Sockets 87.

Additional Signals Used in Emulation Mode 88.

7.3.2 Configuration Setup 89.

Contents (continued)

Port Configuration 89.

Shifted Signals CLKSL and TCLSL 89.

7.3.3 Supply Voltages 89.

7.3.4 Target Board Adapters 90.

M44C260 90.

M44C510 91.

7.4 DB37 Connector and Shielded Emulator Cable 92.

7.5 LCD Interface Board 93.

7.6 Important Hints 94.

VIII Piggybacks 95.
8 Piggybacks 97.

8.1 Introduction 97.

8.2 M40C510 – PGY 97.

8.2.1 General 97.

8.2.2 Available Configurations 98.

8.2.3 Piggyback Setup 99.

Supply Voltage (VDD) 99.

Switch S1 – Periphery Clock Mode 99.

Program Memory Bank Switches S8, S7, S6 99.

Jumper JP1 – Disable of Internal RESET Events 100.

Trim Resistor R14 – Trigger Level Setup for Internal RESET Pulse 100.

Trim Resistor R15 – System Clock Setup 100.

8.3 M40C636-PGY, M40C505-PGY 101.

8.3.1 General 101.

8.3.2 Available Configurations 102.

8.3.3 Piggyback Setup 102.

Supply Voltage (VDD) 102.

Trim Resistor R11 and Switch S13 – Externally RC Oscillator Setup 102.

Program Memory Bank Switch (S14) 102.

Power-on Reset 102.

IX OTP Programmer 105.
9 OTP Programmer 107.

9.1 Introduction 107.

9.2 Getting Started 107.

9.3 Set Programmer’s Options 107.

9.4 Using the OTP Programmer 107.

9.5 Error Messages 109.

9.6 Elimination of Errors 110.

9.7 Description of the Parallel Port Signals 110.

X Appendix 113.
XI Addresses 121.

I. Introduction

II. Installation Guide

III. Software Development System

IV. qFORTH Compiler

V. Software Simulator

VI. Emulator

VII. Target Application Boards

VIII. Piggybacks

IX. OTP Programmer

X. Appendix

XI. Addresses

MARC4 User’s Guide
Introduction

TELEFUNKEN Semiconductors
09/96

1

1 Introduction
TEMIC Semiconductors
TEMIC is the microelectronics enterprise of Daimler-
Benz. TEMIC’s Semiconductor division is a leading
manufacturer of application-specific, value-adding inte-
grated circuits for communication equipment,
automotive and industrial systems, computers and broad-
cast media. Discrete semiconductors and optoelectronic
devices make the product range complete.

With a technology portfolio which includes bipolar,
BiCMOS, GaAs, CMOS and DMOS processes, TEMIC
Semiconductors provides a unique set of components and
solutions.

TEMIC - a Microcontroller Specialist
TEMIC has been a technology leader in applications
requiring minimum current consumption such as watches
and clocks for twenty years , and has ten year’s
experience in the design of low-power microcontrollers.
TEMIC offers 4-bit, 8-bit, extended 8-bit and 32-bit con-
trollers. Our MARC4 products are highly sophisticated
and have a firm standing as they have been adapted to ten
different technologies up to now.

Choosing TEMIC as a partner means, you will have one
independent source for components - transistors, diodes,
optoelectronic devices including LEDs and IrDA compo-
nents, integrated circuits and smart-power devices. Due
to our state-of-the-art facilities worldwide, TEMIC’s pro-
duction resources are more than sufficient. TEMIC
guarantees excellent application support which will
reduce your time-to-market. The available software
library for programming as well as the detailed documen-
tation (see appendix) are all free of charge.

The History of MARC4
TEMIC Semiconductors started developing the MARC4
in 1986, based on experience with the former 4-µm
CMOS core e3101. The aim was to design an easy-to-use,
high-performance, 4-bit controller by selecting a high-
level language for programming and to provide highly
advanced and efficient development tools. Special effort
was spent to realize a modular concept with a very small
core design.

After developing MARC4 products in 3-µm and even
1.5-µm technologies, TEMIC started working with
external foundries in 1989. Since 1993, the MARC4
family has been based completely on external foundries
using 2-µm down to 0.6-µm technologies (volatile/non-
volatile).

The MARC4 Family
TEMIC offers a complete family of cost-effective, single-
chip CMOS microcontrollers, based on a 4-bit CPU core
designed for 1.5-, 3- and 5-V applications. The modular
MARC4 architecture is HARVARD-like, high-level
language oriented and best designed to realize high-
integrated microcontrollers with a variety of application-
or customer-specific, on-chip peripheral combinations.
The MARC4 controller’s low voltage and low power con-
sumption is perfect for hand-held and battery-operated
applications.

The standard members of the MARC4 family have
selected peripheral combinations for a broad range of
applications.

Programming is supported by an easy-to-use, PC-based
software development system with a high-level language
qFORTH compiler and an emulator board. The stack-
oriented microcontroller concept enables the qFORTH
compiler to generate compact and efficient MARC4
program codes.

Applications

The very small 4-bit core combined with a versatile
peripheral cell library enables the design of application-
specific microcontrollers.

� 32-kHz subclock

� A/D converter

� Comparator

� EEPROM

� External interrupts

� High-current ports

� LCD drivers

� Low battery detection

� Power-on reset

� Prescaler

� Programmable I/Os

� Reset input

� Serial I/O

� Timers/counters

� Various system oscillators

� Watchdog timer

MARC4 User’s Guide
Introduction

TELEFUNKEN Semiconductors
09/96

2

Features

� Very small 4-bit core combined with versatile
peripheral cell library

� Various on-chip peripheral combinations
available

� HARVARD structure - 3 parallel-operating buses
(pipelining) enhance computing power (2 clock
cycles per instruction only)

� 72 RISC-like, 8-bit instructions

� Stack architecture offers customized stack size and
’unlimited’ subroutine nesting

� Unique 8 level interrupt controller leads to a very
short (3 cycle) interrupt response time

� ’Brown-out’ function and internal Power-On-Reset
(POR) make external components unnecessary

� Small 4-bit periphery bus offers extraordinary
flexibility

� 256 4-bit of RAM directly addressable

� Up to 9 KBytes of ROM

� Low-voltage operating range

� Low power consumption

� Hardware optimized to fit in with high-level
language qFORTH

� Programming and debugging is supported by an
integrated software development system

Programming in the high-level language qFORTH is
simple, easy to understand and advantageous. From the
hardware side, the expression and return stack have a
user-programmable size. The qFORTH instructions
correspond directly to the machine words and therefore,
the program executes fast. The software code is compact
and the sub-routine nesting is almost unlimited. In addi-
tion, programming is easy and safe due to the possibility
of combining existing software modules.

ÏÏ
ÏÏ
ÏÏ

 Interrupt
controller

Instruction
 decoder

CCR

TOS

ALU

RAM
PC

RP
SP

X
YROM

256 x 4-bit

MARC4 CORE

On-chip peripheral modules

Instruction
bus

Clock ResetSleep

Memory bus

I/O bus

I/O ports Interrupt
 inputs

Timer
Application
 specific
peripherals

94 8711

Figure 1. MARC4 core

I. Introduction

II. Installation Guide

III. Software Development System

IV. qFORTH Compiler

V. Software Simulator

VI. Emulator

VII. Target Application Boards

VIII. Piggybacks

IX. OTP Programmer

X. Appendix

XI. Addresses

MARC4 User’s Guide
Installation

TELEFUNKEN Semiconductors
09.96

5

2 Installation

Important

Please read the International Software and Hardware License Agreement at the last page
of this book.

12513

Figure 1. Installation program

2.1 System Requirements

� IBM-compatible PC with 80386 or compatible CPU
or greater

� MS-DOS operating system, Release 5.0 or above

� 4 MByte RAM

� 540 kByte of available system memory

� 2 MByte of hard disk space

� A free full–sized ISA bus slot

� A free parallel port (Centronics or EPP compatible)
for OTP programmer

The development software runs in text mode and is there-
fore independant of the installed video adapter, however,
a color monitor is recommended.

2.2 Hard Disk Installation

� Insert the SDS2 installation disk and change to this
drive (e.g. A: or B:)

� Run the INSTALL program (see figure 1)

� Select the source drive of the installation program

� Use the install selector to choose modules you want to
install (default setting: complete installation)

� Enter the name of base directory in the input line
(default setting: C:\MARC4)

� By including the MARC4 directory in the
AUTOEXEC.BAT search path, it is possible to invoke
the MARC4 software development system “SDS2”
from any subdirectory.

� Make sure that your CONFIG.SYS contains the fol-
lowing minimum settings:

Buffers = 20
Files = 20

� Change to the new MARC4 directory and start the
SDS2 program. Use the pull-down menu Options and
select Directories to set the search path for the com-
piler, simulator and emulator program (see figure 2).
Please note that you have to type the directory path in-
cluding the backslash delimiter (e.g., C:\MARC4\).

MARC4 User’s Guide
Installation

TELEFUNKEN Semiconductors
09.96

6

12514

Figure 2. Set SDS2 directories

2.3 Listing Directories and Files
The MARC4 software development system consists of
the following files and subdirectorie to enable complete
installation:

Software development system:

SDS2.COM Start-up program

MARC4SDS.EXE SDS2 user interface

MARC4SDS.DSK Desktop configuration file
generated on exiting the program

qForth compiler:

qFORTH2.EXE qFORTH compiler, Release 2.10

qFORTH2.OVR Overlay file of compiler

qFORTH2.LIB qFORTH system library

qFORTH2.MSG Error and warning messages

Software simulator:

SIM05.EXE Software simulator

SIM05.DAT Prescaler / interval timer
implementation set-up

SIM05.HLP On-line help file for simulator

SIM05.CFG Simulator configuration file

Emulator software:

EMU3.EXE Emulator control program

EMU3.CFG Emulator configuration file

EMU3.HLP On-line help file for emulator

EMU4.HEX RAM dump utility program

M4XCxxx.CFG Port display configuration setup

OTP programmer:

MARC4OTP.EXE Startup program

MARC4OTP.TVR Resource files

MARC4OTP.DEV MARC4 files for describing the
module

MARC4OTP.INI Configuration file

Utility programs:

INTELHEX.EXE Binary to Intel-Hex conversion
program

UNARJ.EXE De-archive / De-compression
program

KUNDEOPT.EXE Mask options ordering program

OPTHELP.HLP On-line help file for mask ordering

Subdirectories:

TIMER Switch timer software module

TOOLS Test & demo routines

For your further convenience, it is possible to install your
own editor, the qForth2 compiler, the MARC4 software
simulator and the emulator control program in PCSHELL
(i.e. PCTOOLS V6.0 or higher) or any other shell as
executable programs.

2.4 Emulator Installation
To install the MARC4 emulator board, first switch off
your PC’s power supply.

Insert the plug-in card into a full-sized (AT) bus slot (see
figure 4).

MARC4 User’s Guide
Installation

TELEFUNKEN Semiconductors
09.96

7

Table 1. ��
���	
 ��
� ���
��� ������	

Card address JP1 – A7 JP2 – A6 JP3 – A5 JP4 – A4

300h – 30Fh GND GND GND GND

310h – 31Fh GND GND GND VCC

330h – 33Fh GND GND VCC VCC

340h – 34Fh GND VCC GND GND

350h – 35Fh GND VCC GND VCC

360h – 36Fh GND VCc VCC GND

390h – 39Fh VCC GND GND VCC

JP1 JP3

JP4JP2

Vcc GND

A7

A6

A5

A4

This is the default

position of the jumpers.

It selects the address

range 330h – 33Fh.

12515

Figure 3. Card address select – default setting

The emulator card address is set to 330h by default and
none of the interrupts is used up by this board. If the card
address has to be changed, the control software will
search automatically for the new card address (table 1).
The search sequence is 330h, 310h, 300h, 340h, 360h and
390h. Please make sure that your Ethernet controller card
is not in the address range below the MARC4 emulator
board.

The location of the most important devices and the
address jumpers can be found in figure 4. Figure 3
explains how to set a different card address.

After having installed the emulator card, attach the emu-
lator cable to the DB37 (figure 4) connector. The other
end of the cable is plugged onto the MARC4 Target Ap-
plication Board (TAB). The signal assignment on the
DB37 emulator interface connector is described in the
chapter ’Target Application Board’.

Note: If you need to run the emulation at frequencies of
more than 2 MHz at 5 V, you should connect the
target application interface board directly to the
emulator board without using the interface cable.

2.5 Operating System Support

OS/2

The MARC4 – Software Development System is sup-
ported by the OS/2 DOS emulation and it is therefore
possible to run in as either a DOS fullscreen session or
DOS window session.

Note: If the MARC4 simulation or emulation program
is running in the background, it is possible that
the program execution time display will be incor-
rect.

Windows 3.x or Windows for Workgroups

If you want to start the MARC4 development system
under Windows and your PC is integrated in a network
system, it would be possible that the installed network
drivers require too much of free system memory. If this
is the case, your simulation and emulation program will
not be able to start.

MARC4 User’s Guide
Installation

TELEFUNKEN Semiconductors
09.96

8

T
ra

ce
 m

em
.

1

T
ra

ce
 m

em
.

0

T
ra

ce
 m

em
.

2

T
ra

ce
 m

em
.

3

B
uf

fe
r

5

B
uf

fe
r

4

B
uf

fe
r

3

B
uf

fe
r

2

B
uf

fe
r

1

S
hi

ft
re

g.

B
uf

fe
r

9

T
im

er
82

54

A
dd

re
ss

co
un

te
r

2

A
dd

re
ss

co
un

te
r

1

E
V

C

R
O

M
 /

R
A

M

H
C

T
24

3

P
P

I 1
82

55

P
P

I 2
82

55

DB37

A
dd

re
ss

 s
el

ec
tio

n
ju

m
pe

rs

A
B

C
H

I
K

D
E

F
G

1 2 3 4 5 6

G
A

L1

G
A

L3

B
uf

fe
r

10

B
uf

fe
r

7

B
uf

fe
r

6

B
uf

fe
r

8

G
A

L2
G

A
L0

12516

Figure 4. ��� �	
���
� �
���

I. Introduction

II. Installation Guide

III. Software Development System

IV. qFORTH Compiler

V. Software Simulator

VI. Emulator

VII. Target Application Boards

VIII. Piggybacks

IX. OTP Programmer

X. Appendix

XI. Addresses

MARC4 User’s Guide
Software Development System

TELEFUNKEN Semiconductors
09.96

11

3 Software Development System
3.1 Introduction
The qFORTH compiler, MARC4 simulator, MARC4
emulator and OTP programmer are integrated in a com-
fortable development environment which includes an
editor with functions to load and save text files and many
other features. The look and feel of the SDS2 is similar to
the Borland Pascal integrated development environment
(IDE). The menu and mouse-supported user interface en-
ables all required functions to operate easily and provides
user-friendly programming.

Getting started:

By including the MARC4 directory in the
AUTOEXEC.BAT search path, it is possible to start the
SDS2–IDE from any subdirectory. If this is not the case,
you have to change to the MARC4 system directory.

Enter the following command in your DOS PROMPT.

C:\>SDS2

SDS Features :

� All integrated tools are mouse-supported

� Editor

– Multi-window editor
– Clipboard operations: cut, copy and paste
– Search and replace functions

� Integrated qFORTH compiler

� Integrated debugger

– MARC4 Simulator
– MARC4 Emulator

� Integrated OTP programmer

� Options for environment set-up

– Setting of SDS2 directories
– Setting of compiler switches

3.2 User Interface

The menu line appears at the top of the screen in all SDS2
commands embedded in pull-down menus. The field at
the bottom of the screen describes the SDS function keys.
All grey shaded function keys are either not available or
inactive in the current application window.

3.2.1 Pull-down Menus

Pull-down menus can be opened by using the keyboard or
the mouse. A letter in the name of each pull-down menu
is highlighted. This letter can be used in combination with
the <Alt>–key to open the desired menu.

12517

Figure 1. SDS2 user display

MARC4 User’s Guide
Software Development System

TELEFUNKEN Semiconductors
09.96

12

3.3 Menu Line and Menu Commands

Menu Menu Command Function Key Description
MARC4

About SDS ––––– Information about release and copyright
Define mask ––––– Defines customer mask options for ordering
Exit to DOS Alt–X Exits SDS

File
Open F3 Opens text file
New ––––– Makes a new text file
Save F2 Saves current active text file
Save as ––––– Saves text file with file and path name
Save all ––––– Saves all text files
Quit Alt–Q Closes current window
Change dir ––––– Changes the directory
DOS shell ––––– Returns to DOS whithout exiting SDS

Edit
Undo ––––– Cancels the last procedure
Cut Shift–Del Cuts and copies text string to clipboard
Paste Shift–Ins Inserts text string from clipboard
Show clipboard ––––– Shows clipboard
Clear Ctrl–Del Deletes text string

Search
Find Crtl–QF Finds a text string
Replace Crtl–QA Replaces a text string
Search again Crtl–L Repeats the search function

Compile
Current file Alt–F9 Compiles the current file
Built project F9 Compiles the project file
Set project file ––––– Sets name and path of project file

Debug
Emulate project F8 Starts emulator program with project file
Simulate project F7 Starts simulator program with project file

Options
Directories ––––– Installation settings about the directories
Compiler ––––– Compiler switch setup
Save desktop ––––– Saves current desktop settings
Retrieve desktop ––––– Replaces with stored desktop settings

Windows
Size/move Ctrl–F5 Chooses and moves window
Zoom F5 Changes the window size
Tile ––––– Windows position: side by side
Cascade F4 Windows position: overlayed
Next F6 Changes to next window
Previous Shift–F6 Changes to previous window and activates it
Close Alt–F3 Closes current window
Calculator ––––– Calculator

OTP–Prog. OTP–Prog. ––––– Starts OTP programmer
Help Help F1 Short program description

I. Introduction

II. Installation Guide

III. Software Development System

IV. qFORTH Compiler

V. Software Simulator

VI. Emulator

VII. Target Application Boards

VIII. Piggybacks

IX. OTP Programmer

X. Appendix

XI. Addresses

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
09.96

15

4 qFORTH Compiler

By using the MARC4 qFORTH compiler, embedded-sys-
tem designers no longer have to stick to assembly
language; the compiler generates a highly optimized
object code. The smart qFORTH compiler translates your
high-level qFORTH program into the MARC4 processors
native code. The compiler system selects the right assem-
bly-language instruction sequences and addressing
modes for optimal operation. The intermediate code
passes through rule-based expert systems at different
optimization stages. This code is optimized for local cen-
ters of reference (colon definitions, macros, loops) to
minimize stack operations and register references; it actu-
ally scoreboards register references to eliminate
redundancies.

The qFORTH compiler supports standard FORTH
constructs such as: BEGIN .. AGAIN, BEGIN .. UNTIL,
CASE .. ENDCASE, DO .. LOOP, IF .. THEN, IF .. ELSE
.. THEN, BEGIN .. WHILE .. REPEAT, and the following
4-bit and 8-bit data types: constants, variables, arrays and
8-bit ROM look-up tables. qFORTH extensions are inter-
rupt functions, direct I/O port access, in-line assembly
language and direct register access. The compiler also
generates a line-number reference file to support source-
code debugging in the MARC4 simulator and emulator.

The compiler is available in two versions. The fully inte-
grated version is run by selecting ’Compile’ in the menu
bar of the MARC4 integrated environment menu and the
command-line version is run by typing QFORTH2,
followed by options and the name of the file to be com-
piled at the DOS command line.

4.1 The qFORTH Program
Structure

In order to compile your qFORTH program correctly the
compiler expects that the program to be composed of
directives, definitions and statements. Most qFORTH
programs will contain at least a group of statements which
will perform computational operations. These statments
are edited according to the guidelines outlined in the
qFORTH Programmer’s Guide. Whether or not you add
compiler directives and CONSTANT definitions is
dependant on the requirements of your program. They are
more or less optional when compiling a qFORTH pro-
gram. Parameters are expected by the compiler, but not
defined by the programmer. The compiler will substitute
default values such as for stack size allocation.

At the end of this chapter you will find a section which
lists the default values used by the qFORTH compiler. But

first it is necessary to re-examine what the three sections
are which make up a qFORTH program.

4.1.1 Compiler Directives

The directives are compiler switches used to control the
way in which your program is compiled and to specify the
format of your compiler generated file(s). The majority
of the directives can be implemented as in-line com-
mands appearing at the beginning of your program code.

4.1.2 Definitions

The CONSTANT and VARIABLE definitions which are
values referenced by your program via names. They
should be assigned before the CONSTANT or
VARIABLE is referenced within the program.

4.1.3 Statements

A qFORTH program is composed of various statements
grouped together to perform a particular task which your
program invokes via a word. These words are called colon
definitions because they appear in your qFORTH pro-
gram as starting with a colon (‘:’), followed by a space
and the name assigned to these group of statements. A
statement group is a sequential list of MARC4 instruc-
tions, words found in the qFORTH system library or
words which have been defined in your program before
invoking this subroutine.

Note: All colon-definitions end with a semi-colon (‘;’).

Sequences of functionally grouped words are called
modules. Modules used to perform the underlying
computational tasks of the MARC4 are often caused by
from interrupt service routines. These are predefined
names according to the naming conventions described in
the qFORTH Programmer’s Guide and are identified by
‘ : INT<x> ’, whereby <x> is replaced by the priority
number 0 to 7.

The program entry point is identified as the $RESET ser-
vice routine since it is the first word which the MARC4
processor will execute after power-on reset. Normally,
this colon definition is located at the end of your source
program and consists of two parts: the register and the
application initialization section. After the initialization
of the stack pointers, the on-chip peripherals and the
RAM variables of the application have to be put in a well-
defined state.

4.1.4 Kicking the Assembler Habit

This short description has been intended as an overview
to program composition as required by the qFORTH com-
piler.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
 09.96

16

To achieve a tighter code with your high-level language,
remember the following rules and apply them more or less
in order.

� Rethink your approach to problems to see if you can’t
find a more elegant solution.

� Make sure you are storing and manipulating your data
efficiently. Accessing data using a pointer requires
almost three times the number of instructions required
to access the same information using array indexing.

� Make your code less abstract and take advantage of
hardware-specific shortcuts wherever possible,
always weighing the tradeoffs between speed and
development time.

� Optimize your algorithms, eliminating all redundant
and unnecessary operations. Use the address activity
profiler in the emulator or simulator and optimize
where it will do the most good.

� To maximize the limited on-chip RAM, minimize the
usage of local variables and too much nested subrou-
tine calls.

� To reduce the stack usage, check your parameter
passing and subroutine nesting as well as the number
of concurrent interrupt service routines.

� Use assembler instructions for the time-critical code
but do not fall back on writing whole modules in
assembler.

Stick to these approaches and you will be writing applica-
tions that will keep your competition awake at night, not
you.

4.2 Using the Compiler
Check that the correct directory path for qFORTH has
been entered in the setting window ’Directories’ (see
installation guide).

� Edit your program file(s)

� Setup the project’s file name

� Setup the compiler options

� Invoke the compiler

To set the project’s filename use the pull-down menu
’Compile’ and select ’Set project file’. The project’s file-
name means the leading filename of the project which
will be compiled (see figure 1).

To invoke the compiler, use the pull-down menu
’Compile’ and select ’Built Project’ or press the key
<F9>. This occurence will compile the whole project.

The ’Compile’ pull-down menu is shown in figure 2. If
you wish to compile the currently edited file then either
press <Alt-C> followed by the carriage return key or sim-
ply enter <Alt-F9> from within the editor. This will
automatically start the compiler using the active file as its
input filename.

12518

Figure 1. ������ �� �
�	��� ��
� �� �� ��
����� ��
��

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
09.96

17

12519

Figure 2. ��������� �� �
� ��
����� ���
�� �
� �������
���

4.2.1 Compiler Generated Messages

If the compiler detects a code which can not compile
correctly, a warning or an error message will be displayed.
The occurence of a warning is an indication to you that
your program will still compile and is executable,
however, it may not produce a code with the desired kind
of execution. If an error is found, the compiler will
terminate since it is unable to generate executable code.
A complete list of all warning and error messages can be
found in the Appendix.

The information given during any compilation is the
following:

� The qFORTH compiler version and the date of
creation with the qFORTH system library used with
their date of creation

� The name, drive and directory path of the compiled
source file

� The optimizer passes, because a ‘.’ is written to the
screen for each step during optimization and a ‘,’
when macro expansion takes place.

� The compilation result:

If no errors were found, the amount of ROM (in
bytes) required and the calculated CRC check-
sum stored in the last two bytes of the ROM is
displayed.

If errors occur during the compilation, the error
and/or warning messages will be reported
instead. They will be attached at the end of your
source code within the list file.

Note: A complete list of all warnings and error
messages can be found in chapter 4.6 ”Error and
Warning Messages”.

4.2.2 Compiler Generated Files

The compiler generates various files which are normally
directed to the same filename, drive and directory path as
the project’s source file (see table 1).

Table 1. ���� �� ��� ��
����� 	�������� �����

Extension File Type & Contents Format

HEX Object code Binary

SYM Symbol table Internal

LST Complete list and statistics Text

CRF Cross reference file Text

ASS Assembly code list file of compiler generated object code Text

HLL Line number reference file for high level language orientated debugging Internal

LIB User generated library for often used routines Internal

RPT Compilation success/error report file within SDS Internal

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
 09.96

18

4.2.3 Compiler Switches

12520

Figure 3. �����
� ����	�� �
� �
��	
�� ��	����� �	��	� ���
��	
� ����

To set the compiler switches for different compiler
options, use the pull-down menu ”Options” and select
”Compiler” within the SDS2 environment.

Compiler Options

Assembler

This controls, whether an assembler list file is be
generated. The default extension is “ASS”, the default
filename is that of the source file. This output file may be
used to check the efficiency of the generated object code.

List

This controls, whether a source listing has to be
generated. The default extension is “LST”, the default
filename and path is that of the source file. This generated
file contains all events during compilation, depending on
additional compiler switches.

Object Default setting

This controls whether a binary object code file has to be
generated. The default ectension is “HEX ” and default
filename is that of the source file. By default, an object
and symbol file with full optimization is created.

Symbols Default setting

This controls whether a symbol file has to be generated.
The default extension is “SYM” and the default filename
is that of the source code. This file is necessary if you want
to check your code with all defined symbols (subroutines
and variables). By pressing the function key <F7> at the

software simulator or emulator, you can view the symbol
table data.

Warnings Default setting

This controls, whether warnings are written onto the
screen and with the setting of the additional switch “List ”
into the list file too.

HLL linkage

This controls whether a high-level-language debugger
link file has to be generated. The default extension is
“HLL ”, the default filename and path is that of the source
file. This generated file enables source level debugging
(see chapter 5 ”Software Simulator”).

Cross reference

This controls, whether a cross reference file has to be gen-
erated. The default extension is “CRF ”, the default
filename and path is that of the source file. The cross
reference file shows the correlations of all used symbols
(subroutines, variables and constants) with regard to their
definition and their use for different source files.

New Library

This controls whether a new user library has to be gener-
ated. The default extension is “LIB” , the default filename
is that of the first source file. When a user library is gener-
ated, no object, symbol and assemblerfile will be created.
A user library will contains all code generated during this
compilation or all code read in form in other user libraries
(see input line “LIBRARIES”).

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
09.96

19

Compiler Statistics

None

By setting this switch, all statistical information is sup-
pressed in the list file.

Brief

Generates a summary of all errors, all defined words and
all defined variables at the end of the list file.

Normal Default setting

Additionally lists the return and expression stack usage of
all routines, the addresses of all words placed in ROM, a
summary of left ROM holes, unused RAM nibbles and
unused short call address entries, an overview of bytes
saved during the optimization steps and information
about the compiler’s memory usage.

Full

Additional information about the subroutine placement
algorithm, the CPU time for the different compilation
steps, statistics on the usage of the internal symbol table
data base, summary of created files and used compiler
switch settings.

Libraries

This input line controls whether one or more user libraries
have to be read after the system library has been read. By
default, no additional user library is read. The list may
consist of up to 7 user libraries, their names must be sepa-
rated by a comma. The default extension is “LIB ”.

4.3 Compiler Directives
A compiler directive may occur anywhere in the source
file(s), the first character of a compiler directive is always
an “$”. In general, a directive is used to control the com-
pilers behavior when processing the source code.
Compiler directives can not be abbreviated.

4.3.1 Conditional Compilation

To make your job easier, qForth offers conditional com-
pilation. This means that you can decide what portions of
your program to compile based on defined symbols.

The conditional directives are similar in format to the
compiler directives you are accustomed to. In other
words, they have the format.

$directive <arg>

Where directive is the directive (such as DEFINE ,
IFDEF, and so on), and <arg> is the argument, if any.

Note: There must be a blank as seperator between
directive and <arg> .

List of conditional compilation directives:

$DEFINE <symbol> Defines symbol for other
directives

To define a symbol, insert this directive into your
program. <symbol> follows the usual rules for identifiers
as far as length, characters allowed, and other specifica-
tions are concerned.

Example: $DEFINE Debug

This defines the symbol ‘Debug’ used for the remainder
of your program which is to be compiled.

$IFDEF <symbol> Compiles the following code
if <symbol> is defined

$ELSE Compiles the following code
if the previous $IFDEF is
not true, i.e., the <symbol>
is not defined.

$ENDIF Marks the end of $IFDEF
and/or $ELSE section.

Example: $IFDEF <symbol>
<source code A>

$ELSE
<source code B>

$ENDIF

Where $IFDEF is followed by the appropriate argument,
and <source code> is any amount of qFORTH
statements. If the <symbol> is not defined, the <source
code A> is ignored as if it had been commented out of
your program.

Within a skipped conditional block only $IFDEF,
$ELSE and $ENDIF are processed. All other words (in-
cluding directives) are ignored. Skipped conditional
blocks are marked with a hash sign ‘#’ in the listing file.

Often you have alternate chunks of source code. If the
symbol is defined, you need to compile one chunk, and if
it’s false, you need to compile the other chunk. The
qFORTH compiler enables you to do this with the $ELSE
directive.

Note: All $IFDEF directives must be completed within
the same source file, which means they cannot
start in one source file and end in another.
However, an $IFDEF directive can encompass
an include file.

Example: $IFDEF MUX4–LCD
$INCLUDE LCD–MUX4.SCR
$ELSE \ otherwise 3:1 MUX
$INCLUDE LCD–MUX3.SCR
$ENDIF

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
 09.96

20

In this way, you can select alternate include files based on
the same condition. You can nest $IFDEF .. $ENDIF
constructs to achieve the following results:

$IFDEF Version–2
<source code A>

$IFDEF Debug
<additional code>

$ENDIF \ end of debugging output
<source code B>

$ENDIF \ Version–2

4.3.2 Compilation Control

Index Checking

$I+ Default setting
$I–

Normally the index checking for the array indices is on.
When the default setting $I+ is active during compilation,
the constant array indices must be kept in the range
0 to <length-1>.

By using $I– for a section of code, the index which is-
checking is switched off, i.e., any constant array index
may be specified. For example, specifying the
DataArray [-1] could be useful while writing to the array
using [+Y]! or [+X]! instructions within a loop.

Macro Expansion Control

$EXPAND Default setting
$NOEXPAND

To modify the time of the macro expansion and thereby
the amount of optimization done by the compiler, the
$EXPAND and $NOEXPAND directives may be used.
The use of the directives $EXPAND or $NOEXPAND on
the outside of a CODE definition sets this directive
globally. This means that the macro expansion mode in-
fluences all following CODE definitions.

By default all macros are expanded before the optimiza-
tion process is started. The directive $NOEXPAND
means that CODE definitions are expanded after the
optimization process has finished.

Branch Stripping Algorithm

$BRA_STRIP NOTALL Default setting

Unconditional branches are stripped so that short
branches will stay short branches. i.e., if a short branch
leads to a second unconditional short or long branch, the
first short branch could be stripped. If this results in a long
branch stripping is suppressed.

$BRA_STRIP ALL

All branches are stripped, regardless of wether short
branches could become long branches. This kind of
branch stripping may result in an increase in code length,
but will minimize the execution speed.

ROM CRC-Algorithm

$CRC <arg>

The $CRC directive (Cyclic Redundance Check) checks
the contents of ROM. The check sum will be stored after
compilation at the last two ROM bytes of the last physical
ROM bank.

The following arguments are available:

DEFAULT 16-bit software CRC
SIMPLE 8-bit software CRC (optimized code

size)
HARDWARE 16-bit hardware CRC (for MARC4

variants with built-in selftest)

4.3.3 List-File Directives

The list file directives will only have an effect, if /LIST
was specified in the command line or as one of the com-
piler options in the integrated environment.

$NOLIST Default setting
$LIST

The source listing is suspended by $NOLIST until $LIST
is found again in the source code.

$PAGE

$PAGE will force a form feed in the print output file, if
the list output is active.

$DEBUG_STACKS

The compiler directive $DEBUG_STACKS, when in-
cluded in one of the source files, writes the calculated
expression and return stack effects of all code and colon
definitions into the print file. The four columns following
the source line number contain stack depth values that are
relative to the beginning of this source line.

The sequence of the columns is as follows :

– current number of nibbles on the expression stack,

– current number of used return stack entries,

– maximum expression stack depth reached within this
routine (nibbles),

– maximum return stack depth reached within this
routine.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
09.96

21

27 $DEBUG_STACKS

28 : INT7

29 | 5 | 1 | 5 | 1 | PortData @

30 | 6 | 1 | 7 | 1 | Port0 OUT

31 | 5 | 1 | 7 | 1 | ;

32

33

34 $NOEXPAND

35 $OPTIMIZE –XYTRACE

36 CODE X–

37 | 0 | 0 | 0 | 0 | [X–]@ DROP

38 | 0 | 0 | 1 | 0 | END–CODE

39 $OPTIMIZE +XYTRACE

40

41

42 | 0 | 0 | 0 | 0 | >SP S0

43 | 0 | 0 | 0 | 0 | >RP NoRAM

44 | 0 | 0 | 0 | 0 |

45 | 0 | 0 | 0 | 0 | Port0 IN 0 =

46 | 0 | 0 | 2 | 0 | IF RAM_TEST

47 | 0 | 0 | 0 | 0 | ROM_TEST

48 | 0 | 0 | 7 | 3 | THEN

49 | 0 | 0 | 7 | 3 |

50 | 0 | 0 | 7 | 3 | 0 0 Timer_A 2 !

51 | 0 | 0 | 7 | 3 |

52 | 0 | 0 | 7 | 3 | PortData X! X–

53 | 0 | 0 | 7 | 3 | 8 #DO

54 | 0 | 1 | 0 | 1 | 0 [+X] !

55 | 0 | 1 | 7 | 1 | #LOOP

56 | 0 | 0 | 7 | 3 |

57 | 0 | 0 | 7 | 3 | 2_Hz Prescaler OUT

58 | 0 | 0 | 7 | 3 | ;

All values related to the return stack are counted as 16-bit
or 4 nibbles entries. The MARC4 core uses 12-bit words
on each return stack entry. The address space of the fourth
nibble, not used by the return stack, will be assigned by
the compiler for single 4-bit variables.

All calculated values are relative to the start of the CODE
or colon definition. The expression stack values always
start with 0. The return stack value starts with 0 in CODE
definitions. In colon definitions it starts with 1 because of
the return address which is already saved on the return
stack.

4.3.4 Stack Effect Directives

The following directives have no effect if the compiler
switch WARNINGS is turned OFF. The warning mes-
sages of the compiler are very helpful when looking for

an unexpected expression stack under-/overflows or i.e.,
different stack effects of IF .. ELSE .. THEN parts.

On the other hand, the programmer may be aware of the
fact that i.e. a LOOP block eats up a specified number of
elements from the stack. Therefore, if the programmer is
sure that this particular code works perfectly, the
compiler warnings can be turned OFF. These compiler
directives will be placed at the end of each ‘block’ of
qFORTH words (i.e., a DO .. LOOP).

They always start with ‘[’ and end with the symbol ‘]’.
In between those two symbols each combination of the
following directives are allowed:

� �170&)4
 �
���

��
��
	
���
����� �����

��
���

� �170&)4
 �
���

��
��
	 �
���� �����
��
���

�9 �170&)4
 �
���
 �������
���
����� �����

��
���

�9 �170&)4
 �
���
 ������� �
���� �����
��
���

� �
���� ��	
���
����� �����
��
���
�� �

 ��
����� ����� ��
 ��������
�

 ����
����	��� ������
�
����
 ���� �
 ����
	 ����

Example:

��; # �741 -1()9 ',)'.-1+ ���

 ���� # �75, % 170&)4 2*

(-+-65 2162 6,) 56%'.
�7/6-3/-)4 " �� $!� # �)673 %44%: 32-16)4
	 ���

" �! $� # �75, %1 %44%:
)/)0)16 2162 6,) 56%'.

" � � $ # �741 6,) '203-/)4
8%41-1+ 0)55%+) ���

�����
" � 	 $ # �)6 '244)'6 170&)4

375,)(2162 56%'.
�
���

4.3.5 Optimization Control
The amount of optimization done during the compilation
process can be controlled by the $OPTIMIZE control
switch. By default all optimization steps will be per-
formed.

$OPTIMIZE <switch1>, <switch2>

The ABSOLUTE range of optimizations to be performed
is set by qualifying the control switch $OPTIMIZE . The
only types of optimization performed furthermore are
those, that are listed after $OPTIMIZE .

$OPTIMIZE {+ –}<switch1>, {+–}<switch2>

The optimization qualifiers can also be used in conjunc-
tion with the $OPTIMIZE control switch for a

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
 09.96

22

RELATIVE setting in the source files. The kind of opti-
mizations performed is determined by adding (+) or
removing (–) the listed types from the current optimiza-
tion set.

$OPTIMIZE ?

The current optimization control settings are written into
the print output file.

$NOOPTIMIZE Default setting
$OPTIMIZE

All kinds of optimization are inhibited when the $NOOP-
TIMIZE is specified. Whereas $OPTIMIZE will cancel
a previous $NOOPTIMIZE directive, i.e., the optimiza-
tion set is the same as before the $NOOPTIMIZE
directive.

It is possible to control the optimization process in such
a way that some specific subroutines or macros will not
be optimized. For example, no register tracing in a hand-
optimized memory block MOVE routine.

$OPTIMIZE Qualifieres

The user may parameterize the $OPTIMIZE directive
with the following qualifieres:

�
�� ��		 ��"���%� ��!! � ��		 →
��		 ��
��
��� � ���� ��"���%� ��!! � ��� →
��� ��
��� ����� �!�� ��"���%� �

��� ��� �� ��
� ��"���%� �
��
�
��� ��
��� ��"���%� �
����

 ����!"� ���� ��"���%� �
��	� ����!"� �����#�"� ���� $ ��"���!"� �

��� �"����
����
������!"� !�� ���� ����� � ���� ����"

���!"��� ����"

XYLOAD

Sequences like LIT_p LIT_q .. X! will be optimized to
a >X $pq instruction.

XY@!

Sequences like >X $pq .. [X]! will be optimized to a [>X]!
$pq instruction.

XYTRACE

By reloading the X or Y register sequences like [>X]@ or
[>Y]! $pq will be replaced by [+X]@ or [Y-]! operations,
whenever possible.

CMP

Sequences like CMP_cc .. TOG_BF .. BRA are opti-
mized to the sequence CMP_cc .. BRA, where cc is the
opposite condition of cc. Also TOG_BF .. TOG_BF
sequences are omitted which may result from macro
expansions.

CALL

A CALL instruction is replaced by a SCALL , whenever
possible.

SAVECONTXT

The INTx prefix and postfix register save macro (X@
Y@ CCR@ .. CCR! Y! X!) is reduced, whenever pos-
sible. If INT5 does not change the register, X@ and X! are
removed from the routine’s prefix and postfix sequence.

The lowest priority interrupt routine may be compiled
with:

��������� ��
��������
� ���� � %!)% (#��&��$$

�'" (#���

�
��������� ��
��������

BRANCH

A long branch instruction is optimized to a short branch
instruction within a code page whenever possible.

BRA_EXIT

Unconditional branches to an EXIT instruction are
replaced by an EXIT , also unconditional branches to an
instruction that is placed directly before an EXIT are
replaced by this instruction followed by an EXIT .

BRA_STRIP

A branch to a second unconditional branch will be
changed so that the first branch goes directly to the target
of the second branch. This will not save any code, but
result in a faster execution speed. See also the compiler
directive $BRA_STRIP, which allows you to control the
amount of branch stripping being performed.

DROP

Any sequence <Push nibble onto stack> .. DROP will
be removed from the code if this nibble is not used any-
where else and results in no side effects.

Note: Because [+Y]@ DROP will change the Y register,
it is not optimizable.

SWAP

Any sequence SWAP .. SWAP will be removed whenever
possible. Furthermore, any sequence LIT_x .. LIT_y ..
SWAP will be optimized to LIT_y .. LIT_x .

4.4 Compiler Optimization Steps
The previous section described how to use the compilers
optimization directives. The code optimizations imple-
mented are reviewed in this section.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
09.96

23

4.4.1 Branch Optimizer

Short branches are used whenever the address is
achieveable within the present 64-byte page, otherwise
full branches are used. The programmer does not need to
be aware of any page boundaries.

4.4.2 Call Optimizer

Short calls can only be used for colon definitions in the
Zero Page (the first 512 bytes). These definitions are auto-
matically selected to be placed in the Zero Page as a result
of their size and static usage. The programmer can force
a Zero Page placement by appending either AT
<Address> or ‘[Z]’ compiler directives at the end of a
colon definition.

4.4.3 Peephole Optimizer

The peephole optimizer replaces a sequence of instruc-
tions with a shorter, more efficient sequence. In general,
a stack architecture allows a much wider peephole than
normal, as stack effects within a ‘basic block’ may be eva-
luated at compile time. This means that a given code
sequence does not need to be consecutive. Currently eight
separate peephole sequences are checked. The following
example shows the two sequences which were found to
occur most frequently.

Example 1: Compile time constant folding

Source Assembly Optimized
code code

FRED @ Lit_3 Lit_4 [>X]@ $FRED
X!
[X]@

Example 2: DUP DROP optimizing resulting from the
MARC4 implementation of the compare
instructions, where only one of the top two
elements is dropped.

Source Assembly Optimized
code code

DUP 3 = DUP Lit_3

IF Lit_3 CMP_NE

.. CMP_EQ SBRA $THEN

THEN DROP
TOG_BF
BRA $THEN

4.4.4 Register Tracking

While a good assembly code programmer may never
write code with redundant DUP and DROP instructions,

it is often the case that he may forget exactly which vari-
ables and addresses are cached in registers. A good
compiler however, can keep track of which register con-
tains are variable. This is especially true in qFORTH since
the programmer’s model of the machine has no additional
registers.

Example 1: Variables FRED and BERT are in consec-
utive RAM locations

Source Assembly code Optimized Final code

FRED@ Lit_3 [>X]@ $FRED [>X]@ $FRED
BERT +! Lit_4 [>Y]@ $BERT [+X]@

X! ADD ADD
[X]@ [Y]! [X]!
Lit_3
Lit_5
Y! (+! macro)
[Y]@
ADD
[Y]!

Sometimes register tracking may also eliminate redun-
dant address register loads across an IF statement.

Example 2:

��
	 � 	�� � ��

� �
�� �

��
 	���

� ��
	 �

��
�

4.5 The Command-Line Compiler
Compiling qFORTH programs can also be done by using
the command-line approach common to most computers
where each step in program generation occurs from the
command line. On your PC this means from the DOS
command line indicated by the prompt, such as the drive
indicator.

C:\MARC4 > qFORTH2 [/<switch>]
<filename>[/<switch>]

To invoke the compiler, enter the program name
qFORTH2 followed by the filename to be compiled.
Normally, a file extension is not required since ‘SCR‘ is
default when compiling a main program.

As an example, to compile a file called ‘MYFILE.SCR’
with the generation of a list and object code file, the
following command-line sequences would be accepted as
valid by the compiler:

QFORTH2/LIST/NOSTAT MYFILE
QFORTH2 MYFILE/LIST/STAT=NO
QFORTH2/LIST/SYM MYFILE/STAT=FULL

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
 09.96

24

An overview of the various compiler switches, options
and directives accepted by the command-line compiler is
listed in the subsequent sections of this chapter.

After the compilation of your program is completed, the
DOS drive indicator will appear on the screen permitting
you to either enter the simulator or emulator (in com-
mand-line mode) or to go back to your program editor to
correct any possible errors which may have occured.

4.5.1 Compiler Generated Messages

The generated messages of the command-line compiler
version are the same as the MARC4 environment inte-
grated version.

4.5.2 Compiler Generated Files

A listing of all generated files is shown in table 1.

4.5.3 Setting the Compiler Switches

The compiler switches of the command-line version are
the same as the integrated version. Default switch settings
do not have to be called in the command line. For more
detailed information, see the section ’Compiler Switches’
of the integrated version.

Object Code Generation

/NOOBJECT

/OBJECT[=<object file>] Default setting

This controls whether a binary object code file has to be
generated. The default extension is ”.HEX” and the de-
fault filename is that of the source file.

/NOSYMBOLS

/SYMBOLS[=<symbol file>] Default setting

This switch controls whether a symbol file has to be gen-
erated. The default extension is ”.SYM” and the default
filename is that of the source code. This file is necessary
if you want to check your code with all defined symbols
(subroutines and variables). By pressing the function key
<F7> in the software simulator or emulator, you can take
a view the symbol table data.

List File Generation

/LIST[=<list file>]

/NOLIST Default setting

This switch controls whether a source listing has to be
generated. The default extension is ”.LST” and the
default filename and path are that of the source file. This
generated file contains all events during compilation,

depending on additional compiler switches.

/NOWARNING

/WARNING Default setting

This controls whether warnings will be written onto the
screen and – with the setting of the additional switch
”$List” – in the list file, too.

/NOSTATISTICS

/STATISTICS[=<statistics qualifier>]

<statistics qualifier>:

/STATISTICS=NO (is identical to
NOSTATISTICS)

/STATISTICS=BRIEF

/STATISTICS=NORMAL Default setting

/STATISTICS=FULL

No

By setting the switch, all statistical information is sup-
pressed in the list file.

Brief

Generates a summary of all errors, all defined words and
all defined variables at the end of the list file.

Normal

Lists additionally the return and expression stack usage of
all routines, the addresses of all words placed in ROM, a
summery of left ROM holes, unused RAM nibbles and
unused short-call address entries, an overview of bytes
saved during the optimazition steps and information
about the compiler’s memory usage.

Full

Additional information about the subroutine placement
algorithm, the CPU time for the different compilation
steps, statistics on the usage of the internal symbol table
data base, summary of created files and used compiler
switch settings.

Debugging Support File Generation

/ASSEMBLER[=<assembler file>]

/NOASSEMBLER Default setting

This controls whether an assembler list file will be gener-
ated. The default extension is ”.ASS” , the default
filename is that of the source file. This output file may be
used to check the efficiency of the generated object code.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
09.96

25

/CRF[=<crossreference file>]

/NOCRF Default setting

This controls whether a cross reference file has been
generated. The default extension is ”.CRF” , the default
filename and path is that of the source file. The cross
reference file shows the correlations of all used symbols
(subroutines, variables and constants) with regard to their
definition and their use in the different source files.

/LOG[=<HLL file>]

/NOLOG Default setting

This switch controls whether a high-level language de-
bugger link file has to be generated. The default extension
is ”.HLL”, the default filename and path is that of the
source file. This generated file enables source-level
debugging (see chapter 5 ”Software Simulator”).

Library Management

/NEWLIB[=<library file>]

/LIBRARY[=<library file>[,<library file>]]

This command controls whether one or more user
libraries have to be read after the system library has been
read.

/SYSLIB

Controls whether a new system library has to be generated
or not. The default filename is ‘qFORTH2.LIB’,
generated from the input source file. The source files to
be compiled into a system library must have a certain for-
mat, otherwise the compilation will fail.

Note: This compiler switch is reserved for TEMIC’s
internal use only.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
 09.96

26

4.6 Error and Warning Messages

Notes:

All errors marked with (****) are severe errors which indicate that the compiler does not work properly. In this case,
you should send your source code which caused the error, together with your system library and a brief description,
to

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

TEMIC Semiconductors
MARC4 Applications Department
Erfurter Str. 31
D-85386 Eching

Fax: +49–89–3194621

DOS errors, which are preceeded by the word DOS, are not explained in this manual. Refer to your DOS manual.
Turbo (Pascal) runtime (RT) errors are caused by an incorrect compiler source code.

4.6.1 Coded Error and Warning Messages

001 File not found

When including a file with the $INCLUDE directive, this file was not found. All files to be included are expected
in the same directory as the source file, as long as there is no directory path preceeding the filename.

005 Turbo RT: Object not initialized (****)

TURBO runtime error caused by an incorrect compiler code.

006 Turbo RT: Call to abstract method (****)

TURBO runtime error caused by an incorrect compiler code.

050 WARNING –– Source line too long. Truncated after 120 characters

A source line is always processed up to 120 characters only. Additional characters are ignored.

051 WARNING –– End of file reached while scanning comment

When scanning comment, the end of file was reached prior to the end of comment. The closing parenthesis ‘)’
seems to be missing.

052 Too many nested INCLUDE’s. INCLUDE will be ignored.

Includes may be nested only 4 levels deep. Additional nested include files are ignored. Nevertheless, including
can be done sequentially without limitations.

053 Numeric value out of range

The numeric value read was either out of the machin’s integer number range, or an array index was out of its
range. Arrays always start with index 0. This message is also issued if you force an object via ’AT’ to a location
outside of the current RAM or ROM address range.

054 Internal stack overflow (****)

The compiler’s internal number stack has overflowed.

055 Internal stack empty (****)

The compiler’s internal number stack was empty when the compiler tried to get a number from the stack.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
09.96

27

056 Number expected

The compiler expected a number or constant as next item within the source file. This message is often seen on
constant or array definitions following a look-up table. Please rearrange the sequence of definition so that a vari-
able or colon/macro definition follows a look-up table.

057 Assembler definitions expected when creating library

When compiling a system library source, the compiler always expects a section with assembler definitions at
the beginning. This section was not found.

058 Additional characters ignored

There are characters after the end of a program in your source file. They will be ignored by the compiler.

059 Only CODE, ’:’ or CONSTANT definitions are permitted

In a system library source, only CODE, COLON and CONSTANT definitions may occur.

060 END–ASSEMBLER expected

The end of the assembler section has to be marked with this word. The compiler did not find it in the system
library source code.

061 QFORTH–LIBRARY expected

The COLON and MACRO definition in a system library source have to be enclosed by the words
QFORTH–LIBRARY ... END–LIBRARY. This error occurs if there are no COLON or MACRO definitions at
whatsoever.

062 Reserved word QFORTH–LIBRARY not found, will be added

When compiling a system library source, a COLON or MACRO defintion was found before the word
QFORTH–LIBRARY.

063 Unable to handle. Skipped to next

When looking for the beginning of an object definition, an unusable object definition was found. The compiler
skips to the beginning of the next object definition.

064 ’:’ added

Whenever an undefined name is found, and the compiler looks for the beginning of a new definition, this name
is regarded to be the name of a COLON definition, where the user forgot to write the colon.

065 WARNING –– Undefined Word

An undefined word was found within a COLON or MACRO definition .

066 Undefined label or label referenced outside of definition

All labels used within a COLON or MACRO definition have to be defined in this definition, unless the labels
are maked as ’special labels’ which begin with the two characters ’_$’.If this error occurs, one or more labels
within a definition were not defined.

067 END–CODE expected

When compiling a macro, the beginning of the next definition was found while the macro was not compiled
completely. In this case, an END–CODE is added by the compiler which causes the compilation of the macro
to be completed properly.

068 ’;’ expected

When compiling a COLON definition, the beginning of the next definition was found while the colon definition
was not compiled completely. In this case, a ’;’ is added by the compiler which causes the compilation of the
colon definition to be completed properly.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
 09.96

28

069 WARNING –– There is no special handling of negative numbers

The MARC4 is not able to process signed numbers in binary format. All negative numbers used in your source
file will be treated as positive values.

070 $VERSION expected

The system library source code must begin with a $VERSION statement. The word $VERSION must be
followed by a string that will identify this library version. The compiler also uses the version string to check
the validity of user libraries.

071 Only ’CALL’ and ’BRA’ instructions permitted

When using assembler instructions in COLON or MACRO definitions you are not allowed to use the short-call
(SCALL) or short branch (SBRA) instruction. The compiler will optimize the long branch (BRA) and long-
call (CALL) instruction to SBRA and SCALL instructions whenever possible.

072 Insufficient space for intermediate code (****)

When compiling a program, the code is stored in an intermediate array before the object code is assembled. This
error does not occur, if the space reserved within the compiler for intermediate code is defined, to be large
enough.

073 ’%’ or ’$’ not permitted in label names

These two characters may not occur in label names, for they are reserved to the compiler’s use when substituting
macros. Furthermore care should be taken when using labels beginning with an underscore, for most labels in
the qFORTH library begin with an underscore. This might cause duplicated label names.

074 WARNING –– Label too long. Truncated to 16 characters

The length of a label is limited to 16 characters.

075 Duplicate label names

Within your program, two duplicate label names were found. You have to rename one of them.

Note: Avoid label names beginning with an underscore, as this might cause interferences with label names
already used within the qFORTH library.

076 “]” expected

The option list or an array index must always be enclosed in square brackets. In an option list, these brackets
must be preceeded and followed by at least one blank. When supplying an index, the opening bracket must be
preceeded by at least one blank, the closing bracket must be followed by at least one blank. The index may be
preceeded or followed by one or more blanks optional. An index may only occur after an array name in the
source code.

077 WARNING –– Stack effect of word not computable

Normally, the compiler computes the EXP and return stack effects of every COLON and MACRO definition.
This is impossible if

– BRA assembler instructions are used in the definition,

– you use a COLON or MACRO definition whose stack effects are un-computable,

– this COLON definition is recursive,

– this COLON or MACRO definition contains an IF–ELSE–THEN statement where THEN and ELSE part have
 different stack effects,

– this COLON or MACRO definition contains any loop (DO .. LOOP or #DO .. #LOOP or ... or BEGIN ...
 AGAIN or BEGIN ... UNTIL or ...) in whose block the RET or EXP stack effect is <> 0

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
09.96

29

– this COLON or MACRO definition contains DO ... +LOOP statement wherein the RET stack effect is not
 0 or the EXP stack effect is not 1.

–this COLON or MACRO definition contains a CASE statement wherein the effects of all selections are not
 the same. You can suppress this warning, by classifying the COLON/MACRO as one, which stack effect do
 not has to be computed by supplying the option ’?’ or by explicitly typing the stack effects in the option
 brackets, e.g. [E 0 R 0].

078 Only ’:’ definitions can be forced to ZERO PAGE

Only COLON defintions can be forced to the zero page by the ’Z’ option. A COLON definition forced to the
zero page will be placed there, regardless whether it is called by any routine or not.

079 Nesting of object definitions not permitted

Object definitions may not be nested, i.e., you can not write a COLON or MACRO definition within an other
COLON or MACRO definition.

080 ELSE or THEN expected; THEN will be added

When processing the THEN part of an IF statement, the beginning of another object definition or the end of the
current definition was found. In this case, a THEN is added to correct the block structure.

081 THEN added

When processing the ELSE part of an IF statement, the beginning of another object definition or the end of the
current definition was found. In this case, a THEN is added to correct the block structure.

082 #LOOP added

When processing an #DO ... #LOOP statement, the beginning of another object definition or the end of the
current definition was found. In this case, a #LOOP is added to correct the block structure.

083 Last numeric entry omitted

When scanning the source code the compiler has to do a look-ahead of one word to process CONSTANT or
ARRAY definitions. Therefore, when a number is found at the beginning of an object definition, the compiler
has to read the next word to decide whether the number is valid or not. If a number is invalid, this is flagged
at the word following the number with this message.

084 Predefined value is already initialized

Predefined constants like $RAMSIZE or $ROMSIZE can only be set once in a program’s source code.

085 WARNING –– Return stack doesn’t start at address 0

The return stack does not start at adress 0, because it was forced to another location by ’AT’. This means, when
an RET stack underflow occurs, NO SLEEP mode is entered and program exectution will continue at a random
location. You should ensure, that this mode is impossible when forcing the RET stack to a specific address.

086 $RAMSIZE value is insufficient

By declaring too large stacks or too much arrays or variables, there is insufficient space in the internal RAM
to place all objects into it. The compiler has to be told the RAM size in the predefined constant $RAMSIZE,
or a default value of now 111 nibbles is used.

087 AT not permitted here

The AT part of an array or a variable definition has to stand in front of the ALLOT part.

088 A label became too long when macroing

Calling macros in other macros over several levels may cause the label name length to overrun the limit. You
should use shorter names or less excessive macro-in-macro-calls.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
 09.96

30

089 LOOP added

When processing a ?DO/DO ... LOOP statement, the beginning of another object definition or the end of the
current definition was found. In this case, a LOOP is added to correct the block structure.

090 WARNING –– THEN and ELSE block with different stack effects

When processing a COLON or MACRO definition, an IF–THEN–ELSE statement with different stack effects
in the THEN and ELSE part was found. This causes the stack effects of the current COLON/MACRO definition
to be uncomputable. An IF–THEN–ELSE statement with an absent ELSE part is regarded as an IF–THEN–
ELSE statement with an RET and EXP stack effect of 0 in the ELSE part.

091 WARNING –– RET stack effect in LOOP block is <> 0

The current COLON/MACRO definition contains any kind of loop in which the RET stack effect is not 0. This
causes the stack effects of the whole COLON/MACRO definition to be uncomputable.

092 WARNING –– EXP stack effect in LOOP block is <> 0

The current COLON/MACRO definition contains any kind of loop in which the EXP stack effect is not 0. This
causes the stack effects of the whole COLON/MACRO definition to be uncomputable.

093 WARNING –– EXP stack effect in final +LOOP block is <> 1

The current COLON/MACRO definition contains a DO ... +LOOP statement in which the EXP stack effect of
the last block in front of the +LOOP is not 1. This causes the stack effects of the whole COLON/MACRO
definition to be uncomputable.

094 UNTIL, WHILE or AGAIN expected. UNTIL added

When processing a BEGIN statement, the beginning of another object definition or the end of the current
definition was found. In this case, an UNTIL is added to correct the block structure.

095 REPEAT added

When processing a BEGIN ... WHILE ... statement, the beginning of another object definition or the end of the
current definition was found. In this case, an UNTIL is added to correct the block structure.

096 ENDCASE added

When processing a CASE .. OF .. ENDOF .. statement, the beginning of another object definition or the end
of the current definition was found. In this case, an ENDCASE is added to correct the block structure.

097 ENDOF added

When processing a CASE .. OF .. statement, the beginning of another object definition or the end of the current
definiton was found. In this case, an ENDCASE is added to correct the block structure.

098 System library incomplete! Contact TEMIC for immediate support (****)

One basic part of the system libray QFORTH.LIB was not found. This error only occurs if your system library
has been damaged by hard-disk errors. For first aid, delete qFORTH2.LIB and dearchive this file from
MARC4.ARJ on the installation disk.

099 Internal compiler error ! Contact TEMIC for immediate support (****)

Supply your source code for failure analysis.

100 $AUTOSLEEP and $RESET have fixed ROM addresses, AT ignored

The $AUTOSLEEP routine is always placed at ROM address 000h, while $RESET is placed at ROM
address 008h. Trying to force these routines to different start addresses will result in this warning.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
09.96

31

101 Symbol longer than 20 characters – truncated

Whenever a symbol name with more than 20 characters is defined, the name is truncated to 20 characters.

102 WARNING –– Dirty programming style – Stack effects uncomputable

This warning occurs if you are using BRA instructions and lables within a MACRO/COLON definition. The
compiler is not able to calculate the correct stack effects.

103 WARNING –– Redefining a Number with a qFORTH word

By creating a new vocabulary entry and linking it in the word-list, this warning will occur if you have defined
a new object with the name which already exists.

104 Undefined ROM–Segment

The name of the defined ROM segment is unknown.

105 Expected $ENDSEG – $ENDSEG inserted

If routines or ROM constants are to be placed into specific ROM segment blocks, they have to be enclosed by
the compiler directives $BEGINSEG $ENDSEG. During compilation, the ROM segment directive
$ENDSEG was expected because the compiler has found the beginning of an additional ROM segment defini-
tion. The directive $ENDSEG was inserted automatically.

106 No previous $BEGINSEG

The compiler found the directive $ENDSEG of a ROM segment definition without a ROM segment block being
introduced by the directive $BEGINSEG.

107 Overriding previous Segment assignment

A routine within a $BEGINSEG $ENDSEG block overlapped with a SEGMENT directive for a single place-
ment of a ROM constant or subroutine.

108 Expected SEGMENT – SEGMENT added

During compilation, the word SEGMENT was expected into the $DEFSEG directive. The compiler inserted
the word SEGMENT automatically.

109 Defined Segment does not fit into parent segment

The defined ROM space area is greater than the ROM space area of the superior ROM segment block.

110 ROM–Segment of $AUTOSLEEP, $RESET, and INTx routines cannot be changed

The $AUTOSLEEP, $RESET and INTx routines have fixed addresses in the ROM base bank and can not move
into another ROM segment.

153 Unexpected end of source file

The end of a source file was found before a definition in the source code was completed. Maybe a <CR>
following a ‘j’or ENDCODE statement is missing in the last line of a source file.

160 Only “@” or “!” operations are allowed with external objects

If you use external storage, the only operations on external objects, which have been declared as EXTERNAL
before, are store and fetch operations. This means, for example, you can not push the address of an external
object onto the stack and manipulate it.

161 Global labels in macros are not allowed

The use of global labels (beginning with _$) is forbidden, as this label would cause multiple definition problems
when this macro is called.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
 09.96

32

163 $EXTMEMSIZE value is insufficient

The size of the external memory is too small, i.e., not all external objects can be placed.

164 You can not call that

The only thing that can be called by CALL-assembler-instructions are subroutines, defined by COLON
definitions or labels within assembler subroutines.

165 Do not redefine assembler words

Assembler words can not be redefined.

166 Optimize XYTRACE : Not enough memory in partition list (****)

An internal list of the qFORTH compiler is too small.

167 Fatal error during XYTRACE (****)

A fatal internal compiler error occured during XYTRACE optimization. Please submit your source code to
TEMIC for failure analysis.

168 Partition–pointer–list too small (****)

An internal list of the qFORTH compiler is too small.

169 Invalid Context–Save/Context–Restore Macros

An internal compiler error occured during the compilation of a new system library.

170 Found operator where operand was expected

171 Found operand where operator was expected

172 String constant truncated to 80 characters

If a string constant with more than 80 characters is defined, the string constant is truncated after 80 characters.

197 Use $Bank_Switch FULL

Replace the default argument RESTRICTED of the compiler directive $BANK_SWITCH <arg> by the
argument FULL.

198 Panic: Could not place subtree of SCALL–Routine in BB

To organize the base bank efficient, the compiler has to place all routines with fixed ROM addresses into the
zero page (INTx, $RESET, ...). The next step of the compiler is to place all routines and subroutines into the
base bank which will be forced to a SCALL address. After that, the zero page is filled up with SCALL routines.
This error occurs, if there is not enough memory space to place the corresponding routines into the base bank.
You have to rearrange your source code .

199 TBL not actualized

Stack operation error caused by SWAP and DROP instruction. This failure may occur during compilation of
a new system library.

200 Internal consistency check failed!

Internal compiler error! Please contact your TEMIC sales person for immediate support.

201 WARNING –– Different RET stack effect than in previous block

When processing a CASE .. OF .. ENDOF .. ENCASE statement, the current block has a different return stack
effect than the previous block. This causes the stack effects of the current COLON/MACRO definition to be
uncomputable.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
09.96

33

202 WARNING –– Different EXP–stack effect than in previous block

When processing a CASE .. OF .. ENDOF .. ENCASE statement, the current block has a different EXP stack
effect than the previous block. This causes the stack effects of the current COLON/MACRO definition to be
uncomputable.

203 Illegal word will be ignored

When processing a COLON/MACRO definition, an improper keyword was found (such as THEN without a
prior IF or an UNTIL without a prior BEGIN ...) or within a ROMCONST definition an unusable word was
found. Within ROMCONST definitions, only numbers, constants, strings, and names of arrays, variables are
allowed.

204 End of file reached while reading a string

When processing a string, the end of the source file was found before the end of the string was reached.

205 ’,’ expected

When defining a look-up table with ROMCONST, each item has to be followed by a blank and a comma, the
last item too.

206 Index out of range

When indexing an array, the index was less than 0 or greater than the maximum index.

207 WARNING –– Index expected

Everytime an opening square bracket after an array name is found, the compiler assumes to read an array index
which has to be a number or a constant of the appropriate range.

208 WARNING –– Value not in range 1 .. 16

The maximum index when defining a short byte or short nibble array has to be less than or equal to 15 and greater
than or equal to 0. The index for any short array has to be a nibble. When defining an array, the bracketed number
is the number of array elements whose index starts at 0 !

209 Value not in range 1 .. 256

The maximum index when defining a long byte or nibble array has to be less than or equal to 255 and greater
than or equal to 0. The same range is valid when indexing a short array. The index for a long array has to be
a byte.

210 WARNING –– Unknown or invalid option

An unknown option was found when specifying an option list after a block within a COLON or MACRO defini-
tion.

211 WARNING –– No INTERRUPT routine has been defined

Each program has to contain at least one definition of an interrupt service routine. The interrupt service routines
are named INT0 to INT7. The compiler uses the defined interrupt routines to compute the set of used subroutines
by following the execution path for every interrupt routine.

212 Recursion in CODE definitions not permitted

A macro definition can not be used in its own definition.

213 WARNING –– Recursive stack effects unpredictable

The stack effects of a recursive COLON definition can not be computed. Nevertheless you can specify them
in the option list using ‘[ExRy]’.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
 09.96

34

214 Inconsistent assembler definitions in system library (****)

This error indicates inconsistency in the definitions of assembler words in the system library.

215 WARNING –– Forcing to an address overrides forcing to ZERO PAGE

If a COLON definition is forced to the zero page by the ’Z’ option and forced to a specific address by AT, the
AT overrides the ’Z’.

216 DPMI: General Protection Fault (****)

Internal compiler error! Please contact your TEMIC sales person for immediate support.

217 Unable to place $RESET routine in ROM

The compiler was unable to place the $RESET routine at address 008h or there is not enough space to place
the whole $RESET routine. Reduce the size of the $RESET routine.

 218 Unable to place INTERRUPT routine in ROM

The compiler was unable to place an interrupt routine at a predefined address as there was not enough space
to place the routine. The reason and the steps to avoid this are the same as described in error 217.

219 FATAL ERROR – Routine became longer when optimizing (****)

This means that a subroutine increased in length when it was optimized.

220 Insufficient ROM for placing ROM constant values

There was not enough space left in ROM when the compiler tried to place the ROM constant look-up table
definition. The ROM constants are placed after all subroutines have been placed. If this error occurs, increase
the size of the on-chip ROM (using $ROMSIZE) or break ROM constants and subroutines into smaller parts,
so they can fit into smaller ROM holes not used.

221 FATAL ERROR during optimization (****)

A fatal error occured when optimizing the intermediate object code.

222 FATAL ERROR during ROM placement (****)

A fatal error occured when carrying out the ROM placement. Typical error if the ROM size is too small.

223 RET stack does not fit into RAM

The size of the return stack is greater than on-chip RAM. Increase the on-chip RAM or decrease the size of the
return stack allocation.

224 EXP stack does not fit into RAM

The size of the EXP stack is greater than the size of on-chip RAM. Increase the on-chip RAM, decrease the size
of the EXP stack or return stack allocation.

225 RET and EXP stack will overlap

You forced the EXP stack to a specific address so that both stacks do not use disjointed parts of RAM. Do not
force the EXP stack to a specific address.

226 Not the name of a colon definition

You tried to use an assembler mnemonic or another reserved word of a colon definition.

227 WARNING –– Unkown interrupt source of current routine – Stack effects 0,0 assumed

You have defined a SWI-instruction in the current routine, but the compiler cannot find out the interrupt which
will activate this routine.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
09.96

35

228 Insufficient $ROMSIZE for placing subroutines

Not all necessary subroutines could be placed in the MARC4’s ROM. The actual ROM size is given to the
compiler by the predefined constant $ROMSIZE. If this directive is not found in the source, a default ROM size
is taken.

229 WARNING –– RET stack size not set – Using default value

The return stack size was not set by the sequence VARIABLE R0 <xx> ALLOT where <xx> is the size in
nibbles. The default value is 48 nibbles. The number of return stack entries is calculated by (<xx> /4) + 2.

230 WARNING –– EXP–stack size not set – Using default value

The EXP stack size was not set by the sequence VARIABLE S0 <xx> ALLOT where <xx> is the size of the
expression stack –1. The default value is 16 nibbles.

231 WARNING –– Cannot determine target of SWI instruction

You have called an interrupt before the interrupt service routine is defined. Please try to rearrange your source
code.

232 WARNING –– Not all Z–optioned routines could be placed

There is not enough space in the zero page thus, not all subroutines, which are forced to a short-call address by
the Z-option, could be placed on a short-call address. Decrease the length of interrupt or $RESET routines or
use less forcing to a zero–page address by AT or Z-option.

233 WARNING –– Using default value for $ROMSIZE

You did not set the predefined constant $ROMSIZE. The default value of 1.5K is taken.

234 WARNING –– Using default value for $RAMSIZE

You did not set the predefined constant $RAMSIZE. So the default value of 111 nibbles is taken.

235 WARNING –– Using default value for $EXTMEMSIZE

You defined external memory objects, but did not specify the size of the external memory. So a default value
is taken. The default value is set to 255 nibbles. This warning is issued only if external objects have been defined.

236 WARNING –– Using default value for $EXTMEMPORT

The predefined constant $EXTMEMPORT needs the port address for external memory accesses. The default
value is Fh.

237 WARNING –– Using default value for $EXTMEMTYPE

If external memory is used, the types RAM or EEPROM are valid parameters. RAM is the default parameter.

238 Unkown CRC–Algorithm. Valid are DEFAULT, SIMPLE and HARDWARE

The compiler supports three CRC algorithm which influence the checksum generation differently. Only
DEFAULT, SIMPLE and HARDWARE are valid parameters. If there is no $CRC-directive defined in your
source-code, the CRC algorithm is DEFAULT.

239 Unknown Bank switch method. Valid are Restricted and FULL

The compiler has found an invalid argument for the directive of the ROM bank switch. Only RESTRICTED
and FULL are valid arguments. If there is no $BANK_SWITCH <arg> directive defined in your source-code,
the $BANK_SWITCH argument is RESTRICTED.

241 No previous $IFDEF

When using conditional compilation, the compiler found a $ELSE or a $ENDIF but no previous $IFDEF.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
 09.96

36

242 Unmatched $IFDEF(s), possibly $ENDIF missing

When using conditional compilation, there were unmatched $IFDEF(s) left at the end of the source, i.e., there
were more $IFDEFs than $ENDIFs.

244 Program aborted via <CTRL+C>

This error message is issued when the compiler is terminated via <CTRL+C> keyboard break.

245 – 247 TURBO–RT: TURBO runtime error (****)

This TURBO-runtime errors are caused by an incorrect compiler code. Please contact your TEMIC sales person
for immediate support.

248 WARNING –– Protect only assembler words in Colon or Code Definitions

The compiler directive $PROTECT must be used only to protect assembler words in colon or code definitions
by creating a new library.

250 WARNING –– $(NO)EXPAND meaningless in Colon definition

This compiler directive is only a macro expansion control.

251 TURBO–RT: TURBO runtime error (****)

This TURBO runtime error is caused by an incorrect compiler code. Please contact your TEMIC sales person
for immediate support.

252 WARNING –– Expansion mode has already been set globally

If the compiler directive $(NO)EXPAND is set on the outside of a code definition, the expansion mode is set
globally. This global expansion mode can be set once in your source code only.

4.6.2 Uncoded Error and Warning Messages

Error message file <path> qFORTH2.MSG not found

The compiler’s error message file is not available in the compiler’s directory.

User library <name> not found

An user library was not found. Check, whether you supplied the correct extension, or if your user libraries have
the default extension .LIB, whether you supplied the correct path or, if no path was supplied, whether they are
stored in the same directory as the source file.

<name> is never called

You forced a routine to an address or to the zero page, which is never called directly by any other routine. You
may omit this routine, or, if you do not force it, the compiler will not place it in ROM area.

ERROR –– Illegal environment found by the compiler (****)

The compiler reads the program’s environment to determine the path where the compiler overlay can be found.
Use an MS-DOS operating system release 3.3 or above.

<list of files> : List is ignored

Do not pass more than one source file to be compiled. All except the first will be ignored.

<list of qualifiers> : List of qualifiers not allowed

The list of qualifiers <qualifix> is not allowed here and will be ignored.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
09.96

37

Contradicting switch <switch> is ignored

You supplied two contradicting switches such as LIST and NOLIST. Omit one of them.

<qualified switch> : qualifying not allowed

You qualified a switch which does not allow qualifying.

<qualifix> : unknown qualifier

You specified an invalid qualifier after the /STATISTICS switch. Valid are only: NO, BRIEF, NORMAL and
FULL (or abbreviations of these)

XY@!–optimizing requires XYLOAD–optimizing

You cannot optimize indirect–X/Y-fetch/store unless the loading of the X and Y register is optimized.
XY@! optimizing is not completed.

XYTRACE optimizing requires XY@!–optimizing

You cannot carry out a register trace optimizing unless ‘XY@!’ is optimized. XYTRACE optimizing is not
done.

Unable to place <name> (<length> Bytes) (****)

The remaining space in ROM is too small to place the flagged object. Use less forcing to zero page or to an
address or break large routines into smaller pieces. This warning will also produce a severe error.

This word is redefined (see <place of first definition>)

You defined the same object twice. This might cause problems when referenced by other routines. Rename or
remove one object from your source code.

X@/Y@ in <name> : content could be changed by the optimizer

Within <name> you used the Y register, although XYTRACE optimization is done. This might change the
normal content of the X or Y register. Don not use these registers by direct assembler instructions.

Call <routine> in <name> : Don’t pass parameters in registers

<routine> uses the X or Y register. The compiler assumes that parameters to <routine> are passed in the regis-
ters. If XYTRACE optimization is carried out in <name>, the original content of these registers might change.

<name> can’t be forced, because ROM address is fixed

Interrupt routines have fixed ROM addresses:

$AUTOSLEEP 000h INT3 100h

$RESET 008h INT4 140h

INT0 040h INT5 180h

INT1 080h INT6 1C0h

INT2 0C0h INT7 1E0h

Unexpected end of file in library

When reading the system or a user library, an end of file was found before the library was read completely. Copy
the qFORTH system library from the installation disk to your working directory. If the error still occurs, recom-
pile your user library/libraries.

Illegal <record–type> record in library

The library file is destroyed by any reason or you are trying to read an old library with a new compiler version.
Use the new system library, if you have a new compiler version, re-install the system library from the installation
disk to your working directory. If the error still occurs, recompile your user-library/libraries.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
 09.96

38

<predefined value> is already set

A predefined value is set in more than one user library. This is not allowed. Recompile, so that the value is set
in one user library only.

Duplicate label <labelname> in User Library

Two user libraries contain the same label name. Rename one of them.

<name> : name not found when reading cdrflist (****)

A part of your user library is lost by damaging the user library. Recompile it, if the error still occurs, send your
files to TEMIC for failure analysis.

No more room for intermediate code (****)

You have read in too many user libraries. Reduce the number of user libraries or split them up into a larger
number and omit all libraries you do not need in this application program.

Your user library is inconsistent

You are trying to read an old user library in conjunction with a new version of the qFORTH system library.
Recompile all your user libraries.

Switch <switch> is ambiguous

The switch <switch> is ambiguous, i.e., it is not possible to determine exactly which qualifier is meant
(e.g., \LI is ambiguous (LIST or LIBRARY)).

Switch <switch> does not care me

You supplied an unknown switch.

Source file not found

The compiler did not find the specified source file. Maybe you specified an invalid path or the extension of your
source file is not the default extension .SCR or .INC for an include file and you did not specify it.

System library QFORTH2.LIB not found

The compiler is looking for the system library in the same directory the compiler is stored in. Make sure that
the system library is available as QFORTH2.LIB in that directory.

Qualifier <qualifix> is ambiguous

The qualifier <qualifix> in a qualifier list is ambiguous, i.e., it is not possible to determine exactly which
qualifier you mean.

Qualifier <qualifix> does not care me

You supplied an unknown qualifier <qualifix> in the qualifier list. Indirect recursion not allowed. By
re-definition of one or more objects you got an indirect recursion. This is not allowed.

<name> does not fit into ROM–hole

You forced a ROM item into a too small ROM hole, by forcing another item to near to this item in the ROM.
Use less forcing or supply larger distances between the items.

<name> there is already something in ROM

You tried to force two items in the ROM. As result, they are overlapping. Move one of them to another location
or use less forcing with AT.

<name> – defining occurence not found

An external labels was not defined. When an external label is used, its name has to be preceeded by ’_$’. The
name at the defining occurence must not be preceeded by there characters.

MARC4 User’s Guide
qFORTH Compiler

TELEFUNKEN Semiconductors
09.96

39

<predefined variable> –– Value not set (****)

Indicates that a predefined variable was not set, not even with its default value.

<object> has not been defined

An external object (arguments of assembler instructions with operands or parts of a ROM constant) was not
defined until the end of the source code.

<name> – out of address space (****)

A call of <name> or a branch to <name> exceeds of the maximum 4K address space

<array><index> : out of RAM space

An array fits only partially into RAM. Use less forcing with AT.

Conflict between RET–stack and <ram–object>

The RET stack and another RAM object do not occupy disjoint RAM. Use less forcing via AT or move one
object.

Conflict between EXP–stack and <ram–object>

See above

Conflict between <ram–object> and an other RAM object

See above

<external object> is not in available external storage

An external object was forced via AT to a location outside the available external memory area.

Conflict between <name> and another external object

Two external objects do not occupy disjoint memory areas. Use less forcing via AT or move one object.

I. Introduction

II. Installation Guide

III. Software Development System

IV. qFORTH Compiler

V. Software Simulator

VI. Emulator

VII. Target Application Boards

VIII. Piggybacks

IX. OTP Programmer

X. Appendix

XI. Addresses

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

43

5 Software Simulator
5.1 Introduction

A software simulator is a computer program used to
imitate the operational function of another system
(implemented either in the hardware or software).

The simulator accepts the same input data, executes the
application program in the same way as the target
environment and accomplishes the same results as the
targeted system which it imitates. A software simulator
operates as a rule much slower than the targeted system
and does not have any physical resemblance to the hard-
ware system.

Simulators are used to develop and debug application
programs written for target hardware which may not be
available.

5.1.1 Simulation as an Instrument for
Program Verification

The software simulator has at its core a register-
transfer-level model of the MARC4 processor. Figure 1
shows the various interfaces between the software simu-
lator and the input, output and program data files. By
using this total system, it is possible to verify that your
MARC4 application program is functionally correct.
Stack effects as well as RAM values can be checked by
using the simulator. The status of the ports and interrupt
registers can be observed. By using an input polling file,

it is possible to simulate with the expected real-world data
under simulated real-time conditions. To support the pro-
grammer in finding errors in his program, a breakpoint
feature is integrated into the simulator. The trace memory
data enables easy examination of the instructions that
have been executed before a breakpoint occurred. To help
the programmer in analyzing the simulation results, they
can be written to an I/O capture file.

5.2 Getting Started
Before starting the simulator, make sure that the follow-
ing files are available in the MARC4 base directory:

SIM05.EXE, SIM05.DAT, SIM05.HLP, SIM05.CFG

� To start the simulator with the SDS2 environment:
Check that the correct directory path for the simulator
has been entered in the setting window “Directories”
(see Installation Guide). Press the function key <F7>.

Note: On starting the simulator, the program file which
has been defined as the project file in the
SDS2–IDE will be loaded by default.

� To start the simulator as an independent program:
If the MARC4 directory has not been included in the
AUTOEXEC.BAT search path, change into the
MARC4 system directory and enter the following
command:

C:\MARC4>SIM05 PROGRAM\TIMER

ÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏ

ÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏ

ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ

ROM RAM

MARC4 CORE SIMULATOR

ÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏÏÏÏ

filename.HEX SIM05.HLP

Inputs

filename.IOB

ÏÏÏÏ
ÏÏÏÏ

ÏÏÏÏ
ÏÏÏÏ

Native

MARC4

code

Program data Simulation results

Execution time

measurements

ÏÏÏ
ÏÏÏPrescaler

SIM05.DATtable

ÏÏÏ
ÏÏÏ

Symbol

table

file

 Prescaler, software & hardware interrupts

filename.SYM

file
SIM05.EXE

Trace data

recording

help

file

On–line

ÏÏÏÏ
ÏÏÏÏI/O –

capture

filefilename.POL

ÎÎÎÎSIM05.CFG

Configu–

ration

ÏÏÏ
ÏÏÏ

polling

file

Input

ÏÏÏÏ
ÏÏÏÏ

file

12521

Figure 1. �������� ��
�	���� ��
������
�� ����������

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

44

The argument PROGRAM\TIMER is the path and file
name of an example project which has to be simulated.

When exiting, the name of the simulated file will be saved
on the file “SIM05.CFG”. In the case of a new or changed
file which has to be simulated, a warning message will be
displayed in the message line.

5.3 Using the Simulator

5.3.1 Simulator Screen

The screen is subdivided into windows which show the
current status of the MARC4 microcontroller as the pro-
gram code is being simulated (see figure 2).

The different standard windows provide the following in-
formation:

ROM disassembly displays the code to be executed

Expression stack lists the contents of the data stack

MARC4 registers display the status of the 3 internal
flags, the contents of the program
counter and the RAM address
registers

Return stack lists the addresses pushed on to the
return stack

RAM data displays a portion of the RAM locations

Port status displays the direction of data at the
ports

Time displays the total instruction execution
time and the percentage of time the
processor was active

The message line at the top of screen contains the display
status, error or help information. The active line at the
bottom of the screen describes the function keys used by
the simulator. This line can be toggled by pressing the
<Alt>–key. Furthermore, there are some additional win-
dows which will be displayed by pressing a specific
function key. They will disappear again after pressing the
<ESC>–key. These windows and their function keys will
be described later

Select a window:

Keyboard: To change the active window, please use
the arrow keys <←>, <→>.

Mouse: Move the mouse cursor over the window
and press the left mouse button.

By pressing the <Pos1>/<Home>– key on your key-
board, the display of the currently active window will
move to the top address location, i.e. the ROM disassem-
bly window to the $AUTOSLEEP address. The <End>
key is the corresponding counterpart. The scroll page
commands also work in the active window.

12522

Figure 2. MARC4 software simulator screen

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

45

5.3.2 Simulator Window Description

ROM Disassembly

When tracing the program execution with the simulator,
the ROM disassembly window will show the MARC4
native code instructions, their opcodes and symbolic
addresses. The line that is currently highlighted has an
arrow pointing to the ROM address which is the same as
the PC. The $AUTOSLEEP and $RESET symbols are
always located at address 000h and 008h in the ROM.
These are predefined in both the MARC4 processor and
the qFORTH compiler.

MARC4 Registers

The MARC4’s RAM can be indirectly addressed via one
of the four 8-bit wide RAM address registers:

� SP - Expression stack pointer,

� RP - Return stack pointer,

� X - RAM pointer register X,

� Y - RAM pointer register Y.

Your MARC4 application program written in qFORTH
is disassembled into the MARC4’s native code language
and stored in the ROM. In order to access the 8-bit wide
ROM instructions (or look-up tables), a 12-bit wide pro-
gram counter (PC) is used.

� CCR - condition code register

The CCR is a 4-bit wide register containing ALU status
information. The simulator has an area within the register
window which displays the following information:

C –– B I

Interrupt enable

Branch

Carry

(reserved)

CCR

Figure 3. ��
 ����� ���	
�
�� ��	
 �
�
��
�

RAM Data

The RAM data window displays the contents of the ran-
dom access memory. The RAM addresses are usually
displayed as symbolic names, the data values are shown
in hexadecimal notation. Locations which are not initial-
ized are shown as ’?’.

The two stacks within the RAM have a user-definable
depth and are displayed in different colors. They are re-
fered to as the expression and the return stack.

Expression Stack
The expression stack is used to store parameters as 4-bit
wide data elements. The expression stack window dis-
plays those parameters beginning with the top of stack
element (TOS) as the first nibble followed by the TOS-1,
the TOS-2 and so on which are stored in the RAM.

Return Stack
The return stack, which is displayed in the return stack
window, is usually used to store 12-bit wide subroutine
return addresses. A return address is generated whenever
a CALL to a subroutine or an interrupt acknowledge is
performed from the executed program.

The return stack is also used to store the loop index of
DO .. LOOP and #DO .. #LOOP sequences. By using
the >R, 2>R or 3>R assembler instructions, it is possible
to move data from the expression to the return stack. The
R>, 2R> and 3R> instructions are the counterparts.

Interrupt Status
The MARC4 is able to handle up to 8 prioritized inter-
rupts which can be generated asynchronously from either
on-chip modules, external sources or synchronously from
the CPU itself (software interrupts).

The transmission of the interrupts occurs via the
MARC4’s internal I/O bus. The software simulator en-
ables viewing of the ’pending’ as well as the ’active’
interrupts. The interrupt section of the simulator screen is
presented below. The top line of the window shows the
priority of the interrupts.

INTs 7 6 5 4 3 2 1 0

Pending 0 0 1 0 0 0 1 0

Active 0 0 1 0 0 0 0 0

Time
The execution time window displays the time needed by
the simulated MARC4 program up to the point it is
stopped either by the user or at a breakpoint match. Addi-
tionally, it will be updated periodically. The time shown
is the actual time required by the MARC4 processor when
running your program at a specific instruction cycle time.
The simulated instruction cycle time can be changed
using the ’Speed’ command <Alt-F3>.

Whenever the program has been stopped, you are able to
reset the time to zero by pressing <Alt-F6>. This enables
examination of the time that passes until the next break-
point match occurs.

Port Status
See special section on I/O simulation.

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

46

5.4 Simulator Commands
5.4.1 Command Keys Summary

Key Function Short Description
ÁÁÁÁÁ
ÁÁÁÁÁ

F1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Step ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Single step

ÁÁÁÁÁ
ÁÁÁÁÁ

F2 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Step call ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Step over call

ÁÁÁÁÁF3 ÁÁÁÁÁÁÁRun ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁExecute simulation until breakpoint or user break occursÁÁÁÁÁ
ÁÁÁÁÁF4

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁReset

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSimulator (re-) initializationÁÁÁÁÁ

ÁÁÁÁÁF5
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁBrkPts

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁBreakpoints set-up functionÁÁÁÁÁ

ÁÁÁÁÁ
F6

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Load
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Read in a binary object file
ÁÁÁÁÁ
ÁÁÁÁÁ

F7 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Symb ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Display symbol table information
ÁÁÁÁÁ
ÁÁÁÁÁ

F8 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Trace ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Display recorded trace data
ÁÁÁÁÁ
ÁÁÁÁÁ

F9 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Edit window ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Window data editor

ÁÁÁÁÁ
ÁÁÁÁÁ

F10 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Source code ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Display source codeÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁAlt–F1
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁHelp

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPop–up help windowÁÁÁÁÁ

ÁÁÁÁÁ
Alt–F2

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

View
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

View ROM data from start address or symbol
ÁÁÁÁÁ
ÁÁÁÁÁ

Alt–F3 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Speed ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Change MARC4 processor speed
ÁÁÁÁÁ
ÁÁÁÁÁ

Alt–F4 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

FillRAM ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Fill a section of RAM with specific data
ÁÁÁÁÁ
ÁÁÁÁÁ

Alt–F5 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ClrBrks ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reset all earlier defined breakpoints
ÁÁÁÁÁ
ÁÁÁÁÁ

Alt–F6 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ClearTime ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Reset elapsed time in time window to zero

ÁÁÁÁÁ
ÁÁÁÁÁ

Alt–F7 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Exit ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Exit simulator, return to enviroment or DOSÁÁÁÁÁ
ÁÁÁÁÁAlt–F8

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁRecMode

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSelect mode for trace data recordingÁÁÁÁÁ

ÁÁÁÁÁAlt–F9
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁPrint

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁPrint the contents of RAM, ROM or trace memoryÁÁÁÁÁ

ÁÁÁÁÁ
Alt–F10

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Animation
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Animation = continous single step execution
ÁÁÁÁÁ
ÁÁÁÁÁ

Alt–X ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Exit ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Exit simulator, return to enviroment or DOS
ÁÁÁÁÁ
ÁÁÁÁÁ

Alt–0 ... 7 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Entering hardware interrupts during simulation
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ
Shift–F1 ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Show version number and date of creation

ÁÁÁÁÁ
ÁÁÁÁÁ

Shift–F2 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Change the prescaler addressÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ←,→
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁChange the current windowÁÁÁÁÁ

ÁÁÁÁÁPos 1/Home
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSet current window of its top addressÁÁÁÁÁ

ÁÁÁÁÁEnd
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSet current window of its last addressÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

Page ↑
Page ↓

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Scroll page

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

47

5.4.2 Simulator Commands Description

Single Step <F1>

The simulator walks through the program code displayed
in the ROM disassembly window instruction by instruc-
tion for each <F1> selection. The message ’1 instruction
executed’ is then displayed on the screen’s message line.
The internal RAM and register content will be updated
and displayed on the screen.

Step over CALL <F2>

This executes all deeper-nested routines until the EXIT
or RTI instruction of a following subroutine is found. The
ROM disassembly will be highlighted at the location fol-
lowing the [S]CALL invocation. The message line will
display ’Step over CALL executed’.

Program Execution <F3>

The simulator will execute the application program until
a break occurs or the processor enters the sleep mode and
no interrupt is pending. While executing the program, the
message line will display ’Running’. When the program
has been completed, the message line will display ’Halted
-No interrupt pending’. The program execution may be
stopped by one of the following events:

� a user keyboard break by pressing any key during
execution

� a PC or I/O breakpoint match

� an expression stack under-/overflow

� a return stack overflow

� an interrupt request was lost

� an indefinite sleep mode occurred.

To continue the execution of the program, press the <F3>
key again.

Animation <Alt–F10>

The simulation will walk through the program code dis-
played in the ROM disassembly window instruction by
instruction and the screen will be updated after every step.
To stop the animation, you may press any key. The
message line will display the number of instructions that
have been executed.

Animation Speed <Shift–F1>

Will slow down the animation mode. This may be of use
if you are running this software on a fast PC. To run the
animation mode with faster speed, press the function key
again. Additionally, the version number and date of cre-
ation will be displayed in the message line.

Source Code Window <F10>

The source code window enables source level debugging
without the need to leave the simulator. It displays the
qForth source file and the present simulator execution
point.

12523

Figure 4. MARC4 software simulator source code window

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

48

The following function keys support source code
scrolling: <Page up>, <Page down>, <End>,
<Pos1>/<Home>.

Note: This option requires a project HLL file to be gen-
erated during compilation with the “hll linkage”
compiler switch set.

Simulator Initialization <F4>

This command resets the simulator and all screen display
windows. The PC is set to ROM address 008h similar to
a real power-on-reset. The RAM cells are set to undefined
(displayed as ’?’), the software preset RP to FCh and SP
to S0 to ensure that the stack pointers are initialized on the
display. The message line will then display ’MARC4 pro-
cessor has been reset’.

Note: The breakpoints are not reset to their default
values.

Setting Breakpoints <F5>

The breakpoint window appears where the ROM disas-
sembly window is usually displayed. Pressing the <Esc>
key will result in the breakpoint window being closed and
the reappearance of the ROM disassembly window.

The software simulator enables the programmer to test
the program by setting breakpoints in his code or data
area. Breakpoints enable you to stop the execution of your
program at any (PC) address. You may enter up to four
different PC breakpoints. These breakpoints are classi-
fied as passpoints, since the number of times the program

counter can pass the specified address location can be set
to a maximum of 255. Besides this, there are two RAM
breakpoints to stop execution whenever there is an
expression stack over-/underflow or a return stack over-
flow, and two I/O breakpoints to stop whenever specific
data is read from or written to a given port. An additional
breakpoint stops the program execution whenever an
interrupt request is lost, caused by a processor overload
or an RC oscillator speed which is too low.

If a breakpoint occurs during simulation, all windows are
updated. By using either the <F1>, <F2> or <F3>
function key, it is possible to continue execution either
until the next breakpoint match or a user break (keyboard
entry) has been encountered.

Three different breakpoint options are available:

Off Turns off a specified breakpoint or snapshot. The
counter is not of interest in this state.

Halt Will stop the simulation at the defined address
when the counter reaches zero (only for PC
breakpoints). The message line will for example
display ’Stopped at PC Break 1’.

Snap Snapshot causes a screen update every time the
specified address is passed during the program
execution. For example, the message line will
display ’Snapshot at PC Break 1’. The count field
is not of interest in this state.

If you want to modify the attributes of a breakpoint,
please follow the instructions given in the message line .

12524

Figure 5. Breakpoint window

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

49

Reset all Breakpoints <Alt–F5>

All breakpoints are set to the default status, i.e., ’Halt’ for
the RAM breakpoints and the breakpoint on lost inter-
rupts, and ’Off’ for all other breakpoints. The message
line will display ’All breakpoints cleared’.

Loading a New Program File <F6>

To load a new program file, a window is displayed in
which you are prompted to enter the binary object file to
be simulated. The file extension is assumed as HEX .

If you cannot remember the correct name and directory,
just press <Enter>. A separate file pick window will be
opened and you may browse through the directory tree to
find the new MARC4 object file. This file will be read
into the simulated ROM.

Note: All breakpoints will be reset to their default
values similar to the command <Alt-F5>.

Select Mode for Trace Recording <Alt-F8>

In this case, a pop-up window allows you to choose
between different trace modes. These are:

� Instruction cycle trace

� Subroutine entry histogram AND/OR

� I/O cycle trace.

The selection of one of the first two items enables the dis-
playing of the trace window after the execution of parts
of the program. If I/O cycle trace is selected, a file with
the extension IOB will be opened which has the same

name as the project file. It contains all the information
about the types of interrupts that occurred, and the port
read/write operations that the program has performed
during the simulation. See also the section on I/O capture
files.

Displaying of Trace Data <F8>

By pressing this key, a window displays the recorded trace
data for the instruction cycles, or the subroutine entries
are opened. The window can only be opened if the follow-
ing conditions have been met:

� <Alt-F8> has been selected before AND

� either instruction cycle or subroutine entry recording
has been chosen.

If this conditions have not met, an error message will be
displayed on the message line.

In the trace data window you can examine up to 1023
executed instructions (see figure 8), or look at the subrou-
tine entry histogram (figure 9) of your program which
depends on the chosen topic in the <Alt-F8> pop-up win-
dow.

For example, if the instruction cycles have been recorded,
the first column in the trace window shows the time that
has passed between the instruction in the line you are
looking at and the last executed instruction. The last line
shown in the screen’s window is the last executed instruc-
tion which was executed before the breakpoint occurred.
The second column displays the program counter for that
line, the next columns show the instruction followed by
the mnemonic of that instruction.

12525

Figure 6. Loading a new program into the ROM

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

50

12526

Figure 7. Selection of different trace data recording mode

On the right hand of the trace window, you can see the
transferred I/O data if there was either an IN or OUT
instruction executed or an interrupt occurred. On color
monitors, it is displayed on a blue background with the
address and data of the port or the priority of the interrupt.
If there was an interrupt request, this will be displayed by
an ’INT !’ first. The decoding of that interrupt will occur
some cycles later.

If you have recorded the subroutine entries of your pro-
gram, the trace data window will display the following
items. The first column shows the symbolic addresses the

program jumped to at every interrupt acknowledge
CALL or SCALL instruction. The second column dis-
plays the number of times each subroutine was called.
The third column shows the percentage and the fourth col-
umn is a bar graph of the percentages.

You may use the <PgUp>, <PgDn>, <Up>, <Down>,
<Pos 1>/<Home> and <End> keys to browse through the
trace window. If you want to print the contents of the trace
data window, you may press the <Alt-F9> function key.
Pressing the <Esc> key will close the window.

12527

Figure 8. Instruction trace disassembly

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

51

12528

Figure 9. Subroutine entry histogram

Editing Data in a Window <F9>

Pressing <F9> enables you to edit data in the currently
selected window (the one with the bold frame around it).
When you have finished, you can leave the edit mode by
pressing the <Esc> key. To change the currently selected
window, press the <Left> or <Right> arrow key. Only
selectable windows can be edited using the <F9> key.

These are listed below:

� MARC4 register window

The X, Y, SP, RP and PC registers can be edited
using symbolic RAM and ROM addresses.

The CCR flags can be set by entering an ’1’ or
the corresponding character (’C’, ’B’, ’I’) at the
correct bit position. To reset a CCR flag you may
type either ’0’ or ’–’.

� ROM disassembly window

Instructions can be changed in the opcode
column using the opcode bytes of the MARC4’s
instruction set. Please refer to the ’MARC4
Programmer’s Guide’ for the opcodes.

� RAM data window

RAM locations can be overwritten nibble-wise
using hexadecimal values.

Refer to the ’Fill RAM’ command to initialize
partitions of the RAM.

� Expression stack window

The TOS and the values of all other items on the
stack can be modified using hexadecimal
numbers.

Pop-up Help Function <Alt–F1>

By pressing <ALT–F1>, a pop-up help window will open
which displays information about the currently selected
window. If the currently selected window is the ROM dis-
assembly window, general information about the
simulator will be displayed. In the help window, you can
get information about the highlighted and blinking topic
by just pressing <Enter>. You can move the highlighted
bar among the cross-reference topics (written in yellow
letters) by pressing the arrow keys <Up>, <Down>,
<Left> or <Right>.

If a ’PgUp/PgDn’ appears at the lower right hand corner
of the window, you can display the previous or next help
page by pressing <PgUp> or <PgDn>.

Press <Alt-F1> if you want to display the help topic most
recently selected.

Press <F1> if you want a list of all the topics described in
the help menu. To exit any help window press <Esc>.

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

52

12529

Figure 10. Pop-up help window

Display of Symbol Table Information <F7>

A small pop-up window will be displayed in which you
can choose between symbols of subroutines, variables or
constants. If you press <Enter>, the chosen symbol types

together with their addresses and lengths or constant data
will be displayed in the symbol table window.

A RAM address followed by an ’x’ marks this variable as
EXTERNAL to the MARC4’s internal RAM area (i.e., in
a RAM module addressed over a port).

12530

Figure 11. Symbol table display for variables

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

53

Search for a ROM Symbol <Alt–F2>

Pressing <Alt–F2> enables you to disassemble the ROM
starting at a particular location. The screen for the ’View’
command shows a pop-up dialog box prompting you to
enter either the qFORTH word’s name or a hexadecimal
ROM address. The corresponding ROM location will be
displayed in the first line of the window. The pop-up
dialog box will disappear after you have entered the
desired name and pressed the <Enter> key. If, however,
you wish to cancel the command after having invoked it,
press the <Esc> key and the box will disappear without
any changes to the ROM display. If the symbol or the
address that you entered was not found, an error message
will be displayed.

If you are in the trace data window and have recorded the
instruction cycles, pressing <Alt-F2> opens a similar
window as described above. It will not only searche for

ROM addresses that match the entered string, but also for
instructions in the trace data window.

To repeat the search, just enter <Ctrl-L> . The next loca-
tion that matches the entered string will be displayed, and
you can repeat this procedure until the string can no
longer be found.

Changing the Processor Speed <Alt–F3>

This command opens a pop-up window in the upper left
corner of the screen that enables you to change the
MARC4’s internal RC oscillator frequency. Follow the
instructions given in the message line to change the fre-
quency.

The default value is set to 500 kHz which corresponds to
an instruction cycle time of 4 µs.

The modified frequency value will be stored in the con-
figuration file when leaving the simulator.

12531

Figure 12. Pop-up box caused by the ‘View’ command

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

54

12532

Figure 13. Changing the instruction cycle time

Reset Elapsed Time <Alt–F6>

Pressing <Alt–F6> enables you to reset the time to zero
whenever you have stopped the execution of the program.
This makes it easier to examine the time that passes until
the next breakpoint occurs.

Fill a Section of RAM <Alt–F4>

This command opens a window that allows you to fill the
RAM from one address to another with a hexadecimal
value. To change single values, use the ’Edit’ command.
To set the complete RAM area to the value ’undefined’,
use the ’Reset’ command.

12533

Figure 14. Initialization of a RAM area

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

55

12534

Figure 15. Printing the trace memory data

Printing the Contents of RAM,
ROM or Trace Memory <Alt–F9>

If the trace data window has been opened and you have
recorded the instruction cycles, a window will be dis-
played where you can enter the first and the last line of the
trace data window that will be written to the printer or to
the file ’SIM05.TRC’. The time that corresponds to the
entered lines is also displayed in that window. Enter ’Y’
if the line numbers you have entered are correct. After-
wards, select whether the data should be written to the
printer or to the file ’SIM05.TRC’ which is the default.
The pop-up window will be closed and the trace data will
be printed or written to the file. If the line numbers are not
correct, type ’N’ or press the <Enter> key and open the
dialog box again.

If you have recorded the subroutine entries, all the lines
in the trace data window will be printed.

Note: Whenever you are using this function, be sure
that your printer is switched on and set to ’ON
LINE’.

Leaving the MARC4
Software Simulator <Alt–X>, <Alt–F7>

Entering <Alt-X> or <Alt-F7> will result in all windows
being closed. In the integrated development system, exit-
ing the software simulator will return you to the SDS main
menu while in the command line version, it will return
you to DOS.

While exiting all the entries you have made in the break-
point, the processor speed and the trace mode window
saved on the file ’SIM05.CFG’ together with the name of
the simulated file. The next time the simulator is invoked,
this setup will be used as default configuration. In the case
of a new or changed file which is to be simulated, a warn-
ing message will be displayed in the message line.

5.5 First Steps

5.5.1 Moving About Within the
Simulator Screen

The arrow keys enable movement to windows and within
the ’current’ window. The <Left> arrow key moves
clockwise around the windows, <Right> moves counter-
clockwise to select a window. Once selected, the window
frame is highlighted to indicate that it is the ’current’
window. The contents within the active window can be
altered using the ’Edit’ function.

You may use the arrow keys <PgUp>, <PgDn>, <Up>,
<Down>, <Home> and <End> to browse through the
’current’ window.
If you want to print the contents of the RAM, ROM or
trace data window, press the <Alt-F9> key.

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

56

5.5.2 Modes of Operation

The software simulator enables you to test your MARC4
program in four operation modes:

� Single step

� Step over CALL

� Run

� Animation

Step Mode <F1>

The step mode operates one instruction each time the
<F1> key is pressed. You will be able to view any changes
to the MARC4’s internal registers, data, ports and inter-
rupt registers following the execution of a single
instruction.

Step over CALL <F2>

Stepping over subroutines is used to execute a known
instruction sequence (including all nested subroutines)
until the current return stack level is reached again.

Run Mode <F3>

When using the run mode, the program will operate at full
speed until a breakpoint is located. The user can stop the
simulation by pressing any key or the processor enters the
sleep mode without any interrupt pending.

Animation Mode <F10>

The animation mode executes your program from the
beginning to the end but at a much slower speed than the
run mode. This offer you more time to view and under-
stand MARC4’s internal workings.

Working with Breakpoints <F5>

By using the simulator’s breakpoint facilities, you can set
up to nine software breakpoints. These program supervi-
sors enable you to trace the application program’s
execution at a defined address, detecting stack over-/un-
derflows or halting on a specific I/O event.

To reset all defined breakpoints to their initial state (’Off ’
for PC and I/O breakpoints, ’Halt ’ for the others), use the
<Alt-F5> function key.

5.5.3 Simulation of Real-time Events

Hardware Interrupts

The external hardware interrupts can be activated by
entering them into the input polling file. See the example
in the section on input polling files (4.5.4).

To enter external hardware interrupts during simulation,
you can use the keys <Alt-0> ... <Alt-7> which corre-
spond to hardware interrupts with the priorities 0 to 7.
After pressing one of the keys, the simulation will stop,
one more step will be performed and the resulting inter-
rupt will be pending and can be seen in the interrupt status
window.

Software Interrupts

A software interrupt occurs when the MARC4 instruction
SWI is found within the program module being executed
by the simulator. The SWI0 .. SWI7 instructions tell the
MARC4 CPU to transfer the program control to the inter-
rupt service routine known as INT0 .. INT7 (where 0 .. 7
are the priority numbers from a low priority of 0 to the
highest priority of level 7). Any higher priority level can
interrupt a lower level as long as the interrupt enable flag
in the CCR is set.

Prescaler Module Programming

Usually, the integrated programmable prescaler is driven
by an external 32.768-kHz quartz crystal. The prescaler
module powers up in the reset condition and offers two
time interval interrupt sources. The table below illustrates
the selectable interrupt frequencies for the M43C505 or
M44C636. A similiar table is available for the
M43C200/201.

\ Prescaler selectable interrupts
\
\ Control codes Int. priority Interrupt time
\ (8: masked) (0: disabled)
\

F 8 0
E 6 0
D 4 244.14
C 6 976.56
B 6 3906.25
A 6 15625
9 6 62500
8 8 0
7 5 7812.50
6 5 15625
5 5 31250
4 5 62500
3 5 125E3
2 5 250E3
1 5 500E3
0 5 1.0E6

Figure 16.
����
��� ������� ���� ���	�������

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

57

Table 2.
�������� ��������� ��������� ����������� �������������	�	�

Control Code Priority Interval Time Interrupt Frequency

F none Reset & hold complete prescaler

E (INT5) INT6 disabled, INT5 still active

D INT6 244.14 sec 4096 Hz

C INT6 976.56 sec 1024 Hz

B INT6 3.906 msec 256 Hz

A INT6 15.625 msec 64 Hz

9 INT6 62.5 msec 16 Hz

8 (INT5) Reserved, production test mode

7 INT5 7.81 msec 128 Hz

6 INT5 15.625 msec 64 Hz

5 INT5 31.25 msec 32 Hz

4 INT5 62.50 msec 16 Hz

3 INT5 125 msec 8 Hz

2 INT5 250 msec 4 Hz

1 INT5 500 msec 2 Hz

0 INT5 1 sec 1 Hz

Table 3. �
��� ��������� �������� ���� ���������

Priority
Level Functional Description

$RESET Software and hardware initializa-
tion after POR

INT7 External hardware interrupt, nega-
tive edge triggered

INT6 Prescaler interrupt #2

INT5 Prescaler interrupt #1 (for real–time
clock applications)

INT4 Port 5 interrupt

INT3 Software interrupt (SWI3)

INT2 External hardware interrupt, nega-
tive edge triggered

INT1 Software interrupt (SWI1)

INT0 Software interrupt (SWI0)

After writing a control code to the prescaler port at
address 15, the corresponding interrupt will occur period-
ically until the interrupt is disabled either by the program
itself or by a hardware reset (simulated by the ’Reset’
command).

The software simulator receives its information about the
priorities and the times of the programmed interrupts
from a file named SIM05.DAT. If this file is missing in
your MARC4 system directory, an error message will be
displayed.

An example of the file SIM05.DAT as used for the simu-
lation of the M43C505/M44C636 is shown in figure 16.

Notes: Every comment line in the file has to start with
a ’\’ in the first column.

The file contains the control codes that can be
written to Port 15, their interrupt priorities and
times (in µs), separated by at least one blank.

Priority ’8’ means: ’No interrupt’ or ’Reserved’.

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

58

Time interval ’0’ corresponds to ’Interrupt dis-
abled’.

The M43C505 requires a ’1’ at the end of control
code 7. This is to indicate that this prescaler inter-
rupt will also occur if an interrupt of a higher
priority (i.e. INT6) was programmed first. For
correct operation of the prescaler, the INT5 tap
should be programmed before the INT6 tap.

If you want to simulate a MARC4 version other than the
M43C505 (with an external 32.768 kHz quartz crystal
attached), just create a new file containing the prescaler
table of that version and copy it to the file SIM05.DAT.

\ Prescaler selectable interrupts
\
\ Control codes Int. priority Interrupt time
\ (8: masked) (0: disabled)
\

F 8 0
E 4 64
D 4 128
C 4 256
B 4 512
A 4 1024
9 4 2048
8 4 4096
7 4 8192
6 4 16384
5 4 32769
4 4 65536
3 4 131072
2 4 262144
1 4 524288
0 4 1.048E6

Figure 17. Prescaler control file ’SIM05.DAT’ for
M43C200/M43C201

5.5.4 I/O Simulation

I/O through the Port Status Window

During program execution, the port status window is used
to show the state of the MARC4 input and output ports.

The port addresses are shown in the top line of the win-
dow. If the direction of a port is set to input, this is
represented by an ’I’ in the direction line of the window
in the column of the addressed port. If the direction is set
to output, is represented by an ’O’. If any of the given 16
I/O ports does not exist on the simulated MARC4 or has
not been addressed yet, a ’?’ will be displayed.

The data line of the window shows the hexadecimal data
that is written to or read from the ports. If there is no data
at the port, a dot is displayed in the data line. If the simula-
tor receives an IN instruction, it tries to read the requested

data from an input polling file. If there is no such file or
no data for that port at the given time step, it prompts you
to enter the data as a hexadecimal value. Just follow the
instructions given in the top line of the screen.

Input Polling Files

The input polling file enables you to introduce real-world
data into your program. Whenever there is an IN instruc-
tion in your code, the simulator tries to read the requested
data from the polling file. It is also possible to simulate
hardware interrupts using this kind of ’script’ file. The
input polling file uses the file extension POL and has the
same filename as the project file.

The input polling file contains three columns

� The absolute time (in µs) from the start of the program
at which the event occurs

� The port address or interrupt priority

� The corresponding data value

The following example of an input polling file explains
how to use it:

\ Input polling file ’EXAMPLE.POL’ for project
\ ’EXAMPLE.HEX’
\
\ Time Address Data

100 A 7
300 0 3

2200 2
3400 5 5
5700 1 4

\ END

After 100 µs from the start of your program, a 7 occurs at
Port A, after 300�µs, a 3 appears at Port 0, after 2200�µs,
a hardware interrupt of the priority 2 should be simulated,
after 3400�µs, a 5 at Port 5 and after 5700 µs, a 4 at Port
1 should be set.

Notes: Every comment line must begin with a ’\’ in the
first column of the line.

Normal data lines contain a time column in µs
(the time must advance for each new line) fol-
lowed by the port address and data as
hexadecimal values separated by at least one
blank.

Lines that do not contain a data column will be
interpreted as hardware interrupts with the prior-
ity given in the address column.

Do not forget the ’\ END’ in the last line of the
file.

In case an IN instruction occurs while the program is run-
ning with port address A after 50�µs, the simulator will
prompt you for the data because it cannot find any valid

MARC4 User’s Guide
Software Simulator

TELEFUNKEN Semiconductors
09.96

59

data at Port A at this time. In this case you must enter it
in the port status window. If there is however, a read from
Port A again at 4000�µs, the simulator will still read the
7 at Port A which it already received at 100�µs. Unless you
entered a line with new data for Port A into the input pol-
ling file at a time < 4000�µs, this data is still valid.

Restrictions:

The MARC4 software simulator does not support the
additional interrupt features of the M43C505/M44C636
family (maskable external interrupts, interrupt driven
keyboard at Port 5) nor any timer/counter functions of
other derivates.

I/O Capture Files

An I/O capture file is used to record all I/O activities to
and from the peripheral modules. The I/O event number
is recorded along with the time and type of activity.

In figure 18, the first registered activity on the MARC4’s
peripheral bus was when the data value F was written to
Port F which resets the prescaler. The next activity was
when the data value 6 was read from Port 0. The eighth
event that caused I/O bus activity was a SWI followed by
an interrupt acknowledge at the time 964 µs. The next
activity is a 7 written to Port 0, followed by a RTI after

1000�µs. Whenever there is an interrupt acknowledge or
RTI, you can examine the content of the active (AT) and
pending ’task’ (PT) interrupt registers of the MARC4.
The I/O capture file is named with the same name as the
project file which is being simulated, the created file will
have the extension IOB . To generate an I/O capture file,
you must press the <Alt-F8> key and select the I/O cycle
trace in the pop-up window before program execution.

5.5.5 Simulation Restrictions

The MARC4 software simulator is the ideal design and
test platform for applications where target hardware is not
available until programming has been completed. How-
ever, for testing applications where real-time factors are
important, the simulator will quickly prove to be insuffi-
cient since a speed factor difference between the MARC4
simulator and the emulator can be as much as a factor
1000 slower than the software simulator. Another area in
which the simulator will prove restrictive is in testing
keyboard controlled applications where a large polling
file is required. For common 4 x 4 matrix keypads, the
input polling file may still be of a manageable size. How-
ever, for larger interrupt driven keyboards, the simulation
times will be greatly lengthened due to the time it takes
to handle the larger input polling file.

12535

Figure 18. ������� �	 �
 ��� ������� 	
��

I. Introduction

II. Installation Guide

III. Software Development System

IV. qFORTH Compiler

V. Software Simulator

VI. Emulator

VII. Target Application Boards

VIII. Piggybacks

IX. OTP Programmer

X. Appendix

XI. Addresses

MARC4 User’s Guide
Emulator

TELEFUNKEN Semiconductors
09.96

63

6 Emulator
6.1 Introduction

The PC-bus compatible MARC4 emulator board enables
real-time emulation of customer programs and highlight-
ing any timing problems which would not be visible
through simulation alone. Time-critical interrupt proce-
dures may be measured using real external hardware
events.

Another function of the emulator is to enable the ASIC
designer and/or customer to prototype unavailable
peripheral modules with standard CMOS logic or FPGAs.

The PC-resident emulator software controls the loading
of the breakpoint conditions and provides the user inter-
face into the MARC4 Software Development System.
The MARC4 emulator can stop and restart a program at
specified (break-)points during execution, making it pos-
sible to examine and modify the memory contents and
those of various registers during program execution. It is
also useful in analyzing the executed instruction
sequences and the corresponding I/O activity. The execu-
tion time of the emulated program and its duty cycle can
be monitored by the user.

The MARC4 emulator board is a universal development
tool because its operation is independent from the periph-
eral module configuration of any specific or standard
MARC4 microcontroller family member and the
customer’s application hardware.

Note: The information contained herein is provided
under the assumption that the software and hard-
ware described here has been tested in
combination with the target MARC4 at system-
clock frequencies as high as 2 MHz. No warranty
or guarantee can be made if you run the devices
at system-clock frequencies higher than 3 MHz.

6.2 Features

� Emulator board uses the PC’s plug-in, 8-bit wide ISA
bus interface

� Multi-window user interface with mouse support,
similar to the MARC4 simulator

� Context sensitive on-line help feature

� Expandable emulation RAM for download of
customer programs

� 4K × 32 bit deep execution trace memory capturing

– the ROM address lines [PC11 .. PC0]

– the ROM bank switch lines

– the demultiplexed I/O bus [Port Address, Port Data
and Interrupt Request]

– the I/O control lines (Read, Write)

– the NON_SEQ instruction control signal

– 4 user-definable, application-specific signal inputs
[Trace 0 .. Trace 3].

� Software-supported, unlimited execution time and
duty cycle measurement

� Automatic configuration setup store/restore function

� External clock generation, so the frequency can be
changed for worst-case evaluations

� Examination of pending and active interrupts

� Examination and editing of all internal registers, the
RAM contents as well as the ROM code

� Breakpoints based on the e3400EVC with ROM
address, RAM access, I/O and interrupt activity super-

visor functions

� Sequential, time dependent and post trigger break-
point features.

6.3 Getting Started
Before starting the emulator, make sure that the following
files are available in MARC4 base directory:

EMU3.EXE, EMU3.CFG, EMU3.HLP, EMU4.HEX

� To start the emulator with the SDS2 environment:
Check that the correct directory path for the emulator
has been entered in the setting window “Directories”
(see Installation Guide). Press the function key <F8>.

Note: On starting the emulator, the program file which
has been defined as the project file in the
SDS2–IDE will be loaded by default.

� To start the emulator as an independent program:
If the MARC4 directory has not been included in the
AUTOEXEC.BAT search path, switch to the MARC4

system directory and enter the following command:

C:\MARC4>EMU3 PROGRAM\TIMER

The argument PROGRAM\TIMER is the path and file
name of an example project which has to be emulated.

� First of all you have to set up the correct target device
available on the target application board by using

<Shift–F7>

While exiting, the name of the emulated file will be saved
on the file “EMU3.CFG”. In the case of a new or changed

MARC4 User’s Guide
Emulator

TELEFUNKEN Semiconductors
09.96

64

file which has to be emulated, a warning message will be
displayed in the message line.

If the MARC4 emulator hardware is in any way defect,
you will get an error message from the built-in test
program. The devices that may be faulty will be listed and
their locations can be found in figure 4 of the installation
guide. If this situation occurs, please contact your local
TEMIC sales person. As far as this description is
concerned, we presume that the emulator board is
functionally correct.

6.4 Using the Emulator

6.4.1 Emulator Screen

The look and feel of the MARC4 emulator is simular to
the MARC4 simulator display screen (see figure 1). The
screen is subdivided into windows which show the current
status of the emulated MARC4 core.

The different standard windows provide the following
information:

ROM data disassembly
displays the ROM code to be executed. The line
that is currently highlighted has got an arrow
pointing to the ROM address which is the same
as the PC.

Expression stack
lists the contents of the data or parameter stack

MARC4 registers
displays the status of the 3 internal flags (CCR),
the contents of the program counter and the RAM
address registers

Return stack
lists the addresses pushed onto the return stack

RAM data
displays a portion of the internal RAM locations

Interrupt status
displays the status of the internal interrupt regis-
ters

Time
displays the total execution time, the active time
and the percentage of time the processor was
active

The message line at the top of the screen contains the dis-
play status, error or help information. The active line at
the bottom of the screen describes the function keys used
by the emulator. This line can be toggled by pressing the
<Alt> -key. Furthermore, there are some additional
windows which are displayed by pressing a specific func-
tion key. They will disappear again after pressing the
<ESC>-key. These windows and their function keys will
be described later.

Select a window:

Keyboard: To change the active window, please use
the arrow keys <←>, <→>.

Mouse: Move the mouse cursor over the window
and press the left mouse button.

By pressing the <Pos1>-key on your keyboard, the
display of the currently active window will move to the
top address location, i.e., the ROM disassembly window
to the $AUTOSLEEP address. The <End>-key is the cor-
responding counterpart. The scroll page commands also
work on the active window.

12536

Figure 1. MARC4 software emulator screen

MARC4 User’s Guide
Emulator

TELEFUNKEN Semiconductors
09.96

65

6.4.2 Emulator Window Description

Note: Most of the emulator windows provide the same
information as in the MARC4 simulator. This is
because only the little differences will be
described in the following description.

Interrupt Status Window

The MARC4 can handle up to 8 prioritized interrupts
which can be generated asynchronously from either on-
chip modules, external sources or synchronously from the
CPU itself (software interrupts).

The transmission of the interrupts occurs over the I/O bus.
The emulator enables the user to view the PENDING (P)
as well as the ACTIVE (A) interrupts.

Time Window

The time window displays the total elapsed and the active
time.

The active time is the time the MARC4 is operating and
not in Sleep mode. The total elapsed time is the sum of the
active and the Sleep mode time based on the PC’s internal
timekeeping hardware.

The time window is updated every second. The active
time shown is the execution time required by the MARC4
processor when running your program at a specific
instruction cycle time.

The time window also displays the percentage of time the
processor was active, the so called ‘duty cycle’:

Duty cycle� Active time
Active time� Sleep time

� 100 %

6.5 Emulator Commands
6.5.1 Command Keys Summary

Key Function Short DescriptionÁÁÁÁÁ
ÁÁÁÁÁF1

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁStep

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSingle stepÁÁÁÁÁ

ÁÁÁÁÁ
F2

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ROMbreak
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Set ROM address break on top line
ÁÁÁÁÁ
ÁÁÁÁÁ

F3 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Run ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Execute emulator until breakpoint or user break
ÁÁÁÁÁ
ÁÁÁÁÁ

F4 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Reset ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Emulator (re–) initialization
ÁÁÁÁÁ
ÁÁÁÁÁ

F5 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

BrkPts ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Breakpoint set–up function

ÁÁÁÁÁ
ÁÁÁÁÁ

F6 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Load ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Read in a binary object file

ÁÁÁÁÁF7 ÁÁÁÁÁÁÁSymbols ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDisplay symbol table informationÁÁÁÁÁ
ÁÁÁÁÁF8

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁTrace

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDisplay recorded trace dataÁÁÁÁÁ

ÁÁÁÁÁF9
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁEdit

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁWindow data editorÁÁÁÁÁ

ÁÁÁÁÁ
F10

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Source code
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Display source code
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ
Alt–F1 ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
Help ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Pop-up help window

ÁÁÁÁÁ
ÁÁÁÁÁ

Alt–F2 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

View ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

View ROM data from start address

ÁÁÁÁÁ
ÁÁÁÁÁ

Alt–F3 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Speed ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Change MARC4 processor speed

ÁÁÁÁÁAlt–F4 ÁÁÁÁÁÁÁDelay ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSet clock delay, if VDD < 1,6VÁÁÁÁÁ
ÁÁÁÁÁAlt–F5

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁClrBrks

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁReset all earlier defined breakpointsÁÁÁÁÁ

ÁÁÁÁÁAlt–F6
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁToggle_IF

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁToggles interrupt enable flag statusÁÁÁÁÁ

ÁÁÁÁÁ
Alt–F7

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

FillRam
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Fill a section of RAM
ÁÁÁÁÁ
ÁÁÁÁÁ

Alt–F8 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

RecMode ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Select mode for trace memory recording
ÁÁÁÁÁ
ÁÁÁÁÁ

Alt–F9 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Print ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Print the RAM, ROM or trace memory contents
ÁÁÁÁÁ
ÁÁÁÁÁ

Alt–F10 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Animation ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Continous single step mode

ÁÁÁÁÁ
ÁÁÁÁÁ

Alt–X ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Exit ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Exit emulator, return to environment or DOS

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁShift–F1

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁShow release

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁShow version number and date of creationÁÁÁÁÁ

ÁÁÁÁÁShift–F3
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁSetup

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁShow current emulator configurationÁÁÁÁÁ

ÁÁÁÁÁ
Shift–F4

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ROMBreak
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Display ROM address break
ÁÁÁÁÁ
ÁÁÁÁÁ

Shift–F5 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

RAMBreak ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Display RAM access break

MARC4 User’s Guide
Emulator

TELEFUNKEN Semiconductors
09.96

66

Key Function Short Description
ÁÁÁÁÁ
ÁÁÁÁÁ

Shift–F6 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

IOBreak ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Display I/O breaks
ÁÁÁÁÁ
ÁÁÁÁÁ

Shift–F7 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Target ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Select target chip

ÁÁÁÁÁ
ÁÁÁÁÁ

Shift–F8 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Ports ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Display port windowÁÁÁÁÁ
ÁÁÁÁÁShift–F9

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁMemory

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁDisplay memory windowÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ←,→
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Change the current window
ÁÁÁÁÁ
ÁÁÁÁÁ

Pos 1/Home
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁSet current window of its top addressÁÁÁÁÁ

ÁÁÁÁÁ
End

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Set current window of its last address
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Page ↑
Page ↓

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Scroll page

6.5.2 Command Description

Single Step <F1>

This key enables the user to walk through the program
code displayed in the ROM data window one instruction
for each <F1> selection. The message ’1 instruction
executed’ is then displayed on the screen’s message line.

The internal RAM and register contents and all other win-
dows will be updated and displayed on the screen. For
single step of lower priority interrupt service routines, use
the ’Toggle I-Flag’ function key <Alt-F6>.

Set ROM Address Break <F2>

This key allows the user to set a breakpoint directly in the
ROM data window without opening the breakpoint selec-
tion window and selecting the required ROM address.

To set a breakpoint, activate the ROM window and use the
cursor keys to scroll the selected ROM address up to the
top line of the window and then press the <F2>–key. The
top line of the ROM disassembly window will be high-
lighted red and the program execution will stop one
instruction after the choosen ROM address.

To delete such a breakpoint, scroll the highlighted ROM
address to the top line and press the <F2>–key again.

Note: If you want to set a ROM address break, it is
much easier to use the mouse. Move the mouse
cursor over the desired ROM address and press
the left mouse button.

Program Execution in Real-Time <F3>

The emulator will execute the application program in
real-time until a breakpoint condition is met.

Whenever the processor is active the message line will
display ’Active Mode’ in power down ’Sleep Mode’ will

be displayed. You can stop the execution of the program
by pressing any key. The message line will then display
’Stopped at User Break’ or ’User Break from SLEEP’,
depending on whether the processor was active or in
Sleep mode.

You may continue the execution of the program by press-
ing <F3> again, but it cannot be guaranteed under all
circumstances that the program execution will continue
correctly, especially if there is an interrupt pending or the
processor was in SLEEP at the time the break occurred.
So the proper solution is to reset the MARC4, to clear or
change the breakpoint conditions, and to start the pro-
gram execution again.

Emulator Initialization <F4>

This command resets the processor and all the screen dis-
play windows. Because of the reset, the program counter
(PC) is set to ROM address 008h, the RAM contents will
be lost, the RAM address registers are undefined and the
I-flag is reset.

Note: The breakpoints will NOT be reset to their
default values.

The message line will display ’M4xCxxx has been reset’,
depending on the selected target chip (see <Shift–F7>).
If the message line is displaying ’Unable to reset proces-
sor’, try pressing <F4> once more. If that does not help,
exit the emulator and enter the emulator menu again.

Set Breakpoints <F5>

The command <F5> will display the breakpoint selection
window on the screen. The emulator permits the program-
mer to test the software by setting breakpoints in his code,
on accesses to specific I/O ports or data areas.
Breakpoints enable the user to stop the execution of his
program whenever a user definable condition or sequence
is met.

MARC4 User’s Guide
Emulator

TELEFUNKEN Semiconductors
09.96

67

Note: The MARC4 processor uses an internal 3-stage
instruction pipeline which therefore avoids
breaks of the program execution during an
instruction or one instruction after an EXIT, RTI,
TABLE, SCALL or SBRA instruction as well as
ROM breakpoints on the second byte of a two
byte instruction.

In the breakpoint selection window shown in figure 2 you
may choose between one of six different breakpoint cate-
gories:

� Breaks on ROM addresses

� Breaks on RAM accesses

� Breaks on I/O activities

� Break after a specific time interval

� Sequential trigger

� Posttrigger setup

Depending on the selection of one of these six items a new
window will be opened.

ROM Addresses <Shift-F4>

Set up to four different breakpoints on ROM addresses
which the program may pass during the code execution.

The addresses can either be entered as a hexadecimal
number or as a symbol. To activate or to inhibit break-
points there is a choice between three options:

Do not break
Program execution will not stop if breakpoint
condition is met. The count field will not be con-
sidered in this state.

Stop program execution
Emulation will stop if the defined breakpoint
condition is met and the pass counter (which
counts values between 1 and 255) reaches zero.

Make a snapshot
Snapshot makes a screen update every time the
specified condition is passed during program
execution. The count field will be considered in
this mode too.

A breakpoint may also be set using <F2> or the left mouse
button in the ROM window.

12537

Figure 2. The breakpoint selection window

MARC4 User’s Guide
Emulator

TELEFUNKEN Semiconductors
09.96

68

12538

Figure 3. Breakpoints on ROM addresses

Breakpoints on RAM Accesses <Shift-F5>

Set up to four different breakpoints on RAM accesses.
These are two RAM breakpoints to stop execution when-
ever there is an expression stack or a return stack
overflow. The third breakpoint is additionally character-
ized by a specific register which is used to access a RAM
nibble. To detect an expression stack overflow this break-
point has to be set to ’Stop program execution whenever

S0–1’ (see hex value in symbol table) has been accessed
by SP register 1 times. The fourth breakpoint supplemen-
tary allows the user to enter a (maskable) data nibble
which should be read from or written to the specified
RAM address.

The addresses can either be entered as a hexadecimal
number or as a symbol. The toggling of the breakpoint
state and the setting of an additional count value between
1 and 255 is identical to the ROM address breakpoints.

12539

Figure 4. Breakpoint on RAM accesses

MARC4 User’s Guide
Emulator

TELEFUNKEN Semiconductors
09.96

69

12540

Figure 5. Breakpoint on I/O activities

Breakpoints on I/O Activities <Shift-F6>

Program execution will stop if any of the specified I/O
conditions are met. It can be distinguished between reads
from or writes to (hexadecimal) ports and interrupts of a
given priority. Besides this, the user can enter a (mask-
able) data nibble which should be read from, or written to
a given port address. Furthermore, a breakpoint can be set
to examine whether any interrupt will be lost during the
program execution, which is caused by a high priority
interrupt overload.

The difference between the two interrupt breakpoints is
that the first one matches only if the specified interrupt
priority is discovered on the I/O bus as a single interrupt
event and no other interrupt is transferred in the same
cycle. The second one also matches if the specified prior-
ity occurs together with other priorities, e. g., when
prescaler interrupt 5 and 6 occur in the same time slot.

The toggling of the breakpoint state and the setting of a
count value between 1 and 255 is identical to the ROM
address breakpoints.

The first four breakpoint conditions in this window are
not independent on each other. If you arm the first break-
point, the third will be turned off automatically and vice
versa. This is true for the second and the fourth breakpoint
condition too. Additionally, if you want to use the first
breakpoint condition with a data nibble other than the
don’t care ’xxxxb’, the following three breakpoints will
all be turned off. The reason for this is the on-chip hard-
ware implementation of the I/O breakpoint logic.

Masking of RAM and I/O Data Accessses
If you have selected the I/O or the RAM breakpoint win-
dow you are then able to mask the data that is transferred.

Example 1:

If you want to stop the program execution on the occur-
ence of a data nibble ‘1xx0b’, that is for all nibbles whose
highest bit is one, whose lowest bit is zero and whose
other two bits are don’t care, just enter that nibble into the
data section of the window and be aware that the program
execution only stops if all of the specified bits have been
matched. If, in this example, you had selected any of the
specified bits you would get a break for all nibbles that
would look like ’1xxx’ or ’xxx0’.

Example 2:

The mask is set to ‘x0x1b’.

If you have selected ’any’ you will get breakpoints on the
occurence of the data nibble ’0000’, ’0001’, ’0010’,
’0011’, ’0101’, ’0111’, ’1000’, ’1001’, ’1010’, ’1011’,
’1101’, ’1111’.
If you have selected ’all’ you will get a breakpoint on the
data nibbles ’0001’, ’0011’, ’1001’, ’1011’ only.

Break after Execution Time
This is used to stop the execution of the program after a
given time between 1 second and 99 hours, 59 minutes
and 59 seconds. To activate the time break, you have to
toggle its state from ’Do not break’ to ’Stop program
execution’. The break occurs after the total time relative
to the start of the program and is based on the PC’s internal
real-time clock facilities.

MARC4 User’s Guide
Emulator

TELEFUNKEN Semiconductors
09.96

70

12541

Figure 6. Break after execution time

Note: Make sure that you increase the break time or
clear the time break after this breakpoint
occurred before continuing the emulation.

Sequential Trigger

Sequential triggering allows the user to have a break after
the occurrence of two predefined conditions. Only those
breakpoint conditions can be sequenced that have been
activated in the ROM-, RAM-or I/O breakpoint window
before. There are two groups of breakpoints and the mem-
ber of each group can be combined to each member of the
other group to form a sequence.

Table 1. The two breakpoint groups for a sequential trigger

Group 1 Group 2

1. ROM Break 2. ROM Break

4. ROM Break 3. ROM Break

1. RAM Break 2. RAM Break

4. RAM Break 3. RAM Break

Lost INT Break 1. I/O Break

2. I/O Break

E. g., ’1. ROM Break’ is the first breakpoint condition in
the ROM break window, ’3. RAM Break’ is the third

breakpoint condition in the RAM break window and ’Lost
INT Break’ is the break on lost interrupts in the I/O break
window.

’1. I/O Break’ is the first or third breakpoint condition in
the I/O break window, depending on which one is turned
on, ’2. I/O Break’ is the second or fourth breakpoint
condition in that window.

To set up the sequential trigger condition, activate the cor-
responding breakpoints first, then arm the sequential
trigger, move the cursor to the first breakpoint condition
and select one of the possible entries by pressing the
<Enter> key. Then do the same for the second breakpoint
condition.

Note: Only one of the two sequential break conditions
should have a count value greater than one (set in
the corresponding breakpoint window). Other-
wise, the sequential trigger may not behave as
you expect. Count values greater than one of
breakpoints that do not belong to the sequential
trigger condition will automatically be reset to
one. All other breakpoints will be disabled. Due
to internal hardware restrictions, the ’I/O trace
mode’ will not work together with a sequential
trigger. A message will request you to turn off the
I/O trace first if you are trying to turn on the
sequential breakpoint facility.

MARC4 User’s Guide
Emulator

TELEFUNKEN Semiconductors
09.96

71

12542

Figure 7. Sequential triggering

Posttrigger Setup

The posttriggering window enables you to stop program
execution after a defined number of instructions follow-
ing the occurrence of a breakpoint. This feature may be
helpful if you want to examine the instructions in the trace
memory that have been executed after a specified break-
point condition, e.g., if an external interrupt request,
occurs.

Load a New Program File <F6>

This command will display a window in which you are
prompted to enter the name of the binary object file to be
emulated. The file extension is assumed as *.HEX. If you
can not remember the correct name and directory just
press <Enter>. A separate file pick window will be
opened and you may browse through the directory tree to
find the new object file. This file and the accompanied
symbol table file (if available) will be uploaded into the
emulation ROM.

Note: All breakpoints will be turned OFF after a file
read operation.

Display of Symbol Table <F7>

If you enter this command, a small pop-up window will
be displayed in which you can choose between symbols
of subroutines, variables or constants (used in the
qFORTH application program) that should be displayed.
If you press <Enter>, the chosen symbols together with
their addresses and length or constant data will be dis-
played in the symbols window.

Display of Trace Data <F8>

This command will open a window that displays the
recorded trace data for the instruction cycles, I/O cycles
or the subroutine entries. The window can only be opened
if a trace mode using<Alt-F8> has been set up before and
either the instruction cycle, I/O activity or the activity sta-
tistics recording has been chosen and at least one
instruction has been executed. Otherwise, an error mes-
sage will be displayed on the message line. The trace
window shown in figure 8, displays the disassembled con-
tents of the 4K×32-bit deep ring buffer. The buffer works
on the same principle as found in other emulators or logic
analyzers.

MARC4 User’s Guide
Emulator

TELEFUNKEN Semiconductors
09.96

72

12543

Figure 8. Instruction trace disassembly

Therefore, you can examine the last 4095 instructions (if
there are so many) or look at the activity statistics of your
program (depending on the chosen topic in the <Alt-F8>
window).

If, e.g., the instruction cycles or the I/O activities have
been recorded, the last line shown in the screen’s window
(offset is usually between -1 and -3) is the last executed
instruction which was executed before the breakpoint
occured. The negative numeric value shown on the left
side is therefore a breakpoint relative memory address in
the trace buffer.

By using either the <Up/Down> key or the <PgUp/
PgDn> key, you can view the disassembled contents of
the trace buffer.

The next column shows the ROM address where the pro-
cesssor has fetched the MARC4 opcode with its
corresponding instruction mnemonic in the next two col-
umns.

The following column will contain information about the
program Branch/Call addresses, or the contents of ROM
read operations (when a TABLE instruction has been
executed).

The column on the far right is an I/O bus trace (similar to
the I/O capture feature found in the MARC4 simulator).
There, you can examine the external trace data lines
(Trace 3 .. Trace 0), except when an external interrupt
request, an IN or OUT instruction was performed which
are also shown with their data and port address values.

�����
�����
� ������ �� ��� ���� ���� ����"
��
������ ��� "��� ��� �� �������� �� ��� ��
��
�����#�

The difference between instruction cycle and I/O activity
recording is that in the latter case, only those instructions
will be recorded that are joined to an I/O activity; that is
an address, data or interrupt transfer. I/O activity record-
ing will be disabled whenever you are executing single
steps.

����� 	 � �� ������
� �
��"
�� ������������
��
���!��#
���������
�� ��� ����
� ������� "��� ��� "���
��������� � ����
�� "��� "
�� #�
�� ���
��� ����
� ���
������ "��� �� � ���� ����
���
������� ��
� ������ �� ��� � � �� �
��� �

�� ��
� �
!� �� �� !
� �� ���
��� ��
� � "���
�� ��� ��
 �� �� !
� � �� � � ����
��
���!��#
����������

If you have selected the activity statistics of your program
with the <Alt-F8> key, the first column in the trace win-
dow shows the symbolic addresses the program jumped
to at every CALL and SCALL instruction. The second
column displays the number each symbol was called. The
third column will show you the percentage the symbol in
that line was addressed and the fourth column is a histo-
gram of the percentages (displayed in green on a colour
monitor). You can use the <PgUp>, <PgDn>, <Up>,
<Down>, <Home> and <End> keys to browse through
the trace window. If you want to print the contents of the
trace window, you may press the <Alt-F9> function key.
By pressing <Esc>, you will leave the trace window.

MARC4 User’s Guide
Emulator

TELEFUNKEN Semiconductors
09.96

73

Edit Data in a Window <F9>

This command is for editing inside the currently selected
window (the one with the bold frame around) which can
be chosen by pressing the arrow keys or just clicking the
left mouse button onto the window. When finished, you
can leave the Edit mode by pressing the <Esc> key. To
change the currently selected window, press the <Left>
or <Right> key.

The RAM window’s data can be modified nibble-wise
using hexadecimal values.

The ROM window’s contents are modified in the opcode
column using the opcode bytes of the MARC4’s basic
instruction set.

The MARC4 register window allows the usage of sym-
bolic RAM and ROM addresses which can be assigned to
the specified registers. In the expression stack window,
only the top of stack value can be modified using a hexa-
decimal number.

Source Code Window <F10>

The source code window enables source-level debugging
without the need to leave the emulator. It displays the
qForth source file and the present emulator execution
point. The following function keys support source-code

scrolling: <Page up>, <Page down>, <End>,
<Pos1>/<Home>

Note: This option requires a project HLL file generated
during the compilation with the “hll linkage”
compiler switch set.

Pop-up Help Window <Alt–F1>

This command will open a pop-up help window which
displays information about the currently selected win-
dow. If the currently selected window is the ROM data
window, general information about the emulator will be
displayed. In the help window, you can get information
about the highlighted and blinking topic if you just press
<Enter>.

You can move the highlight bar among the cross-refer-
ence topics (written in yellow letters) by pressing the
arrow keys , <Up>, <Down>, <Left> or <Right>. If a
‘PgUp/PgDn’ appears at the lower right hand corner of the
window, you can display the previous or next help page
by pressing <PgUp> or <PgDn>.

Press <Alt-F1> if you want to display the help topic most
recently selected. Press <F1> if you want a list of all the
topics described in the help menu (figure 9). To exit any
help window just press <Esc>.

12544

Figure 9. The help window after pressing <Alt – F1>

MARC4 User’s Guide
Emulator

TELEFUNKEN Semiconductors
09.96

74

Search for ROM Symbol,
Address or Opcode <Alt–F2>

The command ’View’ enables you to disassemble the
ROM starting at a particular address. The screen for the
view command shows a pop-up dialog box prompting you
to enter either the qFORTH word’s name or a hexadeci-
mal ROM address.

The corresponding ROM location will be displayed in the
first line of the window. The pop-up dialog box will disap-
pear after you have entered the desired name and have
pressed the <Enter> key. If, however, you wish to cancel
the command after having invoked it, press the <Esc> key
and the box will disappear without any changes to the
ROM display. If the symbol or the address you have
entered was not found, an error message will be dis-
played. To repeat the search, just enter <Ctrl-L> The next
location that matches the entered string will be displayed
and you can repeat this procedure until the string can no
longer be found.

If you are in the trace data window and have recorded the
instruction cycles, pressing <Alt-F2> opens a similar
window as described above. This window will not only al-
low the user to search for ROM addresses that match the
entered string, but also for instructions in the trace data
window.

Change Processor Speed <Alt–F3>

The command ’Speed’ opens a pop-up window in the
upper left hand corner of the screen that enables you to
change the MARC4’s system clock frequency. The
default value is 1 MHz which corresponds to an instruc-
tion cycle time of 2 µs.

To enable emulation at frequencies greater than 2 MHz
the SLEEP instruction in your ROM code will be replaced
with an NOP instruction, so the processor will stay active
all the time. Furthermore, every occuring I/O activity will
be processed with half of the selected speed. This explains
the difference between the total elapsed and the active
time in the execution time window.

Set Clock Delay, if VDD < 1.6 V <Alt–F4>

To emulate a low voltage MARC4, it may be necessary
to have a delay between the external clock which feeds
both the ROM-less version of the MARC4 (e3400EVC)
and the target MARC4 to compensate the different inter-
nal delays of both chips.

Table 2 indicates which delay is the best for your selected
supply voltage range.

Table 2. Clock frequency vs. voltage and delay setup for low
 voltage MARC4 variants

Supply Voltage Del. Setting Max. Speed

VDD [V] <Alt-F4> <Alt-F3>

1.6 to 2.4 0 800 kHz to 1.3 MHz

≤ 1.6 250 ns ≤ 800 kHz

1.5 250 ns ≤ 800 kHz

1.3 250 ns ≤ 800 kHz

> 1.2 375 ns ≤ 800 kHz

≤ 1.2 375 ns ≤ 500 kHz

Reset all Breakpoints <Alt–F5>

All breakpoints will be set to the ‘OFF’ state . The mes-
sage line will display ’All breakpoints cleared’.

Toggle Interrupt Flag <Alt–F6>

This function will toggle the interrupt enable flag status
in the CCR of the MARC4 for single step purposes.

Fill a Section of RAM <Alt–F7>

This command opens a window that allows you to fill the
RAM from a hexadecimal address to another hexadeci-
mal address with a hexadecimal value. To change single
values please use the ’Edit’ (<F9>) command.

Select Mode for
Trace Recording <Alt–F8>

This command opens a pop-up window that allows you to
choose between different trace modes.

These are:

� Trace-recording off,

� Record all instruction cycles,

� Record I/O actions only,

� Activity statistics

The selection of one of the last three items makes it pos-
sible to display the trace data window after the execution
of parts of the program.

Print the Contents of RAM,
ROM or Trace Memory <Alt–F9>

If the currently selected ’active’ window is the RAM data
window, the function key <Alt-F9> enables the user to
print the whole RAM with its symbolic and hexadecimal
addresses together with the corresponding RAM values.

If the active window is the ROM disassembly window,
another window will popp up which will then enable the
user to enter the address range that will be printed. Those

MARC4 User’s Guide
Emulator

TELEFUNKEN Semiconductors
09.96

75

parts of the ROM that contain only SCALL $RESET
(instruction ’C1h’) will be printed in a compressed man-
ner. Enter ’Y’ if the addresses have been entered
correctly. Otherwise, press the <Enter> key.

If the trace window has been opened and you have
recorded the instruction cycles, a window will be dis-
played where you can enter the first and the last line of the
trace window you want to have printed. Enter ’Y’ if the
line numbers you have entered are correct. The window
will be closed and the trace data will be printed. Other-
wise, enter ’N’ or press <Enter> and open the window
with <Alt-F9> again.

	���� �����%�! '�$ &��# #� $"� #��" �$��#���� ��
"$!� #��# '�$! ���� !��#�! �" "&�#���� �� ���
�" ��� ���
��

If you have recorded the activity statistics, all the
addresses will be printed.

Animation, Continous
Single Step <Alt–F10>

On entering this command, the emulation will walk
through the program code displayed in the ROM data dis-
assembly instruction by instruction, and after every step
the screen will be updated. To stop the animation, you
may press any key. The message line will then display the
number of instructions that have been executed.

If the trace recording of instruction cycles or activity sta-
tistics is turned on, the animation mode will slow down.
The recording of I/O activities is inhibited during anima-
tion mode.

Leaving the Emulator <Alt–X>

Entering this command will close all windows. In the
integrated development system, leaving the emulator will
return you to the SDS main menu, while in the command
line version the exit command will return you to DOS.

All the entries you have made in the breakpoint, the
processor type, the speed, the clock delay and the trace
mode window will be saved on the file ’EMU3.CFG’
together with the name of the emulated file. The next time
the emulator is invoked, this setup will be used as the
default configuration.

If a new or changed file is to be emulated, a warning mes-
sage will be displayed in the message line.

Show Version Number <Shift–F1>

After pressing this function key, the version number and
creation date of the emulator software will be displayed
in the message line.

The animation mode will also slow down. This may be of
use if you are running this software on a fast PC. To run
the animation in the ‘flickering fast’ mode, press
<Shift-F1> again.

Show Current Emulator Setup <Shift–F3>

This window allows you to have a quick look at the cur-
rent setup configuration. It displays the name of the file
you have loaded into the ROM, the breakpoints you have
activated, the record mode, if trace recording has been
selected, the chosen processor type, the speed and the
clock delay, if it is greater than 0. Press <Esc> to close the
window.

Select a Target Chip <Shift–F7>

This function has to be used every time, the type of target
device on the target application board has been changed
or the emulator is starting for the first time. By pressing
<Shift–F7> a selection window will be displayed in
which you have to select the target chip you are working
with.

	���� ��� "����#�� #' � �� #�!��# ��� ������ �!
��"���� #�� ��" ��'��� �� #�� �!# &����&
�

������� �! #�� ����!' &����&
�

��������

Display Port Window <Shift–F8>

By using this command, a peripheral window will be dis-
played. This window shows the names of ports and
subports (when available), the corresponding port sym-
bols, the contents of the port in hexedecimal manner and
the binary display.

	���� ���" �$��#��� �" ���' �%�������� �� #�� ����"" #�
 �!#" ��� �#��! �!� ��!��" �" �������� ���#
����"� #�� "����#�� ��� $"�� #�!��# ��%��� ��"
#� "$ �!# #��" �$��#����

Display Memory Window <Shift–F9>

By using this command, a memory window will be dis-
played. The meaning of the different columns in this
window corresponds to the port window.

	���� ���" �$��#��� �" ���' �%�������� �� #�� ����"" #�
����!��" �%�! #��
��	� ��� �$" �" ��������
���# ����" #�� "����#�� ��� $"�� #�!��# ��%���
��" #� "$ �!# #��" �$��#����

I. Introduction

II. Installation Guide

III. Software Development System

IV. qFORTH Compiler

V. Software Simulator

VI. Emulator

VII. Target Application Boards

VIII. Piggybacks

IX. OTP Programmer

X. Appendix

XI. Addresses

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

79

7 Target Application Boards
7.1 Introduction

CORE

Target Chip EVC

EPROM CORE

TCLClock

TCL

Reset

NRST

Mode

TE

NRST

TCL

Data

Address I/O–Controlbus

I/O–Bus

Application

P
or

t 1
P

or
t 0

96 11552

Port 1Port 0

NRST

Figure 1. Functional block diagram of TAB505 in stand-alone emulation mode

All MARC4 controllers have a special emulation mode.
It is activated by setting the TE pin to logic HIGH level
or the TST2 pin to logic LOW level after reset, depending
on the used target chip. In this mode, the internal CPU
core is inactive and the I/O bus is available via Port 0 and
Port 1 to allow the emulator to access the on-chip
peripherals. The emulator contains a special emulation
CPU (e3400 EVC) with a MARC4 core and additional
breakpoint logic which takes over the core function. The
basic function of the emulator is to evaluate the
customer’s program and hardware in real time.

The Target Application Interface Board (TABxxx) is
useful as a ready-to-use interface between the MARC4
emulator (inside the PC), the target device on the TAB
and the target application.

The MARC4 development system contains two different
types of target application boards. The TAB505 supports
two operation modes, the emulation and the stand-alone
mode as shown in figure 1. The TAB260 supports the
emulation mode only.

7.2 Target Application Board TAB505

Features
In emulation mode:

� Zero-force 64-pin DIL socket for different target
MARC4 µC’s

� Power supply from the PC (+5 V)

� Adjustable target supply voltage (1.2 to 5 V) with
level shift logic

� Standard connectors (DB37, VG96) and shielded
emulator interface cable

� Additional LCD interface board for standardized 3:1
or 4:1 multiplex displays

Additional features in stand-alone operation (figure 1):

� Single external supply voltage input (7 to 9 V),

� On-board e3400EVC surrounded by the necessary
interface logic,

� 28-pin DIL socket for the customer’s EPROM
(27C64 - 150 ns),

� Separate RESET button,

� Variable µC operation frequency up to 2.5 MHz,

� Clock delay setting according to the target supply
voltage (VDD < 1.6 V).

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

80

12545

Figure 2. ���
�� �����
����� 	���� ������ � ����
� ���������

7.2.1 Supply Voltages
The TAB505 has the unique feature of an adjustable target
supply voltage by using the trim resistor S10. This allows
the operation of the target hardware within a wide supply
voltage range of 1.2 to 5 Volts. To measure the target sup-
ply voltage VSLA = VDD, attach your voltmeter to BR1
and GND, then use a screw driver on S10 to adjust the
voltage output of the LM317 regulator.

The on-board relais is powered by the PC and switches
between the external or PC internal supply voltage auto-
matically.

Note: In emulation mode all voltages are derived from
the PC’s internal +5 V power supply.

In stand-alone operation mode, an external
power supply input of 7 to 9 Volts is recom-
mended at VEXT. This input voltage is regulated
down to VCC = +5 V.

If the target application operates at +5 V, JP1 and
JP2 have to be inserted to bypass the voltage
drop of the LM317.

BR2

+ 5 V

+

68 uF

3
LM317T

JP2

2
BR1

10 uF

470

470
S10

1

+

10 uF

270

VCC

VSLA

VSLB
+

VSS

JP1

12546

Figure 3. Target supply-voltage generation

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

81

7.2.2 Periphery Connector

The VG96 connector is the interface to your application
hardware which may be built on a separate board. It is also
possible to use a 64-wire ribbon cable as an interface link
between the connector and the hardware. The VG96 num-
bering scheme depends on the used connector. To verify

the specified signal assignment use an Ohm-meter be-
tween pin 1 of the target MARC4 and the bottom left pin
of the VG96 connector which corresponds to VG96-1a in
table 1.

Note: By applying the M44C636, M40C092 or
M44C510 as target MARC4, it is necessary to
use the corresponding target board adapter.

Table 1. Signal assignments on the VG96 connector for M43C505, M45C535, M44C510 and M44C636

Pin M43C505 / M45C535 M44C510 M44C636

Nr. Row a Row b Row c Row a Row b Row c Row a Row b Row c

1 BP42 VCC BP43 BP42 VCC BP43 BP42 VCC BP43

2 BP41 –––– Trace0_E BP41 –––– Trace0_E BP41 –––– Trace0_E

3 BP40 VSLA Trace1_E BP40 VSLA Trace1_E BP40 VSLA Trace1_E

4 S20 –––– Trace2_E BP70 –––– Trace2_E S20 –––– Trace2_E

5 S19 VSLB Trace3_E BP71 VSLB Trace3_E S19 VSLB Trace3_E

6 S18 –––– –––– BP72 –––– –––– S18 –––– ––––

7 S17 BP43 Sleep_E BP73 BP43 Sleep_E S17 BP43 Sleep_E

8 S16 IBUS0_S –––– BP61 IBUS0_S –––– S16 IBUS0_S ––––

9 S15 IBUS1_S –––– BP60 IBUS1_S –––– S15 IBUS1_S ––––

10 S14 IBUS2_S OD_S BPB3 IBUS2_S OD_S S14 IBUS2_S OD_S

11 S13 IBUS3_S NST_E BPB2 IBUS3_S NST_E S13 IBUS3_S NST_E

12 S12 SL_Dir_S BP13_S BPB1 SL_Dir_S BP13_S S12 SL_Dir_S BP13_S

13 S11 NHOLD_S BP12_S BPB0 NHOLD_S BP12_S S11 NHOLD_S BP12_S

14 S10 NREAD_S BP11_S BPC1 * NREAD_S BP11_S S10 NREAD_S BP11_S

15 S09 NCYCLE_S BP10_S BPC0 * NCYCLE_S BP10_S S09 NCYCLE_S BP10_S

16 S08 NWRITE_S BP03_S –––– NWRITE_S BP03_S S08 NWRITE_S BP03_S

17 S07 –––– BP02_S –––– –––– BP02_S S07 –––– BP02_S

18 S06 SYSCL BP01_S BPA0 CLKSL BP01_S S06 SYSCL BP01_S

19 S05 –––– BP00_S BPA1 –––– BP00_S S05 WDEN BP00_S

20 S04 VSLA INT7 BPA2 VSLA –––– S04 VSLA INT7

21 S03 –––– VSLA BPA3 –––– VSLA S03 –––– VSLA

22 S02 –––– INT2 TIM1 –––– –––– S02 –––– INT2

23 S01 –––– IP53 –––– –––– BP53 S01 –––– IP53

24 COM3 –––– IP52 –––– –––– BP52 COM3 –––– IP52

25 COM2 –––– IP51 –––– –––– BP51 COM2 –––– IP51

26 COM1 –––– IP50 –––– –––– BP50 COM1 –––– IP50

27 COM0 TST2_S –––– –––– TE_S –––– COM0 TST2_S ––––

28 VEE1 TCL_S –––– –––– TCL_S –––– VEE1 TCL_S ––––

29 C1 –––– VINT –––– –––– –––– C1 –––– VINT

30 C2 –––– –––– –––– –––– –––– C2 –––– TIM1

31 VEE2 NRST_S –––– –––– NRST_S NWD_OUT VEE2 NRST_S NWD_OUT

32 VREG GND GND –––– GND GND VREG GND GND

* BPC1 and BPC0 are only available if you have a special version of the M44C510 target board adapter. Please contact
your TEMIC sales person for more detailed information on this adapter.

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

82

7.2.3 Settings

The clock frequency of the internal RC oscillator found
on some of the MARC4 cores varies with the operating
voltage. The oscillator tracks the supply and temperature
to ensure optimum operation of the microcontroller under
all conditions. Select the appropriate clock speed either
in an emulator pop-up menu (by pressing <ALT-F3>) or
by setting switch S1 and S9 corresponding to the data
given in the data sheets, when operated in stand-alone
mode.

When using a low voltage MARC4 microcontroller with
a target supply voltage of VDD < 1.6 Volts on the target
application interface board, the TCL clock supplied to the
e3400EVC must be delayed externally.

Table 2 supports provides the possible supply voltages,
clock frequencies and clock delay combinations for the
M44C636 target µC.

The clock delay is modified either in an emulator pop-up
menu (by pressing <ALT-F4>) or by setting switch S2 in
the stand-alone operation.

Table 2. Programmable TCL clock delay for M44C636

Target Voltage
[V]

Delay Setting
Max. Emulation

Speed

VDD [V] <Alt-F4> <Alt-F3>

> 1.6 0 800 kHz

≤ 1.6 250 ns ≤ 800 kHz

1.5 250 ns ≤ 800 kHz

1.3 250 ns ≤ 800 kHz

> 1.2 375 ns ≤ 800 kHz

≤ 1.2 375 ns ≤ 500 kHz

To adjust and measure the current TCL clock frequency
in stand-alone operation, you may use either the BNC
connector or BR3 (delayed TCL) to attach an oscillo-
scope or a frequency counter.

The linear DIP switch S1 gives you a rough frequency
select option between maximum values of 20 kHz and
2.5 MHz corresponding to the switch positions 1 and 8.

To calculate the maximum frequency values ’Max_Freq’
depending on the position of S1, the following formula
may be used:

Max_Freq (S1_pos)� 2.5 MHz
2�8–S1_pos�

 with S1_pos = 1 .. 8

To fine tune the frequency between the calculated maxi-
mum values, the trim resistor S9 should be adjusted.

To get a continous processor clock output, independent
from the executed application program, the switch S8 has
to be set to the ‘NSleep’ position. Then the trim resistor
S9 will allow you to fine tune the µC’s clock frequency
very easily.

After adjusting the clock frequency the switch S8 has to
be set to the ‘Sleep’ position to get correct emulation
results. In this mode the BNC connector enables you to
observe the µC’s activity bursts when executing the
application program.

The setup of the clock delay in stand-alone operation with
VDD < 1.6 V may be done by using table 2 as a guideline
for the correct adjustment.

First of all you need a 2-channel oscilloscope which has
to be attached to:

� the ‘Slave TCL’ available on the BNC connector and

� the delayed ‘Master TCL’ for the e3400EVC available
at BR3.

Secondly, the following formulas may help you to adjust
the clock delay.

’Delay_Freq’ is the frequency that can be measured at the
BNC connector with S1 in position 8.

Then the clock delay is calculated as follows:

Delay (S2_pos, s6� �t � 2�) �
S2_pos–1

Delay_Freq * 2

Delay (S2_pos, s6� �t�) �
S2_pos–1

Delay_Freq * 4
 with

S2_pos = 1 .. 8

Note: The resulting clock skew on the target applica-
tion interface board does not only depend on the
position of the delay switch S2 but also on the
variation of the clock frequency by S9. There-
fore, it is important to check the delay between
the two on-board clocks after major changes in
the frequency using S9.
To halve the clock delay alter the position of
switch S6 from ‘t x 2’ (which should be the
default) to ‘t’ .

For target supply voltages above 1.6 V, the clock delay
switch has to be set to the farthest position on the left (no
delay) which is also the default position.

Optional External Trim Capacitors
In some applications where the need for a very accurate
time base arises, an additional external trim capacitor
C17 could be attached to the OSCIN pin of the MARC4.
This capacitance, if used, has to be tied with switch S11
to VSS.

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

83

OSCIN OSCOUT

32 768 Hz

C8C17
Y1

GND

S11

VSS VDD

V SLA

5-25 pF 22 pF

12547

Figure 4. Optional oscillator trimming

7.2.4 Target Board Adapters

M44C510

Trim Resistor R8 – Trigger Level Setup for Internal
RESET Pulse

The trimming resistor R8 (see figure 5) defines the trigger
level of the NWD_OUT signal (default VDD/2). Figure 5
also shows the trimming resistor R7 which defines the
emulation control signal (TE) trigger level (default
2/3 VDD).

Switch S/E

For stand-alone operation mode, the switch must be in
position S and for emulation mode in position E. Switch
S/E inverts the emulation control signal (TST2).

Switch TC/CK – Periphery Clock Mode

The positon of the switch TC/CK depends on the target
�C’s SUBCL option. If the periphery clock of the target
�C is generated by the SYSCL (SUBCL = SYSCL/64),
the switch must be in position CK . If the periphery clock
is based on the 32-kHz oscillator and SYSCL is stopped
in sleep mode the switch has to set in position TC. Apart
from this, by using switch TC/CK it is possible to emulate
the mask option SYSCL running or SYSCL stopped dur-
ing CPU in sleep mode.

Note: All default trimmer values on the target board
adapter have been preset to provide optimal
adapter performance and should not be changed.

R8

R7

M44C510

S
/E

T
C

/C
K

12548

Figure 5. M44C510 target board adapter

B
P

43

V
S

S
T

C
L

B
P

10
B

P
11

B
P

12
B

P
13

B
P

00
B

P
01

N
.C

.

N
W

D
_O

U
T

N
.C

.

AV
D

D

N
_R

S
T

N
.C

.

B
P

02

B
P

03
B

P
50

B
P

51
B

P
52

B
P

53

N
.C

.
V

D
D

N
.C

.

N
.C

.

N
.C

.
T

S
T

2
N

.C
.

V
C

C

AV
S

S

N
.C

C
LC

S
L

B
P

40

N
.C

.

B
P

42

B
P

41

B
P

70
B

P
71

B
P

72

B
P

73

B
P

C
1

B
P

C
0

N
.C

.
B

P
A

0

B
P

A
1

B
P

A
2

B
P

A
3

B
P

61

B
P

60
B

P
B

3

B
P

B
2

B
P

B
1

B
P

B
0

N
.C

.

T
IM

1
N

.C
.

N
.C

.
N

.C
.

N
.C

.
N

.C
.

N
.C

.

N
.C

.
N

.C
.

N
.C

.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

V
S

S
B

P
53

B
P

51
B

P
50

V
D

D
B

P
43

B
P

52

B
P

00
T

IM
1

T
E

B
P

13
B

P
12

B
P

11
B

P
00

B
P

42
B

P
41

B
P

40
B

P
03

B
P

02
B

P
01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21

B
P

70
B

P
71

B
P

72

O
S

C
O

U
T

N
R

S
T

B
P

A
0

B
P

A
1

B
P

A
2

B
P

A
3

B
P

60
B

P
B

3
B

P
B

2

O
S

C
IN

B
P

B
1

B
P

73
S

C
LI

N
S

C
LO

U
T

B
P

61

B
P

B
0

AV
D

D

M44C510–P40

12549

Figure 6. Pin configuration TAB adapter C510 and M44C510

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

84

M44C636

32-kHz On-Board Oscillator Q

The watch crystal (Q) is connected to the pins OSCIN and
OSCOUT on target board adapter M44C636.

Note: The M44C636 target board adapter converts the
pin-out of the M44C636 emulation device into
the pin-out of the DIL64 on the TAB505 (see pin
configuration in figure 8).

M44C636 – e3605 Adapter

Q

C1

C3 C2

1

12550

Figure 7. M44C636 target board adapter

B
P

43

V
S

S

T
C

L

B
P

10

B
P

11

B
P

12

B
P

13

B
P

00

B
P

01

O
D

W
D

_O
U

T

T
IM

1

AV
D

D

N
R

S
T

V
IN

T

B
P

02

B
P

03

IP
50

IP
51

IP
52

IP
53

IN
T

2

V
D

D

IN
T

7

W
D

_E
N

T
S

T
1

T
S

T
2

O
S

C
IN

N
.C

.

AV
D

D

O
S

C
O

UT

T
R

M

B
P

40

C
O

M
3

B
P

42

B
P

41

S
20

S
19

S
18

S
17

S
09

S
08

S
07

S
06

S
05

S
04

S
03S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
02

S
01

C
O

M
2

C
O

M
1

V
E

E
1

C
C

1

C
C

2

V
E

E
2

V
R

E
G

C
O

M
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

B
P

41

B
P

40

C
O

M
3

S
19

S
18

S
17

S
16

S
20

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
15

S
14

S
13

S
12

S
11

S
10

S
02

V
E

E
1

S
01

C
C

1

C
C

2

V
E

E
2

C
O

M
2

C
O

M
1

V
R

E
G

C
O

M
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
IN

T
7

B
P

42

B
P

43
T

R
M

B
P

10

B
P

11

B
P

12

B
P

13

B
P

00

B
P

01
O

D

O
S

C
IN

N
.C

.

AV
D

D

W
D

_E
N

V
IN

T

W
D

_O
U

T

B
P

03
IP

50
IP

51

IP
52

IP
53

IN
T

2

V
D

D

AV
S

S

V
S

S
T

C
L

T
S

T
1

T
S

T
2

O
S

C
O

U
T

N
R

S
T

B
P

02

T
IM

1

M44C636–P64

12551

Figure 8. Pin configuration TAB adapter C636 and M44C636

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

85

7.3 Target Application Board TAB260

Features

� The printed circuit board is placed into a protective
plastic case

� Standard connectors DB37 (ST1) and VG96 (BU1)

� Additional flat cable sockets

� LED’s for power supply control (emulator, target
board, VEXT)

� Also qualified for emulation when M44C510 or
M40C092 are used as an emulation �C

� Additional AC/DC adapter for separate power sup-
ply (+5 V) available in three different country specific

versions:
– Europe : 230 V∼/5.5 V= (50 Hz)
– U.K. : 230 V∼/5.5 V= (50 Hz)
– U.S.A. : 120 V∼/5.5 V= (60 Hz)

12552

Figure 9. Target application board TAB260 – switch positions

7.3.1 Periphery Connectors
Table 3 shows the signal assignment on the VG96 connec-
tor when an M44C260 (28 pin), M44C510 or M40C092
are used as an emulation target �C. The VG96 connector
is the interface to your application hardware which may
be built on a separate board. It is also possible to use a 64
wire ribbon cable as an interface link between the connec-
tor and the hardware. The VG96 (BU1) numbering
scheme depends on the used connector. To verify the

specified signal assignment use an Ohm-meter between
pin 1 of the target MARC4 and the bottom left pin of the
VG96 (BU1) connector which corresponds to VG96-1a in
table 3.

Note: When applying the M44C260, M40C092 or
M44C510 as target MARC4, it is necessary to
use the corresponding target board adapter.

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

86

Table 3. Signal assignments on the VG96 (BU1) connector for M44C260, M40C092 and M44C510

Pin M44C260 M40C092 M44C510

Nr. Row a Row b Row c Row a Row b Row c Row a Row b Row c

1 GND GND GND GND GND GND GND GND GND

2 +5V +5V +5V +5V +5V +5V +5V +5V +5V

3 –––– –––– IP43 –––– –––– –––– –––– –––– BP43

4 –––– –––– IP42 –––– –––– –––– BPC1 –––– BP42

5 –––– –––– IP41 BP43 –––– BP40 BPC0 –––– BP41

6 –––– –––– IP40 BP42 –––– BP53 –––– –––– BP40

7 –––– –––– –––– BP41 –––– –––– BPA0 –––– ––––

8 –––– –––– BP33 BP23 –––– BP52 BPA1 –––– BP70

9 –––– –––– BP32 BP22 –––– BP51 BPA2 –––– BP71

10 –––– –––– BP31 BP21 –––– BP50 BPA3 –––– BP72

11 –––– –––– BP30 BP20 –––– –––– TIM1 –––– BP73

12 –––– –––– –––– BP63 –––– –––– –––– –––– BPB0

13 –––– –––– BP23 BP13 –––– –––– –––– –––– BP61

14 –––– –––– BP22 –––– –––– BP60 –––– –––– BP60

15 –––– –––– BP21 –––– –––– BP10 –––– –––– BPB3

16 –––– –––– BP20 –––– –––– –––– –––– –––– BPB2

17 –––– –––– NWP –––– –––– –––– –––– –––– BPB1

18 –––– –––– BP03 –––– –––– BP03 –––– –––– BP03

19 –––– –––– BP02 –––– –––– BP02 –––– –––– BP02

20 –––– –––– BP01 –––– –––– BP01 BP53 –––– BP01

21 –––– –––– BP00 –––– –––– BP00 BP52 –––– BP00

22 –––– –––– –––– –––– –––– –––– BP51 –––– ––––

23 –––– –––– BP13 –––– –––– BP13 BP50 –––– BP13

24 –––– –––– BP12 –––– –––– BP12 –––– –––– BP12

25 –––– –––– BP11 –––– –––– BP11 –––– –––– BP11

26 TR0IN –––– BP10 TR0IN –––– BP10 TR0IN –––– BP10

27 TR1IN –––– TCLSLO TR1IN –––– TCLSL TR1IN –––– TCLSLO

28 TR2IN –––– NRESO TR2IN –––– NRESO TR2IN –––– NRESO

29 TR3IN –––– NRESIN TR3IN –––– NRESIN TR3IN –––– NRESIN

30 –––– –––– CLO –––– –––– CLO –––– –––– ––––

31 +5V +5V +5V +5V +5V +5V +5V +5V +5V

32 GND GND GND GND GND GND GND GND GND

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

87

Additional Sockets

Additional sockets are provided to interconnect the
application hardware to the target board TAB260 or to
check the signal assignment.

Note: The target MARC4 is connected to three flat
cables sockets (FST1, FST2 and FST3). The
FST1 is used for the 20-pin M44C260, the FST2

for the M40C092 and the FST3 for the 28-pin
M44C260. The socket pins are organized in such
a way when viewing the target board from above
they correspond to the pin layout of the used tar-
get device (see tables 4, 5, 6 and figures 10, 11,
12).

The listed pin numbers in the following tables are
the pin numbers of the flat cable sockets.

Table 4. Signal assignment of flat cable socket FST1

M44C260 (20 Pin)

Pin Pin

1 BP02 11 ––––

2 BP01 12 ––––

3 BP03 13 ––––

4 BP00 14 IP40

5 –––– 15 BP20

6 BP31 16 IP41

7 –––– 17 BP10

8 BP30 18 BP13

9 –––– 19 BP11

10 GND 20 BP12

BP03

BP02 BP01

BP00

BP13

BP12BP11

BP10

NRST

TCL

BP20

TE

VSSOSC IN

OSC OUT

VDD

BP31

BP30

1

2

4

5

6

7

8

9

10

15

16

17

19

20

14

11

12

13

M44C260

3 18

IP40–INT6

IP41–TA

SSO20

12553

Figure 10. Pin connections of M44C260 (20 pin)

Table 5. Signal assignment of flat cable socket FST2

M44C092 (20 Pin)

Pin Pin

1 –––– 11 BP50

2 –––– 12 BP22

3 BP40 13 ––––

4 BP43 14 BP21

5 BP53 15 ––––

6 BP42 16 BP20

7 BP52 17 BP60

8 BP41 18 BP63

9 BP51 19 BP10

10 BP23 20 BP13

BP13BP10

BP22

BP23

BP52/INT1

BP53/INT1

BP51/INT6

VSS

BP41/VMI

BP42/T2O

BP43/SD/INT3

VDD

BP40/SC/INT3

OSC1

OSC2

BP60/T3O

BP20/TE

BP63/T3I

BP21

BP50/INT6

1

2

4

5

6

7

8

9

10

15

16

17

19

20

14

11

12

13

M44C092

3 18

SSO20

12554

Figure 11. Pin connections M44C092 (20 pin)

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

88

Table 6. Signal assignment of flat cable socket FST3

M44C260 (28 Pin)

Pin Pin

1 BP02 15 ––––

2 BP01 16 ––––

3 BP03 17 BP20

4 BP00 18 IP40

5 NWP 19 BP21

6 BP33 20 IP41

7 –––– 21 BP22

8 BP23 22 IP42

9 –––– 23 BP23

10 BP31 24 IP43

11 –––– 25 BP10

12 BP30 26 BP13

13 –––– 27 BP11

14 GND 28 BP12

IP40–INT6

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

23

24

BP00

BP01BP02

BP03

BP13

BP12BP11

BP10

TCL

VSS

OSC IN

OSC OUT

VDD

BP33

22

25

26

27

28

BP30

BP31

BP32

NWP

TE

NRST

BP20

BP21

BP22

BP23

IP41–TA

IP43

IP42–TB

M44C260

SSO28

12555

Figure 12. Pin connections for M44C260 (28 pin)

Additional Signals Used in Emulation Mode

Table 7. Signal assignment of additional pin header

Pin Header

J1 J2 J3

PIN Signal name Signal name Signal name

1 TR0IN IOS0E TCLSL

2 TR1IN IOS1E NRST

3 TR2IN IOS2E TST2

4 TR3IN IOS3E NRESET

5 Not available NHOLD NRES

6 Not available NWRITE NRESL

7 Not available NREAD ––––

8 Not available NCYCLE P0DIR

9 Not available CLKSL P1DIR

10 Not available SLEEPS SLDIR

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

89

7.3.2 Configuration Setup

Port Configuration

Table 8. Pull-up, pull-down resistor at Port 0

JP1

Signal
name

Pin ON Pin ON

BP03 01 - 02 Pull-up 03 - 04 Pull-down

BP02 05 - 06 Pull-up 07 - 08 Pull-down

BP01 09 - 10 Pull-up 11 - 12 Pull-down

BP00 13 - 14 Pull-up 14 - 16 Pull-down

Table 9. Pull-up, pull-down resistor at Port 1

JP2

Signal
name

Pin ON Pin ON

BP13 01 - 02 Pull-up 03 - 04 Pull-down

BP12 05 - 06 Pull-up 07 - 08 Pull-down

BP11 09 - 10 Pull-up 11 - 12 Pull-down

BP10 13 - 14 Pull-up 14 - 16 Pull-down

The shaded columns show the production setup of
pull-up/pull-down jumpers.

Shifted Signals CLKSL and TCLSL

The jumper JP3 will supply the shifted signals CLKSL
and TCSLS to VG96 (BU1). In the default production
setup JP3 is not inserted.

7.3.3 Supply Voltages

The TAB is powered either at ST2 by a separated power
supply or at BU1 (VG96) by an external power supply of
the customer’s application board.

Table 10.Range of power supply

Symbol Min. Typ. Max.

Supply voltage +5 V +5 V 4.5 V 5 V 5.5 V

Supply voltage GND GND 0

LED1 and LED2 will check the corresponding power
supply. LED3 indicates the emulator board is
switched on.

Power Supply – JP BR1

VG96 VCC ST2

Figure 13. Jumper setting for power supply

The default settings support the external power supply
from the AC/DC adapter at ST2 .

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

90

7.3.4 Target Board Adapters

M44C260

1

T
C

B
26

0_
0

M44C260

D101

C101Q101
C102

12556

Figure 14. M44C260 target board adapter

32-kHz on-board oscillator (Q)

The watch crystal (Q) is connected to the pins OSCIN and
OSCOUT on the target board adapter M44C260.

IP
43

V
S

S

N
.C

.

B
P

10

B
P

11

B
P

12

B
P

13

B
P

00

B
P

01

N
.C

.

N
R

S
T

N
.C

.

V
C

C

N
R

E
S

N
.C

.

B
P

02

B
P

03

N
.C

.

N
.C

.

N
.C

.

N
.C

.

N
.C

.

V
C

C

N
.C

.

N
.C

.

N
.C

.

T
S

T
2

N
.C

.

V
C

C

V
S

S

N
.C

C
LC

SL

IP
40

N
.C

.

IP
42

IP
41

B
P

33

B
P

32

B
P

31

B
P

30

N
.C

.

N
.C

.

N
.C

.

N
.C

.

N
.C

.

N
.C

.

N
.C

.

B
P

23

B
P

22

B
P

21

B
P

20

N
W

P

N
.C

.

N
.C

.

N
.C

.

N
.C

.

N
.C

.
N

.C
.

N
.C

.

N
.C

.

N
.C

.

N
.C

.

N
.C

.

N
.C

.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

B
P

02

B
P

03

T
E

O
S

C
 O

U
T

O
S

C
 IN

V
D

D

N
W

P

B
P

11

N
R

S
T

B
P

20

B
P

21

B
P

22

B
P

23

B
P

10

B
P

01

B
P

00
B

P
33

T
C

L

IP
40

–I
N

T
6

IP
41

–T
A

B
P

12

IP
42

–T
B

B
P

32
B

P
31

B
P

30

V
S

S

B
P

43

B
P

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14

28 27 26 25 24 23 22 21 20 19 18 17 16 15

M44C260

12557

Figure 15. Pin configuration TAB adapter C260 and M44C260

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

91

M44C510

R8

R7

M44C510

S
/E

T
C

/C
K

12548

Figure 16. M44C510 target board adapter

Trim resistor R8 – Triger Level Setup for Internal
RESET Pulse

The trimming resistor R8 (see figure 15) defines the
trigger level of the NWD_OUT signal (default VDD/2).
Figure 15 also shows the trimming resistor R7 which
defines the emulation control signal (TE) trigger
level (default 2/3 VDD).

Switch S/E

For stand-alone operation mode, the switch must be in
position S and for emulation operation mode in position
E. Switch S/E inverts the emulation control signal
(TST2).

Switch TC/CK – Periphery Clock Mode

The positon of the switch TC/CK depends on the
target �C’s SUBCL option. If the periphery clock of the
target �C is generated by the SYSCL (SUBCL =
SYSCL/64) the switch must be in position CK . If the
periphery clock is based on the 32-kHz oscillator and
SYSCL is stopped in sleep mode the switch has to be set
on position TC. By using TC/Ck it is possible to emulate
the mask option SYSCL running or SYSCL stopped dur-
ing CPU is in sleep mode.

Note: All default trimmer values on the target board
adapter have been preset to provide optimal
adapter performance and should not be changed.

B
P

43

V
S

S
T

C
L

B
P

10
B

P
11

B
P

12
B

P
13

B
P

00
B

P
01

N
.C

.

N
W

D
_O

U
T

N
.C

.
AV

D
D

N
_R

S
T

N
.C

.

B
P

02

B
P

03
B

P
50

B
P

51
B

P
52

B
P

53

N
.C

.
V

D
D

N
.C

.

N
.C

.

N
.C

.
T

S
T

2
N

.C
.

V
C

C

AV
S

S

N
.C

C
LC

S
L

B
P

40

N
.C

.

B
P

42

B
P

41

B
P

70
B

P
71

B
P

72

B
P

73

B
P

C
1

B
P

C
0

N
.C

.
B

P
A

0

B
P

A
1

B
P

A
2

B
P

A
3

B
P

61

B
P

60
B

P
B

3

B
P

B
2

B
P

B
1

B
P

B
0

N
.C

.

T
IM

1
N

.C
.

N
.C

.
N

.C
.

N
.C

.
N

.C
.

N
.C

.
N

.C
.

N
.C

.

N
.C

.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

V
S

S
B

P
53

B
P

51
B

P
50

V
D

D
B

P
43

B
P

52

B
P

00
T

IM
1

T
E

B
P

13
B

P
12

B
P

11
B

P
00

B
P

42
B

P
41

B
P

40
B

P
03

B
P

02
B

P
01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21

B
P

70
B

P
71

B
P

72

O
S

C
O

U
T

N
R

S
T

B
P

A
0

B
P

A
1

B
P

A
2

B
P

A
3

B
P

60
B

P
B

3
B

P
B

2

O
S

C
IN

B
P

B
1

B
P

73
S

C
LI

N
S

C
LO

U
T

B
P

61

B
P

B
0

AV
D

D

M44C510–P40

12549

Figure 17. Pin configuration TAB adapter C510 and M44C510

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

92

7.4 DB37 Connector and Shielded Emulator Cable

Table 11 specifies the signal assignment of the emulator cable and the DB37 connnector of the both target application
boards.

Table 11. MARC4 emulator interface – DB37 signal assignment

Emulator Dir. DB37 Target Application Interface

SYSCLK Out 1 System clock, not stopped in SLEEP (CMOS)

NHOLD Out 2 To level shifter → BP13 (I/O control)

BP01_E I/O 3 To level shifter for BP01

BP02_E I/O 4 To level shifter for BP02

BP03_E I/O 5 To level shifter for BP03

OD Out 6 To level shifter for Port 0 read strobe OD2

NST_E Out 7 Port 0 write strobe NST (CMOS)

BP13_E I/O 8 To level shifter for BP13

+5V Out 9 VCC from PC during emulation

BP12_E I/O 10 To level shifter for BP12

BP10_E I/O 11 To level shifter for BP10

VSS Out 12 GND, VSS

NRST_E Out 14 To level shifter of NRST

BP11_E I/O 16 To level shifter for BP11

NTST2_E Out 17 To level shifter for TST2 or TE

SLEEP_E Out 18 SLEEP signal of EVC (CMOS, active high)

TCL_SL Out 19 To level shifter for TCL

BP00_E I/O 20 To level shifter for BP00

Port0_Dir Out 21 Port 0 direction control for level shift logic

Port1_Dir Out 22 Port 1 direction contro for level shift logic

SL_Dir_E Out 25 To level shifter → OD (I/O control)

NWRITE Out 26 To level shifter → BP12 (I/O control)

NREAD Out 27 To level shifter → BP11 (I/O control)

NCYCLE Out 28 To level shifter → BP10 (I/O control)

IOBUS3 I/O 29 To level shifters ↔ BP03 (I/O bus [3])

IOBUS2 I/O 30 To level shifters ↔ BP02 (I/O bus [2])

IOBUS1 I/O 31 To level shifters ↔ BP01 (I/O bus [1])

IOBUS0 I/O 32 To level shifters ↔ BP00 (I/O bus [0])

Trace0_E In 33 Trace input 0 (CMOS level required)

Trace3_E In 34 Trace input 3 (CMOS level required)

Trace2_E In 35 Trace input 2 (CMOS level required)

Trace1_E In 36 Trace input 1 (CMOS level required)

NWD_OUT In 37 Watchdog or codet reset input from target (CMOS)

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

93

7.5 LCD Interface Board
The LCD interface board is supplied with one of the
following standardized LCD modules:

3:1 MUX LCD with up to 8 Digits

12558

Figure 18. HAMLIN type 4216

4:1 MUX LCD with up to 6 Digits

12559

Figure 19. HAMLIN type 4200

Both types of LCD are available with 3 V or 5 V LCD
drive level option. The LCD module may be mounted ei-
ther on the front side or the rear side of the PCB.

Table 12.Ordering information for LCD module

Ordering
Information

3 Volt Drive
Level

5 Volt Drive
Level

HAMLIN 3.1 MUX 4216–313–4304216–313–420
HAMLIN 4:1 MUX 4200–313–4304200–313–480

A programming example for a 4:1 multiplex display driv-
ing software can be found in your subdirectory ”TOOLS”
at your MARC4 base directory as source file
”HAMLIN.INC”. This software module is used in the
UNITEST demonstration program too.

For detailed information on the predefined wiring of the
segments and backplanes from the MARC4 segment driv-
ers to the LCD, see tables 13 and 14.
In case, you want to use one of these displays in your pro-
totyp application, figures 18 and 19 show the pin-out of
the supplied LCD module.

Table 13 shows the LCD segment (frontplane) to the
M44C636/M43C505 backplane signal allocation.

Table 13.HAMLIN LCD segment allocation

VG96 3:1 MUX LCD 4:1 MUX LCD

COM0 BP1 – a b BP1 a f

COM1 BP2 f g c BP2 b g

COM2 BP3 e d P BP3 c e

COM3 ––– – – – BP4 P d

Table 14.VG96 to MARC4 segment mapping of HAMLIN
LCD on LCD interface board

3:1 MUX LCD 4:1 MUX LCD

COM Digit 0 1 2 Digit 0 1 2 3

S20 X7 7 a g d

S19 Y7 7 b c P

S18 Z6 6 – f e

S17 X6 6 a g d

S16 Y6 6 b c P

S15 Z5 5 – f e

S14 X5 5 a g d

S13 Y5 5 b c P

S12 Z4 4 – f e Y6 6 f g e d

S11 X4 4 a g d X6 6 a b c P

S10 Y4 4 b c P Y5 5 f g e d

S09 Z3 3 – f e X5 5 a b c P

S08 X3 3 a g d Y4 4 f g e d

S07 Y3 3 b c P X4 4 a b c P

S06 Z2 2 – f e Y3 3 f g e d

S05 X2 2 a g d X3 3 a b c P

S04 Y2 2 b c P Y2 2 f g e d

S03 Z1 1 – f e X2 2 a b c P

S02 X1 1 a g d Y1 1 f g e d

S01 Y1 1 b c – X1 1 a b c P

MARC4 User’s Guide
Target Application Boards

TELEFUNKEN Semiconductors
09.96

94

12560

Figure 20. LCD interface board – top view

7.6 Important Hints

To avoid possible damages:

� One should handle the target application interface boards as all other PC plug cards. It is necessary to connect the
target application interface to the emulator board before starting the PC.

� The e3400EVC on the target application board is used in stand-alone operation mode only, and should therefore
be removed in emulation mode to avoid unnecessary stressing.

Schematic Diagrams

For detailed information on the TAB505 and TAB260 as well as their adapters, the corresponding schematic diagrams
are attached to the hardware.

Listing of the available schematic diagrams:

Target application board TAB505
Target board adapter M44C510
Target board adapter M44C636

Target application board TAB260
Target board adapter M44C260
Target board adapter M44C092

I. Introduction

II. Installation Guide

III. Software Development System

IV. qFORTH Compiler

V. Software Simulator

VI. Emulator

VII. Target Application Boards

VIII. Piggybacks

IX. OTP Programmer

X. Appendix

XI. Addresses

MARC4 User’s Guide
Piggybacks

TELEFUNKEN Semiconductors
09.96

97

8 Piggybacks
8.1 Introduction

CORE

Target Chip EVC

EPROM CORE

TCLClock

TCL

Reset

NRST

Mode

TE

NRST

TCL

Data

Address I/O–Controlbus

I/O–Bus

Application

P
or

t 1
P

or
t 0

96 11552

Port 1Port 0

NRST

Figure 1. Functional block diagram

A piggyback is an ideal tool for real-time program
evaluation in the target environment especially for proto-
type demonstrators. They are fully pin compatible to the
corresponding prototype/emulation package of the
masked version (see figures 2 and 4). Therefore, the mask
version will be a pin-to-pin replacement of the piggyback
in the prototype application board.

Although the user may think of the piggyback hybrid as
one microcontroller, two are actually contained on a
single PCB. It contains the ROM-less bond-out chip
(e34000EVC) and the application target device (e.g.,
M44C636, M44C510) operated in emulation mode (see
chapter 7 target application board in stand-alone opera-
tion)

8.2 M40C510 – PGY

Features

� Supply voltage range from 3 to 5.5 V

� Standard 27C256/27C512 type EPROM/OTPROM in
32-pin PLCC is attached externally

� Up to eight different programs can be stored and se-
lected

� Adjustable – externally supplied – processor clock
from 0.2 MHz up to 3 MHz

� 40 pin DIL package

� Size: Length 60 mm, width 32 mm, height 18 mm

8.2.1 General

The top view of the piggyback hybrid is shown in
figure 2. The pin-out of this device is identical to the
M44C510-P40. Please note that BPC0 and BPC1 are
available in the special M40C510C-001 configuration
named M40C510-C0C1 only (see table 1). Any standard
27C256/27C512 type EPROM can be placed into the 32
pin PLCC socket mounted on top of the package. Due to
the bank select facility of 8 x 4 KBytes, this EPROM can
be programmed with eight different program variants.

MARC4 User’s Guide
Piggybacks

TELEFUNKEN Semiconductors
09.96

98

8.2.2 Available Configurations
Table 1. I/O configurations of available M40C510 piggyback versions

I/O Options M40C510C-001
M40C510-009

M40C510C-C0C1 * M40C510C-002
M40C510-912

M40C510–914 M40C510–916

Color Code Red White Brown Yellow CopperÁÁÁÁÁ
ÁÁÁÁÁBP00

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁCMOS_PU

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁCMOS_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PUÁÁÁÁÁ

ÁÁÁÁÁBP01
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁCMOS_PU

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁCMOS_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PUÁÁÁÁÁ

ÁÁÁÁÁBP02
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁCMOS_PU

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁCMOS_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PUÁÁÁÁÁ

ÁÁÁÁÁ
BP03

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CMOS_PU
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CMOS_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CMOS_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PU
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PU
ÁÁÁÁÁ
ÁÁÁÁÁ

BP10
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CMOS_PU
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CMOS_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CMOS_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PU
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PU
ÁÁÁÁÁ
ÁÁÁÁÁ

BP11 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CMOS_PU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CMOS_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PU

ÁÁÁÁÁ
ÁÁÁÁÁ

BP12 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CMOS_PU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CMOS_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PU

ÁÁÁÁÁ
ÁÁÁÁÁ

BP13 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CMOS_PU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CMOS_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PU

ÁÁÁÁÁ
ÁÁÁÁÁ

BP40 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Open drain_PU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Open drain_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PD ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS

ÁÁÁÁÁ
ÁÁÁÁÁ

BP41 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Open drain_PU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Open drain_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PD ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOSÁÁÁÁÁ

ÁÁÁÁÁBP42
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁOpen drain_PU

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁOpen drain_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOSÁÁÁÁÁ

ÁÁÁÁÁBP43
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁOpen drain_PU

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁOpen drain_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁOpen drain

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOSÁÁÁÁÁ

ÁÁÁÁÁBP50
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁOpen drain_PU

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁOpen drain_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PDÁÁÁÁÁ

ÁÁÁÁÁ
BP51

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Open drain_PU
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Open drain_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CMOS_PD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PD
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PD
ÁÁÁÁÁ
ÁÁÁÁÁ

BP52
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Open drain_PU
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Open drain_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CMOS_PD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PD
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PD
ÁÁÁÁÁ
ÁÁÁÁÁ

BP53 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Open drain_PU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Open drain_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PD ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PD ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PD

ÁÁÁÁÁ
ÁÁÁÁÁ

BP60 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Open drain_2k PU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Open drain_2k PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_2k PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS

ÁÁÁÁÁ
ÁÁÁÁÁ

BP61 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Open drain_2k PU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Open drain_2k PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_2k PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS

ÁÁÁÁÁ
ÁÁÁÁÁ

BP70 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Open drain_PU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Open drain_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Open drain ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Open drain_PU

ÁÁÁÁÁ
ÁÁÁÁÁ

BP71 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Open drain_PU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Open drain_PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Open drain_PUÁÁÁÁÁ

ÁÁÁÁÁBP72
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁOpen drain_PU

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁOpen drain_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS

ÁÁÁÁÁÁ
ÁÁÁÁÁÁOpen drain_PUÁÁÁÁÁ

ÁÁÁÁÁBP73
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁOpen drain_PU

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁOpen drain_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS

ÁÁÁÁÁÁ
ÁÁÁÁÁÁOpen drain_PUÁÁÁÁÁ

ÁÁÁÁÁBPA0
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁCMOS_30k PU

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁCMOS_30k PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_30k PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PUÁÁÁÁÁ

ÁÁÁÁÁ
BPA1

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CMOS_30k PU
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CMOS_30k PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CMOS_PD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_30k PU
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PU
ÁÁÁÁÁ
ÁÁÁÁÁ

BPA2
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CMOS_30k PU
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CMOS_30k PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
CMOS_PD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_30k PU
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PU
ÁÁÁÁÁ
ÁÁÁÁÁ

BPA3 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CMOS_30k PU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CMOS_30k PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PD ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_30k PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PU

ÁÁÁÁÁ
ÁÁÁÁÁ

BPB0 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CMOS_30k PU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CMOS_30k PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PD ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_30k PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Open drain

ÁÁÁÁÁ
ÁÁÁÁÁ

BPB1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CMOS_30k PU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CMOS_30k PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PD ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_30k PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Open drain

ÁÁÁÁÁ
ÁÁÁÁÁ

BPB2 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CMOS_30k PU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CMOS_30k PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PD ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_30k PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Open drain_PU

ÁÁÁÁÁ
ÁÁÁÁÁ

BPB3 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

CMOS_30k PU ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
CMOS_30k PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_PD ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
CMOS_30k PU ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Open drain_PU

ÁÁÁÁÁBPC0 ÁÁÁÁÁÁÁ–––––– ÁÁÁÁÁÁÁOpen drain_PU ÁÁÁÁÁÁ–––––– ÁÁÁÁÁÁ–––––– ÁÁÁÁÁÁ––––––ÁÁÁÁÁ
ÁÁÁÁÁBPC1

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ––––––

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁOpen drain_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ––––––

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ––––––

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ––––––ÁÁÁÁÁ

ÁÁÁÁÁTIM1
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁOpen drain_PU

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁOpen drain_PU

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOS_PD

ÁÁÁÁÁÁ
ÁÁÁÁÁÁCMOSÁÁÁÁÁ

ÁÁÁÁÁBPA_Reset
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁNO_RST

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁNO_RST

ÁÁÁÁÁÁ
ÁÁÁÁÁÁNO_RST

ÁÁÁÁÁÁ
ÁÁÁÁÁÁNO_RST

ÁÁÁÁÁÁ
ÁÁÁÁÁÁNO_RSTÁÁÁÁÁ

ÁÁÁÁÁ
Watchdog

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2 sec
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
2 sec

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
2 sec

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 sec
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Disabled
ÁÁÁÁÁ
ÁÁÁÁÁ

SUBCL_SRCÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SYSCL/64 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
SYSCL/64 ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
SYSCL/64 ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
SYSCL/64 ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
32 kHz oscillator

Note: Other I/O configurations may be made available on request within four weeks of order

* The M40C510C-C0C1 and M40C510C-C1T1 are special variants of the piggyback M40C510C-001. On the configu-
ration of M40C510C-C0C1 the BPC0 and BPC1 are bonded-out at OSCOUT and OSCIN. On the M40C510C-C1T1
BPC1 is connected internaly to the pin TIM1.

MARC4 User’s Guide
Piggybacks

TELEFUNKEN Semiconductors
09.96

99

1 2 3 4 5 6 7 8

R15

R14

74HC4053

S8 S6S7

27C512

JP1

S1

Color code

2540 39 38 37 36 35 34 33 32 31 30 29 28 27 26 24 23 22 21

9 10 11 12 13 14 15 16 17 18 19 20

V
S

S

B
P

53

B
P

52

B
P

51

B
P

50

V
D

D

B
P

43

B
P

42

B
P

41

B
P

40

B
P

03

B
P

02

B
P

01

B
P

00

T
IM

1

B
P

13

B
P

12

B
P

10

B
P

11

S
C

LO
U

T

B
P

70

B
P

71

B
P

72

B
P

73

S
C

LI
N

B
P

61

B
P

60

B
P

B
3

B
P

B
2

B
P

B
1

B
P

B
0

V
D

D

N
R

S
T

B
P

A
0

B
P

A
1

B
P

A
3

B
P

A
2

O
S

C
IN

/B
P

C
1

O
S

C
O

U
T

/B
P

C
0

T
E

VSS VSS VSS

PLCC–Socket

Sleep

RC Trim SYSCL

12561

Figure 2. Top view of the M40C510 piggyback

8.2.3 Piggyback Setup

Figure 2 shows the pin-out of the piggyback as well as the
placement of the different adjustable components on top
of the hybrid. For more detailed information on the piggy-
back M40C510, the corresponding schematic diagram is
attached with the hardware.

Supply Voltage (VDD)

The supply voltage range is specified from 3 to 5.5 Volts.

Note: The maximum clock frequency of the piggyback
is a function of the supply voltage and the min.
access time (e.g., 90 ns) of the inserted EPROM.

Switch S1 – Periphery Clock Mode

The position of the switch S1 depends on the target �C’s
SUBCL option. If the periphery clock of the target �C is

generated by the SYSCL (SUBCL = SYSCL/64), the
switch must be set in position SYSCL. If the periphery
clock is based on the 32-kHz oscillator and SYSCL is
stopped in sleep mode, the switch S1 has to be set in
position SLEEP. By using switch S1 it is possible to emu-
late the mask option SYSCL running or SYSCL stopped
during CPU in sleep mode.

Program Memory Bank Switches S8, S7, S6

For program storage it is recommended to use a 27C256
or 27C512 CMOS (E)PROM in a 32 pin PLCC package.
The access time for 5 V CMOS EPROMs should be 90 ns
or below. The M44C510 microcontroller can address up
to 4096 bytes of program memory. With the memory
bank switches S8 ... S6 it is possible to keep a maximum
of eight program versions in one EPROM. Table 2 shows
the different switch settings with the corresponding pro-
gram starting address for your EPROM programmer.

MARC4 User’s Guide
Piggybacks

TELEFUNKEN Semiconductors
09.96

100

Table 2. Program memory bank switch setting

EPROM Type 27C256 27C512

Switches ROM Start
Address

ROM Start
Address

ÁÁÁ
ÁÁÁS8
ÁÁÁ
ÁÁÁS7
ÁÁÁÁ
ÁÁÁÁS6

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁVSS
ÁÁÁ
ÁÁÁVSS
ÁÁÁÁ
ÁÁÁÁVSS

ÁÁÁÁÁ
ÁÁÁÁÁ0000h

ÁÁÁÁÁ
ÁÁÁÁÁ8000hÁÁÁ

ÁÁÁ
ÁÁÁ

VDD
ÁÁÁ
ÁÁÁ
ÁÁÁ

VSS
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

VSS
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1000h
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

9000h

ÁÁÁ
ÁÁÁ

VSSÁÁÁ
ÁÁÁ

VDDÁÁÁÁ
ÁÁÁÁ

VSS ÁÁÁÁÁ
ÁÁÁÁÁ

2000h ÁÁÁÁÁ
ÁÁÁÁÁ

A000h

ÁÁÁ
ÁÁÁ

VDDÁÁÁ
ÁÁÁ

VDDÁÁÁÁ
ÁÁÁÁ

VSS ÁÁÁÁÁ
ÁÁÁÁÁ

3000h ÁÁÁÁÁ
ÁÁÁÁÁ

B000h
ÁÁÁ
ÁÁÁ

VSSÁÁÁ
ÁÁÁ

VSSÁÁÁÁ
ÁÁÁÁ

VDD ÁÁÁÁÁ
ÁÁÁÁÁ

4000h ÁÁÁÁÁ
ÁÁÁÁÁ

C000h
ÁÁÁ
ÁÁÁ

VDD
ÁÁÁ
ÁÁÁ

VSS
ÁÁÁÁ
ÁÁÁÁ

VCC
ÁÁÁÁÁ
ÁÁÁÁÁ

5000h
ÁÁÁÁÁ
ÁÁÁÁÁ

D000h
ÁÁÁ
ÁÁÁVSS
ÁÁÁ
ÁÁÁVDD
ÁÁÁÁ
ÁÁÁÁVDD

ÁÁÁÁÁ
ÁÁÁÁÁ6000h

ÁÁÁÁÁ
ÁÁÁÁÁE000hÁÁÁ

ÁÁÁ
ÁÁÁ

VDD
ÁÁÁ
ÁÁÁ
ÁÁÁ

VDD
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

VDD
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

7000h
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

F000h

Jumper JP1 – Disable of Internal RESET
Events

A reset signal, which forces the �C in a well defined

condition, can be triggered by either initial supply pow-
er-up, a watchdog time-out, activation of the NRST input
or occurence of a coded reset on Port A (see figure 3).

If a watchdog reset or a coded reset on Port A is available
via the corresponding mask option (see table 1) and this
function should be suppressed in the application, JP1 has
to be removed.

Trim Resistor R14 – Trigger Level Setup for
Internal RESET Pulse

The trimming resistor R14 defines the trigger level of the
NRST signal output. Please do not try to re-adjust the pro-
duction setup.

Trim Resistor R15 – System Clock Setup

The system clock frequency used to drive the processor
clock (i.e., SYSCL) may be varied in the range from
0.2 MHz up to 3 MHz (at 5 Volts). The system frequency
is increased or decreased by adjusting the trim resistor
R15. To adjust the system clock frequency the switch S1
must be set in position SYSCL. The production setup is
1 MHz.

Port A
Port A

I/O

reset code

CPU

NRST

V

Watch-

Power-on
reset

CPU reset

rst

Pull-up

CODE *

time out

V

V

WD reset

 * = Mask option

 dog *

DD

SS

DD

96 11556

Figure 3. Reset configuration of M4xC510

MARC4 User’s Guide
Piggybacks

TELEFUNKEN Semiconductors
09.96

101

8.3 M40C636-PGY, M40C505-PGY

Features
� Supply voltage range from 3 to 5.5 V

� Standard 27C64 type EPROM in 28-pin DIL is
attached externally, two different program versions
can be stored and selected

� Adjustable – externally supplied – processor speed
from 0.2 MHz up to 2 MHz

� 64 pin DIL package compatible

� Size: Length 90 mm, width 28 mm, height 20 mm

B
P

40

C
O

M
3

B
P

42

B
P

41

S
20

S
19

S
18

S
17

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
02

S
01

C
O

M
2

C
O

M
1

V
E

E
1

C
C

1

C
C

2
V

E
E

2
V

R
E

G

C
O

M
0

R14

S14

27C64

74
H

C
12

3

74HC74

74HC02

S13

Color code

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

B
P

43

V
S

S
T

C
L

B
P

10
B

P
11

B
P

12
B

P
13

B
P

00
B

P
01

O
D

W
D

_O
U

T
IM

1
AV

D
D

N
R

S
T

V
IN

T
B

P
02

B
P

03
IP

50
IP

51
IP

52
IP

53

IN
T

2
V

D
D

IN
T

7

W
D

_E
N

T
S

T
1

T
S

T
2

O
S

C
IN

N
.C

.

AV
D

D
O

S
C

O
U T

T
R

M

U15

U14

R11
U

6

2MHz

1MHz

VSS

VDD

12562

Figure 4. Top view of the M40C636 piggyback

8.3.1 General
The top view of the piggyback hybrid is shown in
figure 4. The pin-out of this device is identical to the
M43C505-P64 (see figure 6). Please note that the pin con-
nection of the piggyback M40C636 is not identical to the
pin-out of DIL64 evaluation samples.

If you build a M44C636 prototype application board
based on the M40C636-PGY pin-out (see figure 4), you
will need the TAB636 adapter to convert the
M44C636-P64 (see figure 6, right) into the pin-out shown
in figure 4. The TAB636 adapter contains the 32-kHz
crystal on board as it is available on the M40C636-PGY.

The pin-out of the M43C505-P64 (see figure 6, left) and
the M40C505-PGY is fully compatible. If you replace the
piggyback with the prototype device (in DIL64), please
take care that the 32-kHz crystal is attached between
OSCIN and OSCOUT.

Any standard 27C64 type EPROM can be placed into the
28 pin DIL socket mounted on top of the package. Due to
the bank select facility, the EPROM can contain two dif-
ferent program variants.

MARC4 User’s Guide
Piggybacks

TELEFUNKEN Semiconductors
09.96

102

8.3.2 Available Configurations

Currently it is possible to choose between one of the fol-
lowing I/O configurations, whereby Port 0 and Port 1are
fixed to CMOS_PU.

Table 3. I/O configurations of available piggyback versions

I/O Options M40C636 M40C505–001
ÁÁÁÁÁ
ÁÁÁÁÁ

Color CodeÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Blue ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Red
ÁÁÁÁÁ
ÁÁÁÁÁ

BP40 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PU ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PU
ÁÁÁÁÁ
ÁÁÁÁÁ

BP41 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PU ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Open drain
ÁÁÁÁÁ
ÁÁÁÁÁ

BP42 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS & 32 kHzÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Open drain
ÁÁÁÁÁ
ÁÁÁÁÁ

BP43 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PD ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Open drain
ÁÁÁÁÁ
ÁÁÁÁÁ

Port 5 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Pull-down ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Pull-up
ÁÁÁÁÁ
ÁÁÁÁÁ

Port 5 INT ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Pos. edge INT1ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Neg. edge INT4
ÁÁÁÁÁ
ÁÁÁÁÁ

Coded RSTÁÁÁÁÁÁ
ÁÁÁÁÁÁ

RST4 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Not available
ÁÁÁÁÁ
ÁÁÁÁÁ

INT2 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PD ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS

ÁÁÁÁÁ
ÁÁÁÁÁ

INT7 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Pull-down ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Pull-up

ÁÁÁÁÁ
ÁÁÁÁÁ

TIM1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS_PU ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Not available

ÁÁÁÁÁ
ÁÁÁÁÁ

Buzzer ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2 kHz * ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2 kHz

ÁÁÁÁÁ
ÁÁÁÁÁ

LCD ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3 V LCD ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

5 V LCD

* programmable

Note: Other I/O configurations may be made available
within four weeks of placing your request

8.3.3 Piggyback Setup

Figure 4 shows the pin-out of the piggyback as well as the
placement of the different adjustable components on top
of the hybrid. For more detailed information on the piggy-
back the corresponding schematic diagram is attached to
the hardware.

Supply Voltage (VDD)

The supply voltage range is specified from 3 to 5.5 V.

Note: The maximum clock frequency of the piggyback
is a function of the supply voltage range and the
minimum access time (e.g., 150 ns) of the
inserted EPROM.

Trim Resistor R11 and Switch S13 –
Externally RC Oscillator Setup

The externally supplied RC oscillator frequency used to
drive the processor clock (i.e. TCL) may be varied in the
range from 0.2 MHz up to 2 MHz. The oscillator
frequency is increased or decreased by adjusting the trim
resistor R11. The switch S13 enables the raw selection
(divide by 2) of the trimmable frequency range.

The corresponding system clock (SYSCL) is measurable
at pin 4 of U15 (74HC02) when the MARC4 micro-
controller is not in SLEEP mode. Otherwise, you may use
pin 10 of U15 for a continuous frequency output. Pin 4 of
U15 also allows the observation of the program activity
(duty cycle) too.

Program Memory Bank Switch (S14)

For program storage, a standard 27C64 CMOS EPROM
in a 28 pin DIL package is used. The access time for 5 V
CMOS EPROMS should be 150 ns or below.

Table 4. Memory bank switch setting

Address range Switch S14
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0000h to 0FFFh ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VSS
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

1000h to 1FFFh ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VDD

Power-on Reset

A reset signal, which forces the �C in a well defined
start-up condition, can be triggered by different modes
(see figure 5). At the microcontroller M44C636, a
start-up condition can be forced by an external reset pin
(NRST), a coded reset at Port 5, a watchdog time-out and
a power-on reset function. A coded reset and a watchdog
time-out function is not available on the �C M43C505.
On the piggyback hybrid, the power-on reset consists of
a RC network with a time constant of some milliseconds.

To implement an additional external RESET input for
your application, the signal on pin 51 of the piggyback
should be used to attach an external switch connected to
VSS.

MARC4 User’s Guide
Piggybacks

TELEFUNKEN Semiconductors
09.96

103

Port 5
Port 5

input

reset code

CPU

NRST

V

Watch-

Power-on
reset

CPU reset

rst

Pull-up

CODE *

time out

V

V

WD reset

 * = Mask option

 dog *

DD

SS

DD

96 12327

TST2 (=0)

WD_OUT

Figure 5. Reset configuration of M44C636

BP43

VSS

TCL

BP10

BP11

BP12

BP13

BP00

BP01

OD

N.C.

N.C.

AVDD

NRST

VINT

BP02

BP03

IP50

IP51

IP52

IP53

INT2

VDD

INT7

N.C.

TST1

TST2

OSCIN

N.C.

AVDD

OSCOUT

N.C.

BP40

COM3

BP42

BP41

S20

S19

S18

S17

S09

S08

S07

S06

S05

S04

S03

S16

S15

S14

S13

S12

S11

S10

S02

S01

COM2

COM1

VEE1

CC1

CC2

VEE2

VREG

COM0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

M
43

C
50

5–
P

64

BP41

BP40

COM3

S19

S18

S17

S16

S20

S09

S08

S07

S06

S05

S04

S03

S15

S14

S13

S12

S11

S10

S02

VEE1

S01

CC1

CC2

VEE2

COM2

COM1

VREG

COM0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

M
44

C
63

6–
P

64

INT7

BP42

BP43

TRM

BP10

BP11

BP12

BP13

BP00

BP01

OD

OSCIN

N.C.

AVDD

WD_EN

VINT

WD_OUT

BP03

IP50

IP51

IP52

IP53

INT2

VDD

AVSS

VSS

TCL

TST1

TST2

OSCOUT

NRST

BP02

TIM1

12563

Figure 6. Pin connections – 64 pin ceramic DIL of M43C505 and M44C636

Schematic Diagrams
For detailed information on the M40C510-PGY and the M40C636-PGY the corresponding schematic diagrams are
attached with the hardware.

I. Introduction

II. Installation Guide

III. Software Development System

IV. qFORTH Compiler

V. Software Simulator

VI. Emulator

VII. Target Application Boards

VIII. Piggybacks

IX. OTP Programmer

X. Appendix

XI. Addresses

MARC4 User’s Guide
OTP Programmer

TELEFUNKEN Semiconductors
09.96

107

9 OTP Programmer

9.1 Introduction
This programmer’s device can be used for writing or read-
ing out the internal EEPROM memory of the M48C260
and M48C092 OTP microcontrollers. It offers all possibi-
lities for memory manipulation which are available in a
conventional EPROM programmer.

Features
� Easy adaption onto the PC

� Comfortable and user-friendly programmer’s shell
with mouse support

� Protecting plastic case with zero-force 28-pin DIL
socket with additional adapter for SSO28-0.8 package

versions

� Short programming time

� Additional AC/DC adapter for separate power sup-
ply (+5 V) available in three different

country-specific versions:
– Europe : 230 V∼/5.5 V= (50 Hz)
– U.K. : 230 V∼/5.5 V= (50 Hz)
– U.S.A. : 120 V∼/5.5 V= (60 Hz)

This adapter can also be used for the target application
board TAB260.

� Cable to connect the OTP programmer to a parallel
port of your PC

9.2 Getting Started
First of all, connect the programmer’s device with the
power supply (socket ST2) and with the PC’s parallel
port.

If you want to start the OTP programmer, verify that the
following files are available in the MARC4 base
directory:

MARC4OTP.EXE
MARC4OTP.TVR
MARC4OTO.DEV
MARC4OTP.INI

Check that the correct path for the OTP programmer has
been entered in the setting window ”Directories” (see
’Installation Guide’) of the SDS2-IDE.

Starting the OTP programmer with the SDS2
enviroment

To start the OTP programmer within the SDS2 enviro-
ment, select the command ”OTP-Prog.” at the menu line.

Starting the OTP programmer as an independent
program

If the MARC4 directory has not been included in the
AUTOEXEC.BAT search path, move into the MARC4
system directory (e.g.,C:\MARC4) and enter the follow-
ing command:
C:\MARC4>MARC4OTP

Note: Please be aware that some lap-top computers do
not support all control signals required to operate
the OTP programmer (see section 9.7).

9.3 Set Programmer’s Options
Use the pull-down menu ”Options” and select ”Port” to
set the correct PC’s parallel port and select ”Select
device” to set the microcontroller which is to be used.
Under the submenu command ”Save options”, these set-
tings can be stored in the configuration file.

Note: The device list of M48C260 is now available.
Please contact your TEMIC sales person for a
M48C092 upgrade.

9.4 Using the OTP Programmer
Use the pull-down menu ”File” and select ”Open” to load
any MARC4 binary ’HEX’ file.
The loaded file is represented in an edit window in hexa-
decimal form at the left side and as ASCII dump at the
right side of the window. By pressing <Page-up>, <Page-
down> keys or the arrow keys, the active window can be
scrolled over the screen. In this way, the binary object file
can be edited easily.

MARC4 User’s Guide
OTP Programmer

TELEFUNKEN Semiconductors
09.96

108

12564

Figure 1. OTP programmer’s user display

12565

Figure 2. OTP program screen display with loaded file

Note: Only hexadecimal commands are allowed in the
left half of the edit window and ASCII signs in
the right half.

Alternating between both fields can be carried out by
using <TAB> or <SHIFT–TAB> .

To start the programming procedure use the pull-down
menu ”MARC4” and select ”Program”. A window ap-
pears where the address which has just been programmed
is shown. At the same time, the LED ”Program” lights up
on the programming device. This LED indicates that the
programming procedure is in operation.

By pressing the <ESC> key the programming procedure
can be interrupted at any time.

After the programming procedure has been completed, an
automatic verification of the data recorded is carried out.
If all data has been recorded correctly, the message
”Verify OK” appears. If a comparative error appears, a
corresponding error message is given out.

Note: It is not permitted to remove the OTP device
from the socket during the programming proce-
dure is in progress, otherwise the IC could be
damaged.

MARC4 User’s Guide
OTP Programmer

TELEFUNKEN Semiconductors
09.96

109

9.5 Error Messages

Cannot open resource file

The resource file MARC4OTP.TVR was not found. Check that the resource file is available in the MARC4 base
directory.

Cannot open device file
The MARC4OPT.DEV file for describing the module was not found. Verify that this file is available in the
MARC4 base directory.

Illegal device file
The file for describing the module does not have the correct format. Install the program again.

Unable to create init file
Check that the MARC4OTP.INI file is not write protected.

Parallel port LPTX not available
The selected parallel port is not available. Check that the port named is installed correctly.

File too large for selected device
You have tried to load a file which is too large for the chosen module. Adjust the compiler options to the correct
memory size and compile the program again.

File smaller than ROM size
You have tried to load a file which is smaller than the memory of the chosen module. Set the compiler options
at the correct memory size and compile the program again.

Not enough memory for safety pool
There is not enough memory available to load the file. Close the programs which are no longer required.

Cannot open file
An invalid file name has been entered, or the file is damaged.

Verify error at address $XXXXXX
By comparing the memory contents with the actual file, a comparative error was discovered. Check the cabel
connections to the PC and check whether the correct parallel port has been set.

Blank check error at address XXXX
An error appeared during the preliminary tests to check if the OTP-EEPROM is clear. Check the cabel connec-
tions to the PC and check whether the correct parallel port has been set.

MARC4 User’s Guide
OTP Programmer

TELEFUNKEN Semiconductors
09.96

110

9.6 Elimination of Errors

Table 1. Error debugging

Error EliminationÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The LED ”Prog” does not light up during the
programming procedure

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Check the connection to the PC
Check whether the correct parallel port has been set

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The LED ”Power” is not lit up ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Check whether the power supply is plugged in
Check the fuse SI1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The menu functions ”Programming” and ”Verify” are
deactivated

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Load an object file first

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The menu function for adjusting the type of module is
deactivated

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Close all windows which are open

9.7 Description of the Parallel Port Signals

Table 2. Parallel port signals

Pin Nr. Name (Printer) Symbol Name (MARC4)

ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

STROBE ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

TE ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

TEÁÁÁÁÁ
ÁÁÁÁÁ2

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁD0

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁD0 OUT

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁBP00ÁÁÁÁÁ

ÁÁÁÁÁ3
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁD1

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁD1 OUT

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁBP01ÁÁÁÁÁ

ÁÁÁÁÁ
4

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

D2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

D2 OUT
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

BP02
ÁÁÁÁÁ
ÁÁÁÁÁ

5 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

D3 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

D3 OUT ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

BP03
ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

D4 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

TCL ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

TCL
ÁÁÁÁÁ
ÁÁÁÁÁ

7 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

D5 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

NCYCLE ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

BP10

ÁÁÁÁÁ
ÁÁÁÁÁ

8 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

D7 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

NREAD ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

BP11

ÁÁÁÁÁ9 ÁÁÁÁÁÁÁÁÁÁÁD7 ÁÁÁÁÁÁÁÁNWRITE ÁÁÁÁÁÁÁÁÁÁBP12ÁÁÁÁÁ
ÁÁÁÁÁ10

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁACK

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁD3 IN

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁBP03ÁÁÁÁÁ

ÁÁÁÁÁ12
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁPE

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁD2 IN

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁBP02ÁÁÁÁÁ

ÁÁÁÁÁ
13

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

SLCT IN
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

D1 IN
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

BP01
ÁÁÁÁÁ
ÁÁÁÁÁ

14 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

AUTO FD ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

NRES ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

NRES
ÁÁÁÁÁ
ÁÁÁÁÁ

15 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ERROR ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

D0 IN ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

BP00
ÁÁÁÁÁ
ÁÁÁÁÁ

16 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

INIT ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

PWON ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Note: Please be aware that some lap-top computers do not support all control signals required to operate the OTP
programmer.

Schematic Diagram
For more detailed information on the OTP programmer, see the corresponding schematic diagram which is attached
to the hardware.

I. Introduction

II. Installation Guide

III. Software Development System

IV. qFORTH Compiler

V. Software Simulator

VI. Emulator

VII. Target Application Boards

VIII. Piggybacks

IX. OTP Programmer

X. Appendix

XI. Addresses

MARC4 User’s Guide
Appendix

TELEFUNKEN Semiconductors
09/96

113

Members of the MARC4 Family

M43C505 - Low-Current 3- and 5-V Solution for Consumer Applications

� Wide supply voltage range (2.4 V to 5.5 V)

� Very low current consumption

� 4096 x 8 bit ROM, 253 x 4 bit RAM

� 16 programmable I/Os

� 2-MHz fast system clock (1 MIPS)

� 32-kHz crystal oscillator

� 20 4 LCD temp.-compensated drivers

� 2 external/ 3 internal interrupt sources

� Prescaler/ interval timer

� Internal POR and brown-out

Existing applications comprise temperature measure-
ment and -control, battery charging, bicycle computers,
timers, radio-controlled clocks and CD players.

Existing software modules for time keeping, calendar,
stop watches, display drivers for various multiplex rates,
accurate dual-slope temperature measurement and inter-
face software for TEMIC’s radio-controlled clock
receivers are part of the comprehensive qFORTH soft-
ware library.

A power-saving sleep- and stop mode increases battery
life time significantly in hand-held applications, while of-
fering 1 MIPS computing power during active time.
Internal POR, oscillator and pull-up/-down resistors
simplify PCB layout and minimize system costs.

Software is free of charge for these applications which in-
creases the confidence level and reduces the
time-to-market for new developments.

TCL

RP

PORT 5 COM0...3

TST2TST1 NRST

Instruction bus

Memory bus

I/O bus

S01...20

VDD VSS

System clock
generation Sleep Power-on reset

SP

X

4 4

ROM
4096 x 8 bit Y

Interrupt
controller

Instruction
decoder

4

Inputs
key int.

External
interrupts

Oscillator
Prescaler

driver
LCD

32 kHz

INT7
INT2,

BUZZER

PORT 1 PORT 0
 OD

I/O
+ strobeI/O

TOS

CCR

ALU

RAM address registers

RAM
253 x 4 bit

Program counter

I/O

PORT 4

4

AVDD AVSS

C1
C2

VEE2

VEE1

VREG

32 kHz

96 12020

Figure 1. M43C505

MARC4 User’s Guide
Appendix

TELEFUNKEN Semiconductors
09/96

114

M44C260 - Perfect Solution for Security and Access Control

� Wide supply voltage range (2.4 V to 6.2 V)

� Very low sleep current

� 4 KByte ROM, 256 x 4 bit RAM

� 128 bit EEPROM on board

� 18 programmable I/Os

� 4.2-MHz fast system clock (FLL)

� 32-kHz crystal oscillator

� 6 interrupt sources

� Prescaler/ interval timer

� Multi-functional timers/ counters incl. IR remote
control carrier generation

� Watchdog and POR

� OTP M48C260

The M44C260 is especially optimized for IR remote con-
trol and security and access control applications, e.g., for
automotive and industrial applications.

The on-board 128-bit EEPROM offers the capability of
storing and changing identifiers as well as security codes.
Any application which requires the ability to store a small
amount of data will also benefit.

The multi-function timer/counter modules which are also
on–board include modes to directly generate the signal
for an IR transmitter device such as TEMIC’s U426B.

The wide supply voltage range combined with the very
small current consumption increases battery life time in
mobile applications.

The OTP M48C260 simplifies and reduces the develop-
ment time.

For detailed information please refer to TEMIC’s ”Auto-
motive Safety and Convenience Data Book 1996”.

MARC4

Interrupt
 inputs

Clock

Timer 2Timer 1

EEPROM

Timer A
Intervall
 timer

Timer B

Reset

TE TCL

Port 0 Port 1 Port 2 Port 3

 Input
Port 4

OSCIN OSCOUT

TA TB

16 x 8 bit

I/O bus

EEPROM
RAM

4–bit CPU core

4K x 8 bit 256 x 4 bit Watch-
 dog

I/O I/O I/O I/O

INT6

Test

Sleep

NWP NRST

IP40 IP43

VDDVSS

94 9038

ROM or

Figure 2. M44C260

MARC4 User’s Guide
Appendix

TELEFUNKEN Semiconductors
09/96

115

M44C090/092 - Low-Current Solution for Wireless Communication

� Software selectable system-clock sources, crystal
oscillator, external clock, RC oscillator with/ without
external resistor

� Wide supply voltage range (1.8 V to 6.2 V)

� Very low sleep current

� 2/4 KByte ROM, 128 x 4-bit RAM

� 512 bit EEPROM optional

� 12/16 programmable I/Os

� 32-kHz crystal oscillator

� Up to 7 external/ 7 internal interrupt sources

� Prescaler/ interval timer

� 2-wire serial interface

� Multi-functional timers/ counters incl. IR/ RF remote
control carrier generation

� Watchdog, POR and brown-out function

� OTP M48C092

� SO8 package (M44C090)

The two MARC4 products M44C090 and M44C092 offer
the highest integration for IR and RF data communication
and remote control. These controllers are optimized for
the transmitter as well as the receiver applications.

TEMIC’s system know-how was used to integrate the
modulator into the M44C090 and the modulator as well
as the demodulator for commonly-used wireless proto-
cols into the M44C092.

Both controllers perfectly match the RF front end device
U2740B and the IR driver chip U426B. This - along with
the very small SSO package and the approach to mini-
mize the number of external components - leads to
extremely compact remote control units, e.g., for elec-
tronic keys. Finally, the very low current consumption
and the extended supply voltage range optimizes battery
life time.

Development is supported by the OTP M48C092 which
covers the features of the M44C092 and both includes the
performance of the M44C090.

Voltage monitor
 external input

32 kHz
crystal osc.

MARC4

Timer / counter

OSC1 OSC2

I/O bus

ROM
RAM

4-bit CPU core

128 x 4 bit

VDDVSS

xxxxxx

Data direction +
 alt. function

Data direction +
interrupt control

Port 4 Port 5

Data dir. +
alt. function

Port 6

Timer 3 - 8 bit
timer/counter

Brown-out protect.
 RESET

Clock managment
Timer 1

watchdog timer

Timer 2
4 + 8 bit

Modulator 2

Serial interface

Modulator 3
demodulator

Port 1

P
or

t 2

D
at

a
di

re
ct

io
n

T2O

SD

SC

T3O

T3I

BP10

BP13

BP20/TE

BP21

BP22

BP23

BP40
INT3
 SC BP41

 VMI

BP42
 T2O BP43

INT3
 SD

BP50
INT6

BP51
INT6

BP52
INT1

BP53
INT1

BP60
 T3I

BP63
 T3O

RC
oscillator

Crystal
oscillator

2K x 8 bit

2K x 8 bit

Additional blocks
 for M4xC092

VMI

Figure 3. M44C090/092

MARC4 User’s Guide
Appendix

TELEFUNKEN Semiconductors
09/96

116

M44C510 - Flexible and Powerful Solution for Embedded Control

� 4 mask-selectable system-clock sources, crystal
oscillator, ceramic resonator, RC oscillator with/
without external resistor

� Wide supply voltage range (2.4 V to 6.2 V)

� Very low current consumption

� 4 KByte ROM, 256 x 4 bit RAM

� 32 bitwise-programmable I/Os

� High-current outputs

� 32-kHz crystal oscillator

� 10 external and 4 internal interrupt sources

� Prescaler/ interval timer

� Two 8-bit multi-functional timers/ counters

� Watchdog timer, internal POR and brown-out

� Minimum external components

� Very small package (SSO44)

The M44C510 is a solution for embedded control applica-
tions. Various mask options provide an optimum
price-performance ratio for the system.

Due to the pull-up/-down, push-pull and open-drain
functions of the bit–wise programmable I/Os, external
components are unneccessary. LEDs and relays can be
connected directly to the M44C510 by using up to eight
I/Os driving 20 mA each. Mask selectable clock sources
cover a wide range of application requirements. Watch-
dog, POR and a brown-out function monitors correct
operation. More than ten timer/counter modes offer D/A
conversion, event counting, 16-bit modes and even
melody modes. The wide supply voltage range along with
the very small current consumption supports battery–
powered systems.

Software modules available include keyboard software,
LCD and LED display driver, serial port protocols, radio–
controlled clock decoders and timer as well as
temperature measurement modules. For detailed in-
formation please refer to ”M44C510 Keyboard
Application Design Guide 06.96”

MARC4

System
clock

Timer/
counter

Timer 0

Timer 1

Master
reset

TE

Port 0 Port 1 Port 5 Port B

SCLIN SCLOUT

I/O bus

ROM RAM

4–bit CPU core

5K x 8bit 256 x 4bit Watch–
 dog

I/O

I/O

I/O

Test

Sleep

NRSTVDDVSS

Port 7 Port A

I/O

Port 4

I/O

Interrupt
& reset

Prescaler

AVDD

I/O

I/O

Interrupt

I/O

Interrupt

Port 6

Real time
clock

OSCIN OSCOUT

Melody
& buzzer

TIM1

96 11515

I/O

Port C

Figure 4. M44C510

MARC4 User’s Guide
Appendix

TELEFUNKEN Semiconductors
09/96

117

M44C588 - Versatile High–End Controller for General Purposes

� Various mask-selectable system clock sources to de-
fine application-specific system price/ performance
ratio

� Dual clock mode for minimum current consumption

� Wide supply voltage range (1.8 to 6.2 V)

� 9 KByte ROM, 512 x 4 bit RAM

� Up to 32 I/Os incl. high-current ports

� 32-kHz crystal oscillator

� Up to 32 4 LCD segments

� Prescaler

� 8 external and 5 internal interrupts

� Watchdog, POR and low battery detection for
enhanced system security

� Synchronous 8-bit serial port

� Multi-function timer/ counter incl. IR/ RF remote
control carrier generation

High-end, battery-powered consumer applications such
as bicycle computers, feature watches, diver computers
and high-end, radio-controlled clocks/watches which all
require both computing power and low current consump-
tion will benefit from the M44C588.

The dual clock mode and core frequencies of 4 MHz
(2 MIPS) on the one hand and 32 kHz slow operation/
sleep mode (consuming only micro-amps) on the other
hand make the M44C588 the best solution for these tough
requirements.

The programmable I/Os with pull-up/-down options,
integrated oscillators, 20-mA drive capability, internal
watchdog, POR and low battery detection minimize the
number of system components, resulting in reduced
system costs and PCB size. The integrated temperature–
compensated display drivers for up to 128 LCD segments
enable even sophisticated display solutions. Data transfer
to external storage devices such as serial EEPROMs is
simplified by the serial port.

MARC4

System
clock

Timer/
counter

Timer 0

Timer 1

Master
reset

TE

Port 0 Port 1 Port B

SCLIN SCLOUT

I/O bus

ROM RAM

4–bit CPU core

9K x 8 bit 256 x 4 bit Watch–
 dog

I/O I/O I/O

Test

Sleep

NRSTVDDVSS

I/OInterrupt
& reset

Prescaler

AVDD

Interrupt

Port 6

Real time
clock

OSCIN OSCOUT

256 x 4 bit

PRAM

LCD
32 x 4

and

16 I/O

Low voltage
detect

serial

VEE1VEE2 C1C2

Interval

Timer

I/O Buzzer

I/O Port 4
(high drive)

S17...S32

(bidir. I/O)

S1...S16

COM0..
COM3

VREG

96 11556

Figure 5. M44C588

MARC4 User’s Guide
Appendix

TELEFUNKEN Semiconductors
09/96

118

M44C636 - Perfect Solution for Low-Current Applications

� 1.2 V to 2.2 V/ 1.8 V to 3.6 V (mask opt.)

� < 1 mA sleep mode current, 200 mA active current

� On-chip RC system clock oscillator

� 4 KByte ROM, 253 x 4 bit RAM

� 16 programmable I/Os

� 32-kHz crystal oscillator

� 20 4 temperature-compensated LCD driver segments

� Prescaler/ interval timer

� Two independent 8-bit timers/ counters

� Watchdog and POR

The M44C636 is pushing the limits of low-current con-
sumption to the values of the discharge of batteries. By

combining sleep and active periods, system currents of
less than 2 µA can be designed. The M44C636 is there-
fore suitable for applications such as feature watches,
radio-controlled clocks/watches, timers powered by
back-up capacitors and even telecom applications such as
telephone-rate counters directly powered by transmission
lines.

Mask options adjust the extended supply voltage range of
the M44C636 to 1.5-V or 3-V batteries. For 3-V applica-
tions, an internal voltage regulator powers the core,
reducing the active peak current to 200 µA. The typical
system current in watch applications is under 2 µA.

Two multi–function timers/counters and motor output
drivers support 3-V watch applications including motor-
pulse chopping. Internal watchdog, brown-out function
and POR supervise correct operation.

TCL

RP

PORT 5 COM0...3

TST2TST1 NRST

Instruction bus

Memory bus

I/O bus

S01...20

V DD V SS

Clock
generation Sleep Power-on reset

SP

X

4 4

TIM1

WD_OUT

WD_OUT

ROM
4096 x 8 bit Y

Interrupt
controller

Instruction
decoder

Watchdog

4

Inputs
key int.

Timer/
counter

External
interrupts

Interval
timer driver

LCD

32 kHz

INT7INT2,
BUZZER

PORT 1 PORT 0
 OD

I/O
+ strobeI/O

TOS

CCR

ALU

RAM address registers

RAM
253 x 4 bit

Program counter

I/O

PORT 4

4

96 12318

Figure 6. M44C636

	Contents
	Introduction
	Installation
	Software Development System
	qFORTH Compiler
	Software Simulator
	Emulator
	Target Application Boards
	Piggybacks
	OTP Programmer
	Members of the MARC4 Family

