PCBs Fabrication Methods


DISCLAIMER: I\'ve collected these information from different sources. The author may revise this documentation from time to time without notice. THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL THE AUTOR BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND ARISING FROM ANY ERROR IN THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION ANY LOSS OR INTERRUPTION OF BUSINESS, PROFITS, USE, OR DATA.

PCB (Printed Circuit Board) Printed Circuit Board (PCB) is a mechanical assembly consisting of layers of fiberglass sheet laminated with etched copper patterns. It is used to mount electronic parts in a rigid manner suitable for packaging. Also known as a Printed Wiring Board (PWB).

[Project]  [Different methods to make PCBs]  [Final work]  [Bibliography/Reference] 


Project GO UP
[Electric Scheme] [Part List - Bill of Materials] [Choose components from Data Sheets] [Choose Board type and dimension] [Draw the PCB layout] [Draw Fabrication scheme] [Draw Assembly scheme]

Schematic Diagram GO UP

A schematic diagram must be made available that shows the connection of the parts on the board. Each part on the schematic should have a reference designator that matches the one shown on the Bill of Materials (BOM). Many schematic layout programs will allow automatic generation of the BOM.

Part List - Bill of Materials (BOM) GO UP

The parts to be mounted on the PCB should be detailed on the parts list. Each part should be identified by a unique reference designator and a part description (i.e. a resistor might be shown as reference designator "R1" with a description of "1/2 Watt Carbon Film resistor"). Any additional information useful to the assembly process can be included on this list, such as mounting hardware, part spacers, connector shrouds, or any other material not shown in the schematic diagram.

Choose components from Data Sheets GO UP

component datasheet example Part manufacturers provide data sheets to be used by the circuit designer to select parts for the circuit. If we are to be able to design the PCB, these sheets should also have the physical dimensions of the part included. Normally you could find datasheets from manufacturers web sites. If each part type to be used on the board does not have a data sheet, you should procure a sample part you can measure to define this data yourself. This measurment method is far less accurate than using the part manufacturer's information, especially if there is a large tolerance on the part, but it is better than just guessing.

Choose Board type and dimension GO UP
[Material] [Layers]

pcb board A functional PCB is not a finished product. It will always require connections to the outside world to get power, exchange information, or display results. It will need to fit into a case or slide into a rack to perform it's function. There may be areas that will require height restrictions on the board (such as a battery holder molded into the case or rails in a rack the board is supposed to slide into). Tooling holes and keep-out areas may be required in the board for assembly or manufacturing processes. All these outside factors need to be defined before the board can be designed, including the maximum dimensions of the board and the locations of connectors, displays, mounting brackets, or any other external features.
The function of a PCB includes the thickness of the copper laminated to the surfaces. The amount of current carried by the board dictates the thickness of this copper foil. Normally the thickness of the copper foil is standard.
Also you can choose between different board types for material and number of layers:

Draw the PCB layout GO UP
[Placing Components] [Placing Power and Ground Traces] [Placing Signal Traces] [Checking Your Work]

The PCB layout can be draw either manually or by ECAD (Electronic - Computer Aid Design) software. The manual process is useful and quick only for very easy PCBs, for more complex PCBs I suggest the second way. Nowadays inexpensive computer software can handle all aspect of PCBs pre-processing. Also is available expensive professional computer software that can direct control the fabrication processing tools (e.g.: drilling machine).
A few general rules of thumb that can be used when laying out PC boards are:

Draw Fabrication scheme GO UP

The fabrication drawing should show the dimensions of the board in reference to the datum tool hole. It should also show a graphic representation for each hole on the board, using a different symbol for each hole size and including a table showing the quantity of each hole size. This drawing will be used by the board manufacturer in addition to the data files generated in the post-processing phase.

Draw Assembly scheme GO UP

You may also need to create an assembly drawing to aid in building and repairing the board. This should show the outlines of the parts on the board, including their reference designators. It also should contain any special assembly instructions, such as mounting hardware and connector shells. Many companies require these drawings, others just use copies of the silkscreen legend.


Different methods to make PCBs GO UP
[Etching] [Direct Plating] [Copper Removal] [Send Out]

Etching GO UP
[Etching] [Manually] [Photographic] [Direct Etch] [Silkscreen]

Etching is probably the easiest and most cost effective.
Etching is the process of chemically removing the unwanted copper from a plated board. You must put a mask or resist on the portions of the copper that you want to remain after the etch. These portions that remain on the board are the traces that carry electrical current between devices.

There are different methods to prepare the board before the etching process:

Direct Plating GO UP

It's an industrial process to direct plating the board were do you need a track. This method need very expensive industrial machine.

Copper Removal GO UP

cutter plotter It's a very easy way to create prototypes. With a very expensive cutter plotter for PCBs and a PCB layout software you could direct "print" your circuit. The PCB printing is very slow, hence, is indicated only to produce prototypes.

Send Out GO UP

This method consist to prepare the data that will actually be used by the manufacturers and send to a Board House to make a professional PCBs. The data for the manufacturer normally include layout file, fabrication and assembly drawings, NC drill file of hole positions. All data files must be in adequate format so, contact your board house to know their requirements. Board Houses are ABSOLUTELY necessary in the process of developing a board intended for mass production, their board will be identical to the commercially made prototype. This method is very expensive (you have to order minimum quantity) and slow (wait a week or two). The result is an high quality professional PCB complete with all the amenities (fine line traces, solder mask, plated-thru holes and a parts insertion layer screen printed on top).
If you want to produce only few prototypes PCBs this is not the right method.


Final work GO UP
[Cleaning] [Tin Plating] [Drilling] [Cutting] [Through Plating] [Draw Silkscreen legend] [Soldering]

Cleaning GO UP

In order to proceed with others process you must clean your PCB. Dirt obstacles your work, hence, it is an absolute necessity to ensure that PCB are free from grease, oxidation and other contamination.
Do not clean your board until you are ready to drill or to make other process because resist protects the board from oxidation.

Use acetone or alcohol to remove resist. Clean copper board with steel wool, S.O.S. or Brillo pads under running water. Rinse cleaned board with soap and water. Be sure to remove all soap residue. Dry thoroughly with lint-free cloth. Be sure to scrape any burrs that appear on the edge of the board that may have resulted from the cutting/shearing process.

PCB will generally oxidise after a few months, especially if it has been fingerprinted, and the copper strips can be cleaned using an abrasive rubber block, like an aggressive eraser, to reveal fresh shiny copper underneath.
Also available is a fibre-glass filament brush, which is used propelling-pencil-like to remove any surface contamination. These tend to produce tiny particles which are highly irritating to skin, so avoid accidental contact with any debris. Afterwards, a wipe with a rag soaked in cleaning solvent will remove most grease marks and fingerprints.
After preparing the surfaces, avoid touching the parts afterwards if at all possible.

Tin Plating GO UP

Tin-plating a PCB makes it a lot easier to solder, and is pretty much essential for surface mount boards. Unless you have access to a roller-tinning machine, chemical tinning is the only option. Unfortunately, tin-plating chemicals are expensive, but the results are usually worth it.
If you don't tin-plate the board, either leave the photoresist coating on (most resists are intended to act as soldering fluxes), or spray the board with rework flux to prevent the copper oxidising.
I suggest to use room-temperature tin plating crystals, which produce a good finish in a few minutes. There are other tinning chemicals available, some of which require mixing with acid, or high-temperature use.
Made-up tinning solution deteriorates over time, especially in contact with air, so unless you regularly make a lot of PCBs, make up small quantities at a time (just enough to cover a PCB in the tinning tray) keep the solution in a sealed bottle (ideally one of those concertina-type bottles used for some photographic solutions to exclude air), and return it to the bottle immediately after use - a few days in an open tray and it can deteriorate badly. Also take care to avoid contamination, which can very easily render the solution useless. Thoroughly rinse and dry the PCB before tinning, keep a special tray and pair of tongs specifically for tinning, and rinse them after use. Do not top-up used solution if it stops tinning - discard it and make up a fresh solution.
Ensure the temperature of the tinning solution is at least 25°C, but not more than 40°C - if required, either put the bottle in a hot water bath, or put the tinning tray in a bigger tray filled with hot water to warm it up. Putting a PCB in cold tinning solution will usually prevent tinning, even if the temperature is subsequently raised.
Preparation is important for a good tinned finish - strip the photoresist thoroughly - although you can get special stripping solutions and hand applicators, most resists can be dissolved off more easily and cleanly using methanol (methylated spirit). Hold the (rinsed and dried) PCB horizontal, and dribble few drops of methanol on the surface, tilting the PCB to allow it to run over the whole surface. Wait about 10 seconds, and wipe off with a paper towel dipped in methanol. Rub the copper surface all over with wire wool (which gives a much better finish than abrasive paper or those rubber 'eraser blocks') until it is bright and shiny all over, wipe with a paper towel to remove the wire wool fragments, and immediately immerse the board in the tinning solution. Take care not to touch the copper surface after cleaning, as fingermarks will impair plating.
The copper should turn a silver colour within about 30 seconds, and you should leave the board for about 5 minutes, agitating occasionally (do not use bubble agitation). For double-sided PCBs, prop the PCB at an angle to ensure the solution can get to both sides.
Rinse the board thoroughly, and rub dry with paper towel to remove any tinning crystal deposits, which can spoil the finish. If the board isn't going to be soldered for a day or two, coat it with flux, either with a rework flux spray or a flux pen.

Drilling GO UP
[Manually] [Automatic]

Cutting GO UP

In order to cut the PCB you must use different tools:
Ordinary saws (bandsaws, jigsaws, hacksaws): must be carbide tipped to avoid blunted. The dust can cause skin irritation. It's also easy to accidentally scratch through the protective film when sawing, causing photoresist scratches and broken tracks on the finished board.
A carbide tile-saw blade in a jigsaw might be worth a try.
Guillotine: is very useful, as it's by far the easiest way to cut fibreglass laminate. If you have access to a sheet-metal guillotine, this is also excellent for cutting boards, providing the blade is fairly sharp.
To make cut-outs, drill a series of small holes, punch out the blank and file to size. Alternatively use a fretsaw, but be prepared to replace blades often.

Through Plating GO UP

When laying out double-sided boards, give some thought to how top connections will be made. Some components (e.g. resistors, unsocketed ICs) are much easier to top-solder than others (radial capacitors), so where there is a choice, make the top connection to the 'easier' component. For socketed ICs, use turned-pin sockets, preferably the type with a thick pin section under the socket body. Lift the socket slightly off the board, and solder a couple of pins on the solder side to tack it in place, and adjust so the socket is straight. Solder all the solder side pins, then solder the required top-side pins by reheating the joint on the solder side, while applying solder to the pin and track on the component side, waiting until the solder has flowed all round the pin before removing the heat

pins For vias (holes which link sides without components), use 0.8mm snap-off linking pins (shown left), available from most electronics suppliers. These are much quicker than using pieces of wire. Just insert the bottom of the stick into the hole, bend over to snap off the bottom pin, repeat for other holes, then solder both sides.

bail If you need 'proper' through-plated holes, for example to connect to inaccessible top-side pins, or for underneath surface mount devices (linking pins stick out too much for use here), Multicore's "Copperset" system (available from Farnell) works well, but the kit is very expensive. It uses 'bail bars' (pictured left), which consist of a rod of solder, with a copper sleeve plated on the outside. The sleeve is scored at 1.6mm intervals, corresponding to the PCB thickness. The bar is inserted into the hole using a special applicator, and bent over to snap off the single bail in the hole. It is then punched with a modified automatic centre-punch, which causes the solder to splay over the ends of the plated sleeve, and also pushes the sleeve against the side of the hole. The pads are soldered each side to join the sleve to the pads, and then the solder is removed with braid or a solder sucker to leave a clear plated hole.

pentip Fortunately, it is possible to use this system for plating standard 0.8mm holes without buying the full kit. You can buy the bail bars seperately as refills. For the applicator, use a 0.9mm automatic pencil, which actually works much better than the original applicator, as you get one bail for every press of the button, and it has a metal nose instead of the original plastic one. Get a small automatic centre-punch, and grind the tip off so it's completely flat - this works fine for punching the bails. For an anvil, use a thick flat piece of metal - the back of a large heatsink is perfect for this - plate all the holes before fitting any components so the bottom surface is completely flat. Holes must be drilled with a sharp 0.85mm carbide drill to get the hole size right for the plating process.
Note that if your PCB package draws pad holes the same size as the drill size, the pad hole can come out slightly larger than the drilled hole (e.g. from over-etching or non-centred drilling), causing connection problems with the plating. Ideally, the pad holes should be about 0.5mm (regardless of hole size) to make an accurate centre mark. I usually set the hole sizes to exactly half the drill size, so I know what the 'real' sizes should be when sending NC drill data for production PCBs.

Draw Silkscreen legend GO UP

Silkscreen legend is text and lines representing the parts on the PCB. These are printed onto the board using the same process used to print t-shirts. The color of the ink used is usually white, although other colors are sometimes available on special order. The part outlines will normally need to be trimmed to keep the lines off pads and vias. Reference designators will need to be moved to do the same and also to ensure they can be seen when the part is installed. There may also be company logos, part numbers, or other custom text or lines that need to be placed on the legend. Some ECAD programs will automatically do the trimming.

With the same silkscreen method you can make a solder mask. Solder mask is a special coating on top of the copper to keep out moisture and protect the traces. Solder mask must have clearance areas around the pads to keep the material from touching the pad, making it difficult to solder. The material is usually green in color, although other colors may be available on special order.

Soldering GO UP

Soldering is the process of fastening a part lead to a PCB. It uses heat to melt a metallic compound around the lead and onto the copper pad of the board.
Click here to view the Basic Soldering Guide written by Alan Winstanley.

Bibliography / Reference GO UP



Back to main page

[HomePage] [Hardware Reviews] [Pinouts] [Circuits] [Guides] [Links] [News] [Forums] [Download] [Dictionary] [Utils] [Updates Log] [About_ [Agreement] [Privacy] [Advertising] [Search] [Contact us]