Proximity Effect Functions

The functions below were used to generate Figs. 12.35, 12.36, and 12.38. The functions are written in Microsoft Visual Basic, and were called by an Excel spreadsheet. The functions can be easily modified for other programming languages.

Functions Gone and Gtwo implement Eq. (12.73). Function FR(phi, M) is identical to Eq. (12.84). Figure 12.32 is a plot of FR for various values of M and φ. Figure 12.33 is a plot of FR(phi, M)/phi.

Function $\mathrm{Pj}(\mathrm{Phi1}, \mathrm{M}, \mathrm{j}, \mathrm{D})$ is a normalized version of Eq. (12.89), the power loss in harmonic j. Function FH(phi1, M, D) coincides with Eq. (12.90) and (12.91). The series is summed numerically.

The copper loss in a winding is evaluated as follows. First, the dc and fundamental components of the current waveform are evaluated using Eq. (12.86). Then the functions FH and FR are evaluated. Finally, the results are plugged into Eq. (12.92).

```
Option Explicit
Function cosh(x)
    cosh = 0.5 * (Exp(x) + Exp(-x))
End Function
Function sinh(x)
    sinh = 0.5 * (Exp(x) - Exp(-x))
End Function
Function Gone(phi)
    Gone = (sinh(2 * phi) + Sin(2 * phi)) / (cosh(2 * phi) -
                        Cos(2 * phi))
End Function
Function Gtwo(phi)
    Gtwo = (sinh(phi) * Cos(phi) + cosh(phi) * Sin(phi)) /
                        (cosh(2 * phi) - Cos(2 * phi))
End Function
Function FR(phi, M)
    FR = phi * (Gone(phi) + 2 / 3 * (M * M - 1) * (Gone(phi) - 2
        * Gtwo(phi)))
End Function
Function pi()
    pi = 3.14159265
End Function
Function Pj(phil, M, j, D)
    Dim sj, Ga
    sj = Sqr(j)
    Ga = Gone(phil * sj)
    Pj = (1 / (j * sj)) * (Sin(j * pi() * D)) ^ 2 * (Ga + 2 / 3 *
        (M * M - 1) * (Ga - 2 * Gtwo(phil * sj)))
```

End Function

```
Function FH(phil, M, D)
    Dim P1, Ptot, Pke, Pko, Peps, j, Pk
    P1 \(=P \mathrm{Pj}(\) phil, \(\mathrm{M}, 1, \mathrm{D})\)
    Pko = P1
    Pke \(=\) Pj(phi1, M, 2, D)
    \(\mathrm{Pk}=\mathrm{Pko}+\mathrm{Pke}\)
    Ptot \(=\) P1
    Peps = P1 * 0.0002
    \(\underset{\text { Do }}{j}=3\)
        Pko \(=\) Pj(phil, M, j, D)
        \(j=j+1\)
        Pke = Pj(phil, M, j, D)
        \(\mathrm{Pk}=\mathrm{Pke}+\mathrm{Pko}\)
        Ptot \(=\) Ptot +Pk
        \(j=j+1\)
    Loop Until Pk < Peps
    \(\mathrm{FH}=\) Ptot / P1
End Function
```

