INDEX

Air gap
in coupled inductor, 502
in flyback transformer, 503
in inductor, 464-466, 498, 505, 509
in transformer, 469
$A_{L}(\mathrm{mH} / 1000$ turns $), 509$
American wire gauge (AWG)
data, 755-756
design examples, 527, 531
Amorphous alloys, 473
Ampere's law, 457-458
Amp-second balance (see Capacitor charge balance)
Apparent power, 550
Artificial ramp
circuit, 415
effect on CPM boost low-harmonic rectifier, 637-639
effect on line-to-output transfer function of CCM buck, 437-438
effect on small-signal CCM models, 428-438
effect on small-signal DCM models, 438-447
effect on stability of CPM controllers, 414-418
Asymptotes (see Bode plots)
Audiosusceptibility $G_{v g}(s)$ (see Line-to-output transfer function)
Average current control
feedforward, 635-636
in low-harmonic rectifier systems, 593-598, 634-636, 649, 650-652
modeling of, 649-652
Averaged switch modeling, 239-245, 390-403
of current-programmed CCM converters, 423-428
of current-programmed DCM converters, 438-447
in discontinuous conduction mode, 370-390
equivalent circuit modeling of switching loss, 241-245
examples
nonideal buck converter, 241-245
DCM buck converter, 393-400
CCM SEPIC, 757-762
generalization of, 390-403
of ideal CCM switch networks, 242, 377, 757-762
of ideal DCM switch networks, 377
of quasi-resonant converters, 732-737
Average power
and Fourier series, 542-543
modeled by power source element, 375-379, 423-428, 438-447
in nonsinusoidal systems, 542-555
predicted by averaged models, 57
power factor, 546-550
sinusoidal phasor diagram, 550-551
Averaging
approximation, discussion of, 195-196, 200-202
averaged switch modeling, 239-245
basic approach, 198-209
capacitor charge balance, 24
circuit, 231-245
to find dc component, 6, 16
flyback ac model, 209-218
inductor volt-second balance, 22-23
introduction to, 193-198
modeling efficiency and loss via, 57
to model rectifier output, 645-647
to model $3 \varnothing$ converters, 611-614
of quasi-resonant converters
ac modeling, 732-737
dc analysis, 712-728
state-space, 218-231
Battery charger, 9, 70
$B-H$ loop
in an ac inductor, 499-500
in a conventional transformer, 153, 500-501
in a coupled inductor, 501-502
in a filter inductor, 497-499
in a flyback transformer, 502-503
modeling of, 458-460
Bidirectional dc-dc converters, 70
Bipolar junction transistor (BJT)
breakdown mechanisms in, 86-87
construction and operation of, 82-87
current crowding, 85-86
Darlington-connected, 87
idealized switch characteristics, 65-66
on resistance, 53, 82
quasi-saturation, 82-83, 86
storage time, 84
stored minority charge in, 82-86
switching waveforms, 83-86
Bode plots (see also Harmonic trap filters, sinusoidal approximation)
asymptote analytical equations, 275-276
CCM buck-boost example, 289-292
combinations, 272-276
complex poles, 276-282
frequency inversion, 271-272
graphical construction of, 296-309
addition, 296-301
closed-loop transfer functions, 329-332
division, 307-309
parallel combination, 301-307
parallel resonance, 301-303
series resonance, 298-303
impedance graph paper, 307
nonminimum phase zero, 269-271
reactance graph paper, 307
real pole, 263-268
real zero, 268-269
RHP zero, 269-271
transfer functions of buck, boost, buck-boost, 292-293
Body diode (see MOSFET)

Boost converter (see also Bridge configuration, Push-pull isolated converters) active switch utilization in, 179, 608
averaged switch model, DCM, 380-381
circuit-averaged model, 233-239
current-programmed
averaged switch model, CCM, 424-425
averaged switch model, DCM, 443-444
small-signal ac model, CCM, 427-428, 430-431
small-signal ac model, DCM, 445-447
as inverted buck converter, 136-137
as low-harmonic rectifier, 594-597, 605-609, 617, 627-634
nonideal analysis of, 43-51, 53-57
quasi-resonant ZCS, 722-723
small-signal ac model
CCM, 208-210, 251
DCM, 385-390
steady-state analysis of,
CCM, 24-29
DCM, 121-125
transfer functions, CCM, 292-293
Bridge configuration (dc-dc converters)
boost-derived full bridge, 171-172
buck-derived full bridge, 154-157
buck-derived half bridge, 157-159
full bridge transformer design example, 528-531
minimization of transformer copper loss in, 516-517
Bridge configuration (inverters)
single phase, 7-8, 142-145, 148-150
three phase, 70, 143-148
Buck-boost converter (see also Flyback converter)
3øac-dc rectifier, 615-616, 619
averaged switch model, DCM, 370-381
as cascaded buck and boost converters, 138-141
current-programmed
averaged switch model, DCM, 438-444
more accurate model, CCM, 430-432
simple model, CCM, 419-423
small-signal ac model, DCM, 445-447
dc-3øac inverter, 71-72, 615-616
DCM characteristics, 115, 127-129, 381
as low-harmonic rectifier, 598-599
manipulation of ac model into canonical form, 248-251
nonideal, state-space averaged model of, 227-232
noninverting version, 139, 148-149
as rotated three-terminal cell, 141-142
small-signal ac model, CCM, 208-210, 251
small-signal ac model, DCM, 382-388
transfer functions, CCM, 289-293
transformer isolation in, 166-171
Buck converter (see also Bridge configuration, Forward converter, Push-pull isolated converters), 6, 15-23, 34-35
active switch utilization in, 179
averaged switch model, 239-245
current-programmed
averaged switch model, CCM, 423-427
averaged switch model, DCM, 442-447
small-signal ac model, CCM, 421-427, 431-438
small-signal ac model, DCM, 442-447
equivalent circuit modeling of,
small-signal ac, CCM, 208-210, 251
small-signal ac, DCM, 385-388, 393-400
steady-state, CCM, 51-53
steady-state, DCM, 380-381
as high power factor rectifier
single phase, 599
three phase, 614-615
multi-resonant realization, 729
quasi-square-wave resonant realizations, 730-731
quasi-resonant realizations
ac modeling of, 732-737
zero current switching, 662-663, 712-722, 723-724
zero voltage switching, 728
small-signal ac model
CCM, 208-210, 251
DCM, 385-390
steady-state analysis of,
CCM, 17-22, 23, 34-35, 51-53
DCM, 111-121, 380-381
switching loss in, 94-101, 241-245
employing synchronous rectifier, 73-74
transfer functions, CCM, 292-293
Buck ${ }^{2}$ converter, 149, 151
Buck $3 \varnothing$ inverter (see Voltage source inverter)
Canonical circuit model, 245-251
via generalized switch averaging, 402-403
manipulation into canonical form, 248-251
parameters for buck, boost, buck-boost, 251
physical development of, 245-248
transfer functions predicted by, 247-248, 292-293
Capacitor amp-second balance (see Capacitor charge balance)
Capacitor charge balance
boost converter example, 27
Cuk converter example, 31-32
definition, 24
in discontinuous conduction mode, 115
nonideal boost converter examples, 45, 55
Capacitor voltage ripple
boost converter example, 28-29
buck converter example, 34-35
in converters containing two-pole filters, 34-35
Cuk converter example, 32-34
Cascade connection of converters, 138-141
Characteristic value α (current programmed mode), 414, 417-418, 435-436
Charge balance (see Capacitor charge balance)
Circuit averaging (see also Averaged switch modeling), 231-245
averaging step, 235
boost converter example, 233-238
linearization, 235-238
obtaining a time-invariant network, 234-235
summary of, 231-233
Commutation
failure, 574
notching, 575
in 3ø phase controlled rectifier, 573-575
Compensators (see also Control system design)
design example, 346-354
lag, 343-345
lead, 340-340, 350-351
PD, 340-343, 350-351
PI, 343-345
PID, 345-346, 352-354
Complex power, 550-551
Computer power supply, 8-9
Computer spreadsheet, design using, 180-183
Conduction loss (see Copper loss, Semiconductor conduction loss)
Conductivity modulation, 75, 79, 82, 87, 90
Control system design (see also Compensators, Negative feedback), 323-368
compensation, 340-346
construction of closed-loop transfer functions, 326-332
design example, 346-354
for low-harmonic rectifiers
approaches, 634-652
modeling, 645-652
phase margin
test, 333-334
vs. closed-loop damping factor, 334-338
stability, 332-339
voltage regulator
block diagram, 324-325, 328, 347-349
design specifications, 339-340
Control-to-output transfer function
as predicted by canonical model, 248
of CCM buck, boost, and buck-boost converters, 292-293
of current programmed converters, 422, 427-428, 434-437, 446
of DCM converters, 387-390, 396-399
of quasi-resonant converters, 733, 736
Conversion ratio M (see also Switch conversion ratio μ)
of boost, 18, 26, 127, 381
of buck, 18, 120, 381
of buck-boost, 18, 128, 381
of Cuk converter, 32, 381
of loss-free resistor networks, 376-381
in low-harmonic rectifiers, 593-595
modeling of, 40-43
of quasi-resonant converters, 711, 720-723
of parallel resonant converter, 676-678, 686-689
of SEPIC, 151, 381
of series resonant converter, 671-674, 679-686
via sinusoidal approximation, 670
Copper loss
allocation of window area to minimize, 513-517, 519
high frequency effects
skin effect, 475-476
proximity effect, 476-490
inductor design to meet specified, 503-509
low frequency, 474
modeling in converters, 43-53
Core loss, 471-474, 518
Coupled inductors
in Cuk converter, 494-495, 501
in multiple-output buck-derived converters, 501-502, 511
Crossover frequency, 330-334
Cuk converter
3øac-dc converter, 615-616
active switch utilization of, 179
as cascaded boost and buck converters, 141
conversion ratio $M(D), 32,381$
DCM averaged switch model of, 379-381
as low-harmonic rectifier, 597-599, 608
as rotated three-terminal cell, 141-142
steady-state analysis of, 29-34
transformer design example, 524-528
with transformer isolation, 176-177
Current-fed bridge, 148, 150
Current injection, 359-360
Current programmed control, 408-451
ac modeling of
via averaged switch modeling, CCM, 423-428
via averaged switch modeling, DCM, 438-447
CCM more accurate model, 428-438
CCM simple approximation, 418-428
artificial ramp, 414-418
controller circuit, 409, 415
controller small-signal block diagram, 428-432
in half-bridge buck converters, 159, 410
in low harmonic rectifiers, 636-639
oscillation for $D>0.5,411-418$
in push-pull buck converters, 166, 410
Current ripple (see inductor current ripple)
Current sense circuit, isolated, 187-188
Current source inverter (CSI), 146, 148
Cycloconverter, 1, 72
Damping factor ζ (see also Q-factor), 277
Dc conversion ratio (see Conversion ratio M)
Dc link, 10
Dc transformer model
in averaged switch models, 237-244, 760-762
in canonical model, 245-247, 250-251
in circuit averaged models, 237-238
comparison with DCM model, 377
derivation of, 40-43
equivalence with dependent sources, 41
manipulation of circuits containing, 41-42, 48-49
in a nonideal boost converter, 48-49, 56
in a nonideal buck converter, 52-53
in small-signal ac CCM models, 208-210
Decibel, 262
Delta-wye transformer connection, 582-583
Dependent power source (see Power source element)
Derating factor, 180
Design-oriented analysis, techniques of analytical expressions for asymptotes, 275-276
approximate factorization, 285-288
doing algebra on the graph, 296-309
frequency inversion, 271-272
graphical construction
of Bode plots, 296-309
of closed-loop transfer functions, 329-332
low Q approximation, 282-284
philosophy of, 261, 306-307
Differential connection of load
polyphase inverter, 143-148
single-phase inverter, 142-143
Diode
antiparallel, 67
characteristics of, 78
fast recovery, 77
forward voltage drop (see also Semiconductor conduction losses), 53-57, 77
freewheeling, 67
parallel operation of, 77-78
recovered charge $Q_{r}, 76,97-100,692,729$
recovery mechanisms, 76-77, 98-100
Schottky, 74, 77, 101
soft recovery, 98-99
snubbing of, 99
switching loss, 97-100, 101-103, 692
switching waveforms, 75-77, 98-100, 101-102
zero current switching of, 101-103, 690-692, 696, 725-726
zero voltage switching of, 692-696, 725-726, 729, 734
Discontinuous conduction mode (DCM)
$B-H$ loop, effect on, 503-504
boost converter example, 121-127
buck converter example, 111-121
buck-boost converter example, 370-381
in current programmed converters, 438-447
equivalent circuit modeling of, 369-381, 438-444
in forward converter, 159
in line-commutated rectifiers, 564-568, 569-570
in low-harmonic rectifiers
boost rectifier, single phase, 594-597
single-switch, three-phase, 615-619
mode boundary
in boost rectifier, 594-697
vs. $K, 111-115,121-122,128$
vs. load current and $R_{e}, 381$
origin of, 111-115
in parallel resonant converter, 687-689
in PWM converters, 110-134, 369-407, 438-447
in series resonant converter, 681-683
small-signal ac modeling of, 382-403
Displacement factor, 548, 550-551
Distortion factor (see also Total harmonic distortion), 548-550
of single-phase rectifier, 548, 563-566
Distributed power system, 9
Doing algebra on the graph (see Graphical construction of Bode plots)
Duty ratio
complement of, 16
definition of, 15-16
EC core data, 754
Eddy currents
in magnetic cores, 472
in winding conductors, 474-477
EE core data, 753
Effective resistance R_{e}
in DCM averaged switch model, 374-381
in loss-free resistor model, 374-381
in resonant converter models
with capacitive filter network, 666-668
with inductive filter network, 674-676
Emulated resistance R_{e}, 590-593
Efficiency, 2
averaged switch modeling, predicted by, 245
of boost converter
as low-harmonic rectifier, 632-634
nonideal dc-dc, 49-51, 56
calculation via averaged model, 49-51, 56
vs. switching frequency, 103-104
Equivalent circuit modeling
by canonical circuit model, 245-251
of CCM converters operating in steady-state, 40-61
of converters having pulsating input currents, 51-53
of current programmed switch networks
CCM, 423-428
DCM, 438-447
small-signal models, 421-422, 423-428, 445-447
of flyback converter, CCM, 168, 216-218
of ideal rectifiers, 590-593, 608-611
of ideal dc-dc converters, 40-42
of inductor copper loss, 43-51
small-signal models
CCM, 207-209, 230-232
DCM, 382-390
current programmed, 421-422, 424-428, 438-447
of switching loss, 241-245
of switch networks
CCM, 239-242
DCM, 370-381
of systems containing ideal rectifiers, 602
Equilibrium (see Steady state)
Equivalent series resistance (esr) of capacitor, 554-555
ETD core data, 754

Evaluation and design of converters, 177-183
Experimental techniques
measurement of impedances, 312-314
measurement of loop gains
by current injection, 359-360
by voltage injection, 357-359
of an unstable system, 360-361
measurement of small-signal transfer functions, 309-311
Factorization, approximate
approximate roots of arbitrary-degree polynomial, 282-288
graphical construction of Bode diagrams, 296-309
low- Q approximation, 282-284
Faraday's law, 456-457
Feedback (see Control system design, Negative feedback) Ferrite
applications of, 499, 525, 528
core loss, 472, 473-474, 518
core tables, 751-755
saturation flux density, 459, 473
Fill factor (see K_{u})
Filter inductor
B-H loop of, 497, 499
design of derivation of procedure, 503-508
step-by-step procedure, 508-509
Flux $\Phi, 456$
Flux density B
definition, 456
saturation value $B_{\text {sat }}, 458-459$
Flux-linkage balance (see Inductor volt-second balance)
Flyback converter (see also Buck-boost converter)
active switch utilization, 178-179
derivation of, 166-167
nonideal, ac modeling of, 209-218
single-switch rectifier, $3 \varnothing$ ac-dc DCM, 623
spreadsheet design example, 180-183
steady-state analysis of, 166-170
two transistor version, 185-186
utilization of flyback transformer, 170-171
Flyback transformer, 166-167, 170-173, 502-503, 619
Forced commutation of SCRs, 90
Forward converter (see also Buck converter), 159-164
active switch utilization, 179
spreadsheet design example, 180-183
steady-state analysis of, 159-164
transformer reset mechanisms, 162-163
transformer utilization in, 164
two transistor version, 163-164
Four-quadrant switches (see Switch)
Freewheeling diode, 67
Frequency modulator, 732-733
Gate turn-off thyristor (GTO), 92
Generalized switch averaging, 390-403

Geometrical constant (see $K_{g}, K_{\text {gfe }}$)
Graphical construction of Bode plots (see also Bode plots, Design-oriented analysis) of converter transfer functions, 307-309
division, 307-309
of harmonic trap filters, 576-582
parallel combinations, 301-307
parallel resonance, 301-303
of parallel resonant converter, 677
series combinations, 296-301
series resonance, 298-301
of series resonant converter, 671-672
Grounding problems, 312-314
Gyrator, 682-683
Harmonic correction, 621
Harmonic loss factor F_{H}, 488-490
Harmonics in power systems
average power vs. Fourier series, 542-543
distortion factor, 548
harmonic standards, 555-559
neutral currents, 552-553
power factor, 546-550
root-mean-square value of waveform, 543-546
rectifier harmonics, 548-550
in three-phase systems, 551-555
total harmonic distortion, 548
Harmonic trap filters, 575-582
bypass resistor, 580-582
parallel resonance in, 577-579
reactive power in, 582
H-bridge, 7-8, 142-145, 148-150
Hold-up time, 601
Hot spot formation, 77-78, 85-86
Hysteresis loss P_{H}, 471-472
Hysteretic control, 639-641
Ideal rectifier (see also Low harmonic rectifiers), 590-626
in converter systems, 599-604
properties of, 590-593
realization of
single phase, 593-599
three phase, 608-622
rms values of waveforms in, 604-608
IEC-555, 556-557
IEEE/ANSI standard 519, 557-559
Impedance graph paper, 307
Inductor copper loss (see Copper loss)
Inductor current ripple
in ac inductor, 499-500
boost example, 28
buck example, 21
calculation of, 21
in converters containing two-pole filters, 34-36
Cuk converter example, 32-33
in filter inductor, 497-499
magnitude vs. DCM, 111-113
Inductor design
ac inductor design
derivation, 531-533
step-by-step procedure, 533-534
filter inductor design
derivation, 503-508
step-by-step procedure, 508-509
Inductor volt-second balance
boost example, 25-26
buck example, 22-23
Cuk converter example, 31-32
definition, 22
in discontinuous conduction mode, 115
Input port, converter
ac modeling of, 203
boost static characteristics, 596-597, 639
modeling of, via state-space averaging, 200, 227, 231
steady-state modeling of, 51-53
Inrush current, 601-602
Insulated-gate bipolar transistor (IGBT)
construction and operation of, 87-90
current tailing in, 88-89, 96-97
equivalent circuit, 88
forward voltage drop, modeling of, 89
idealized switch characteristics, 65-66
parallel operation of, 89
switching loss in, 96-97
Inversion of source and load, 136-137
Inverters, 1
high frequency, 659-662, 697-705
line commutated, 572-573
single phase, 7-8, 68-69
sinusoidal analysis of resonant converters, 664-670, 697-705
three phase, 70, 143-148
Iron laminations, 459, 473
K, dimensionless parameter
critical value $K_{\text {crit }}(D), 114-115,121-122,128$
in current programmed mode analysis, 438
and DCM boundary, 114-115, 121-122, 128
in line-commutated rectifier analysis, 565-566
in steady-state DCM analysis, 120, 127-128
K_{g}, core geometrical constant
definition of, 507-507, 751
ferrite core tables of, 752-755
filter inductor design procedure using, 508-509
$K_{g f e}$, ac core geometrical constant
ac inductor design procedure using, 531-534
definition of, 521, 751
ferrite core tables of, 752-755
transformer design using,
derivation, 517-521
examples, 524-531
step-by-step procedure, 521-524
K_{L}, rectifier dimensionless parameter, 565-566
K_{u}, window utilization factor, 507
LCC resonant converter
dependence of transistor current on load, 701-702
introduction to, 659-661
ZVS/ZCS boundary, 703-705
Lenz's law, 457, 472, 475
Linear ripple approximation (see Small ripple approximation)
Line-to-output transfer function $G_{v g}(s)$
of the buck, boost, and buck-boost converters in CCM, 292-293
canonical model, as predicted by, 247-248
closed-loop, 326-327, 331-332
control system design of, 340, 353-354
of current-programmed converters, 422, 427-428, 437-438
of DCM converters, 387-388
of quasi-resonant converters, 736
Litz wire, 487
Loop gain (see also Control system design, Negative feedback)
definition, 327
measurement of, 355-361
Loss-free resistor model
averaged switch model of discontinuous conduction mode, 374-381
ideal rectifier model
single phase, 590-593
three phase, 608-611
Low harmonic rectifiers (see also Ideal rectifiers)
controller schemes
average current control, 634-636
current programmed control, 636-640
feedforward, 635-636
hysteretic control, 639-641
nonlinear carrier control, 641-645
modeling of
efficiency and losses, 627-634
low-bandwidth control loop, 645-650
wide-bandwidth average current control loop, 650-652
rms calculations in, 604-609
Low Q approximation, 282-284
Magnetic circuits, 463-466
Magnetic field H, 455-456
Magnetic path length l_{m}
definition, 461
ferrite core tables, 752-755
Magnetics, 453-538
ac inductor design, 531-534
basic relations, 455-462
copper loss, 474
core loss, 471-474
ferrite core tables, 752-755
filter inductor design, 503-509
magnetic circuits, 463-466
magnetic devices, types of, 497-503
optimizing $B_{\text {max }}$ to minimize total loss, 520-521
optimizing window allocation to minimize copper loss, 513-517
proximity effect, 476-490
transformer basics, 152-154, 466-471
transformer design, 517-531
Magnetizing current, 152-153, 458-469
Magnetomotive force (MMF)
definition, 455-456
MMF diagrams, 479-482
Majority carrier devices (see also MOSFET, Schottky diode), 74-75
Matrix converter, 72-73
Meal length per turn (MLT)
definition, 507-508
ferrite core tables, 752-755
Measurement of transfer functions and loop gains (see Experimental techniques)
MIL-STD-461B, 556
Minority carrier devices (see also Bipolar junction transistor, Diode, Gate turn-off thyristor, Insulated-gate bipolar transistor, MOS-controlled thyristor, Silicon controlled rectifier), 74-75
Modulation index, 613-614
MOS-controlled thyristor (MCT), 92-94
MOSFET
body diode, 67-68, 79-80
conduction loss, modeling of, 53-57, 209-218
construction and operation of, 78-82
on resistance, 53-57, 79-82
switching loss owing to $C_{d s}, 100-101$
as synchronous rectifier, 73-74
terminal capacitances, 81
typical characteristics, 80-82
zero-voltage and zero-current switching of, 689-696
Motor drive system, 9-10
Multiplying controller (see also Average current control, Current programmed control), 596
Multi-resonant switch
single-switch $3 \varnothing$ buck rectifier, 620-621
zero-voltage switching dc-dc, 729
Negative feedback (see also Control system design)
effects of, on network transfer functions, 326-329
objectives of, 193-194, 323-326
reduction of disturbances by, 327-329
reduction of sensitivity to variations in forward gain by, 329
Nonlinear carrier control, 641-645
Nonminimum-phase zero (see Right half-plane zero)
Output characteristics
of the parallel resonant converter, 689
of resonant inverters, 699-700
of the series resonant converter, 685-686
Overshoot, 338-340
Parallel resonant converter
analysis via sinusoidal approximation, 664-670, 674-678
dependence of transistor current on load, 702
exact characteristics
continuous conduction mode, 686-687
control plane, 689
discontinuous conduction mode, 687-689
output plane, 689
introduction to, 659-660
as a low harmonic rectifier, 597
Permeability μ
definition, 458-460
of free space, $\mu_{0}, 458$
relative, $\mu_{r}, 458$
Phase asymptotes
of complex poles, 279-282
inverted forms, 272
of real pole, 266-268
of real zero, 269
of RHP zero, 270
Phase control
of resonant converters, 659
of three-phase rectifiers, 570-575
of zero-voltage transition dc-dc converter, 696
Phase margin
vs. closed-loop damping factor, 334-338
stability test, 333-334
Poles
complex, Bode plots of, 276-282
the low Q approximation, 282-284
real, Bode plots of, 263-268
Pot core data, 752
Powdered iron, 459, 473
Power factor (see also Total harmonic distortion, Displacement factor, Distortion factor)
definition of, 546-550
of bridge rectifier, single phase, 566
of peak detection rectifier, 548-550
of phase-controlled rectifier, three phase, 573
Power sink element (see Power source element)
Power source element
in averaged switch models
current programmed mode, CCM, 423-428
current programmed mode, DCM, 438-447
discontinuous conduction mode, 370-382
definition of, 375-377
in ideal rectifier model, 592, 599-603, 608-610
linearization of, 384-385, 425-426
in loss-free resistor model, 376-379
properties of, 375-377
PQ core data, 755
Proximity effect
conductor spacing factor $\eta, 478$
interleaving, effect on, 485-487
layer copper loss, 482-483
Litz wire, effect of, 487
MMF diagrams, 479-482
PWM waveform harmonics, 487-490
simple explanation, 476-478
transformer design procedure, accounting for, 519
winding loss, total, 483-487

Pulse width modulation (PWM), 6-8, 17
modulator ac model, 253-254
operation of modulator, 252
spectrum of PWM waveform, 194-195
Push-pull isolated converters
based on boost converter, 173
based on buck converter, 164-166, 410
Watkins-Johnson converter, 173
Q factor, 277-282
canonical model, predicted by, 309
closed-loop, vs. phase margin, 334-338
of the CCM buck, boost, and buck-boost converters, 293
the low Q approximation, 282-284
vs. overshoot, 338-339
of parallel resonant circuit, 303
of series resonant circuit, 300-301
Quasi-resonant converters (see also Multi-resonant switch, Quasi-square-wave switch)
ac modeling of, 732-737
single-switch $3 \varnothing$ buck rectifiers
multi-resonant, 620-621
zero current switching, 619-620
zero-current switching dc-dc
full wave, 723-724
half wave, 713-723
zero-voltage switching dc-dc, 726-728
Quasi-square-wave converters, 730-731
Quasi-static approximation, 661
Quiescent operating point, 196-197, 204, 225
Reactance graph paper (see Impedance graph paper)
Reactive power
definition, 550-551
in harmonic trap filters, 582
in phase-controlled rectifiers, 573
Rectifiers (see also Ideal rectifiers, Low harmonic rectifiers), 1
energy storage in single-phase, 599-604
high quality, 541
ideal, 590-626
line-commutated
phase control of, 570-575
single-phase, 548-550, 562-568
three-phase, 568-575
three-phase transformer connections in, 582-584
twelve pulse, 582-584
in resonant dc-dc converter, 666-668, 674-676
Regulator system (see also Control system design), 192-193, 323-326, 634-645
Reluctance, 463-466
Resonance
Bode plots of complex poles, 276-282
graphical construction examples, 296-309
the low- Q approximation, 282-284
parallel resonant network, 301-307
series resonant network, 301-307
Resonant converters (see also Quasi-resonant converters, Multi-resonant converters, Quasi-square-wave converters, Zero voltage transition converter), 659-710
analysis of, via sinusoidal approximation, 664-679
LCC, 659-661, 701-705
parallel, 597, 659-660, 674-678, 686-690, 702
resonant link, 662
series, 659-674, 679-686, 690-695, 702
Resonant link converters, 662
Resonant switches (see Quasi-resonant converters, Multi-resonant switch, Quasi-squarewave converters)
Right half-plane zero
Bode plot of, 269-271
physical origins of, 294-295
Ripple, switching, 17-19, 111-113, 194-196
Root mean square value
of commonly-observed converter waveforms, 743-750
vs. Fourier series, 543-546
of near-ideal rectifier currents, table of, 609
of near-ideal rectifier waveforms, 604-609
Rotation of three-terminal cell, 141-142
Saturation
of inductors, 462, 465-466
of magnetic materials, 458-460
of transformers, 153-154, 469
Schottky diode, 74, 77, 101
Semiconductor conduction loss
boost converter example, 53-57
inclusion in ac model, 209-218
with synchronous rectifier, 73-74
Semiconductor cost, 180
Semiconductor power devices (see also Bipolar junction transistor, Diode, Gate turn-off
thyristor, Insulated-gate bipolar transistor, MOS-controlled thyristor, Schottky
diode, Silicon controlled rectifier), 62-109
charge control of, 75, 83-85, 94, 98, 101-103
conductivity modulation, 75
majority vs. minority carriers, 74-75
realization of switches using, 62-74
SEPIC (see Single-ended primary inductance converter)
Series pass regulator, 4-5
Series resonant converter
analysis via sinusoidal approximation, 664-674
dependence of transistor current on load, 702
exact characteristics
continuous conduction mode, 679-681
control plane, 684
even discontinuous conduction mode, 682
odd discontinuous conduction mode, 681
output plane, 685-686
introduction to, 659-664
subharmonic modes in, 673-674
zero-current switching in, 690-692
zero-voltage switching in, 692-695
Silicon area (see Switch stress)
Silicon controlled rectifier (SCR)
construction and characteristics of, 89-92
equivalent circuit, 90
inverter grade, 91
Silicon steel, 459, 473
Single-ended primary inductance converter (SEPIC), 38, 148
averaged switch model of
continuous conduction mode, 757-762
discontinuous conduction mode, 379-381
conversion ratio $M(D), 151,381$
inverse of, 151, 176
as low-harmonic rectifier, 597-599, 608-609
transformer isolation in, 174-176
Single quadrant switch
definitions, 63-64
implementation, 64-67
origins of DCM, 110-113
Sinusoidal approximation, 663, 664-679
Sinusoidal PWM, 612-614
Skin effect (see also Proximity effect), 472-476
Slope compensation (see Artificial ramp)
Small ripple approximation
in ac modeling approach, 198, 223-224
and average power loss, prediction of, 57
boost example, 25
buck example, 20
Cuk converter example, 30-31
definition, 19
in discontinuous conduction mode, 116
failure of, in two-pole filters, 34-36
Small-signal ac modeling
via averaged switch modeling, 239-245
via circuit averaging, 231-245
of CCM converters, 193-260
of current programmed converters, 418-447
of DCM converters, 382-403
via generalized switch averaging, 390-403
of low harmonic rectifiers, 645-652
of quasi-resonant converters, 732-737
of resonant converters, 678
via state-space averaging, 218-231
Snubber networks, 86, 94, 99, 696
Soft switching (see also Zero current switching, Zero voltage switching), 689-696
Spacecraft power system, 9
Spreadsheet design of converters, 180-183
State equations of a network, 218-221
State-space averaging, 218-231
discussion, 223-226
example: nonideal buck-boost converter, 227-231
summary of result, 221-222
Steady state
inductor current waveform, 22
operating point, 196-197, 204, 225
Subharmonic
modes of series resonant converter, 673-674
number $\xi, 679$

Switch
averaged modeling of, 239-245, 377, 390-403
current-bidirectional two-quadrant, 67-70
four-quadrant, 71-73
ideal SPDT in converters, 4-6, 15-16, 24, 29
ideal SPST, 62-63
passive vs. active, 64-65, 91
power dissipated by ideal, 6, 17
quasi-resonant, 711-737
realization of, using semiconductor devices, 62-74
single-quadrant, 64-67
synchronous rectifier, 73-74
voltage-bidirectional two-quadrant, 70-71
Switch conversion ratio μ
definition, 392
DCM buck example, 395-401
in generalized canonical model, 405
of multi-resonant switch, 729
of quasi-resonant switches full-wave ZCS, 723-724
full-wave ZVS, 727
half-wave ZCS, 713, 720-721
half-wave ZVS, 727
small-signal ac modeling using, 732-737
of quasi-square-wave switches, 731
Switched mode, 3-4
Switching frequency
converter efficiency vs., 103-104
definition of, 16
transformer size vs., 527
Switching harmonics (see also Ripple, switching), 6
removal of via averaging, 194-196
Switching loss (see also Soft switching, Zero current switching, Zero voltage switching)
averaged switch modeling of, 241-245, 259-260
with clamped inductive load, 94-97
and current tailing, 96-97
and device capacitances, 100-101
and diode recovered charge, 97-100, 101-103
effect on converter efficiency, 103-104
and ringing waveforms, 101-103
and stray inductances, 100-101
Switch stress S, 177-180
Switch utilization $U, 177-180$
Synchronous rectifier, 73-74
Temperature rise
in a converter, 2
in magnetics, 752
Thyristor (see Gate turn-off thyristor, MOS-controlled thyristor, Silicon controlled rectifier)
Topologies of converters (see also Boost, Bridge configuration, Buck, Buck-boost, Cuk converter, Forward converter, Transformer-isolated converters, etc.)
Cascade connections, 138-141
Converter synthesis, 146-150

Differential connection of load, 142-146
Evaluation and comparison, 177-183, 608-609
Inversion of source and load, 136-137
Low-harmonic single-phase rectifiers, 593-599
Low-harmonic three-phase rectifiers, 608-621
Quasi-resonant converters, 724-731
Resonant converters, 659-664
Rotation of three-terminal cell, 141-142
Transformer isolation, 150-177
Total harmonic distortion (THD)
of current-programmed rectifiers, 639
definition, 550
vs. distortion factor, 550-551
IEEE-519 limits, 559-561
of peak detection rectifier, 551-552
of single-phase bridge rectifiers, 551-552, 566-570
of three-phase bridge rectifiers, 571-572, 575
Transfer functions (see also Bode plots)
of the buck, boost, and buck-boost converters, 292-293
of current programmed converters, 422-423, 427, 436-438, 446-447
of DCM converters, 388-390
graphical construction of, 296-309
of low-harmonic rectifiers, 649-650, 651
measurement of, 309-311
predicted by canonical model, 247-248, 292-293
Transformer connections in three-phase rectifiers, 582-584
Transformer-isolated converters, 150-177
boost-derived topologies, 171-173
Cuk converter, 176-177
evaluation and comparison of, 177-183
flyback, 166-171
forward, 159-164
full bridge buck-derived, 154-157
half-bridge buck-derived, 157-159
multiple outputs and cross regulation, 151-152
push-pull buck-derived, 164-166
SEPIC, 174-176
transformer model, 152-154, 466-471
use of volt-second balance in, 153-154, 156-157
Transformers
$B-H$ loop in, 153, 500-501
design of,
derivation of procedure, 517-521
examples, 524-531
step-by-step procedure, 521-524
winding area optimization, 513-517
flyback transformer, 166-167
leakage inductance, 154, 469-471
magnetizing inductance, 152-154, 468-469
modeling of, 152-154, 466-471
SEPIC transformer, 174-175
volt-second balance in, 153-154, 156-157
Triplen harmonics
in three-phase four-wire networks, 552-553
in three-phase inverter modulation schemes, 614
in three-phase rectifier circuits, 568-569
in three-phase three-wire networks, 553-554
Twelve-pulse rectifier, 582-584
Two-quadrant switches (see Switch)
Universal-input rectifiers, 602
Variable-speed ac drive, 7-8
Voltage conversion ratio (see Conversion ratio M)
Voltage injection, 357-359
Voltage-source inverter, 70, 146-147
Volt-second balance (see Inductor volt-second balance)
Watkins-Johnson converter, 148, 150, 173
inverse of, 148, 150
isolated push-pull, 173
Window area W_{A}
allocation of, to minimize total copper loss, 513-517
definition, 506-507
ferrite core tables, 752-755
Window utilization factor $K_{u}, 507$
Wire area A_{W}
inductor design, 506-507, 509
American wire gauge (AWG) table, 755-756
Zero-current switching (ZCS), 662
in quasi-resonant converters, 712-726
in quasi-square-wave converters, 730-731
in series resonant converter, 690-692
in single-switch three-phase low-harmonic rectifiers, 619-621
ZCS/ZVS boundary, 702-705
Zero-voltage switching (ZVS), 662
in LCC resonant converter, 703-705
in multi-resonant converters, 729
in quasi-resonant converters, 726-728
in quasi-square-wave converters, 730-731
in series resonant converter, 692-695
in single-switch three-phase low-harmonic rectifiers, 619-621
in zero-voltage transition converter, 695-696
ZVS/ZCS boundary, 702-705
Zero-voltage transition buck-derived converter, 695-696

