Chapter 10 Ac and Dc Equivalent Circuit Modeling of the Discontinuous Conduction Mode

Introduction

- 10.1. DCM Averaged Switch Model
- 10.2. Small-Signal AC Modeling of the DCM Switch Network
- 10.3. Generalized Averaged Switch Modeling
- 10.4. Summary of Key Points

We are missing ac and dc equivalent circuit models for the discontinuous conduction mode

Change in characteristics at the CCM/DCM boundary

- Steady-state output voltage becomes strongly load-dependent
- Simpler dynamics: one pole and the RHP zero are moved to very high frequency, and can normally be ignored
- Traditionally, boost and buck-boost converters are designed to operate in DCM at full load
- All converters may operate in DCM at light load

So we need equivalent circuits that model the steady-state and smallsignal ac models of converters operating in DCM The averaged switch approach will be employed

10.1 Derivation of DCM averaged switch model: buck-boost example

- Define switch terminal quantities v₁, i₁, v₂, i₂, as shown
- Let us find the averaged quantities < v1 >, < i1 >, < v2 >, < i2 >, < i2 >, for operation in DCM, and determine the relations between them

DCM waveforms

Fundamentals of Power Electronics

Basic DCM equations

Peak inductor current:

$$i_{pk} = \frac{v_g}{L} d_1 T_s$$

Average inductor voltage:

$$\left\langle v_{L}(t)\right\rangle_{T_{s}} = d_{1}\left\langle v_{g}(t)\right\rangle_{T_{s}} + d_{2}\left\langle v(t)\right\rangle_{T_{s}} + d_{3}\cdot 0$$

In DCM, the diode switches off when the inductor current reaches zero. Hence, $i(0) = i(T_s) = 0$, and the average inductor voltage is zero. This is true even during transients.

$$\left\langle v_{L}(t)\right\rangle_{T_{s}} = d_{1}(t)\left\langle v_{g}(t)\right\rangle_{T_{s}} + d_{2}(t)\left\langle v(t)\right\rangle_{T_{s}} = 0$$

Solve for d_2 :

$$d_{2}(t) = -d_{1}(t) \frac{\left\langle v_{g}(t) \right\rangle_{T_{s}}}{\left\langle v(t) \right\rangle_{T_{s}}}$$

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Average switch network terminal voltages

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Average switch network terminal currents

Average the $i_1(t)$ waveform:

$$\left\langle i_1(t) \right\rangle_{T_s} = \frac{1}{T_s} \int_t^{t+T_s} i_1(t) dt = \frac{q_1}{T_s}$$

The integral q_1 is the area under the $i_1(t)$ waveform during first subinterval. Use triangle area formula:

$$q_{1} = \int_{t}^{t+T_{s}} i_{1}(t) dt = \frac{1}{2} \left(d_{1}T_{s} \right) \left(i_{pk} \right)$$

Eliminate i_{pk} :

$$\left\langle i_1(t) \right\rangle_{T_s} = \frac{d_1^2(t) T_s}{2L} \left\langle v_1(t) \right\rangle_{T_s}$$

Note $\langle i_1(t) \rangle_{T_s}$ is not equal to $d \langle i_L(t) \rangle_{T_s}$!

Similar analysis for $i_2(t)$ waveform leads to

$$\left\langle i_{2}(t)\right\rangle_{T_{s}} = \frac{d_{1}^{2}(t) T_{s}}{2L} \frac{\left\langle v_{1}(t)\right\rangle_{T_{s}}^{2}}{\left\langle v_{2}(t)\right\rangle_{T_{s}}}$$

Input port: Averaged equivalent circuit

$$\left\langle i_{1}(t)\right\rangle_{T_{s}} = \frac{d_{1}^{2}(t) T_{s}}{2L} \left\langle v_{1}(t)\right\rangle_{T_{s}}$$
$$\left\langle i_{1}(t)\right\rangle_{T_{s}} = \frac{\left\langle v_{1}(t)\right\rangle_{T_{s}}}{R_{e}(d_{1})}$$
$$R_{e}(d_{1}) = \frac{2L}{d_{1}^{2} T_{s}}$$

9 Chapter 10: Ac and dc equivalent circuit modeling 9 of the discontinuous conduction mode

Output port: Averaged equivalent circuit

Fundamentals of Power Electronics

The dependent power source

How the power source arises in lossless two-port networks

In a lossless two-port network without internal energy storage: instantaneous input power is equal to instantaneous output power

In all but a small number of special cases, the instantaneous power throughput is dependent on the applied external source and load

If the instantaneous power depends only on the external elements connected to one port, then the power is not dependent on the characteristics of the elements connected to the other port. The other port becomes a source of power, equal to the power flowing through the first port

A power source (or power sink) element is obtained

Properties of power sources

The loss-free resistor (LFR)

A two-port lossless network

Input port obeys Ohm's Law

Power entering input port is transferred to output port

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Averaged modeling of CCM and DCM switch networks

Fundamentals of Power Electronics

Averaged switch model: buck-boost example

Solution of averaged model: steady state

Let

 $L \rightarrow \text{short circuit}$

 $C \rightarrow \text{open circuit}$

Converter input power:

$$P = \frac{V_g^2}{R_e}$$

Converter output power:

$$P = \frac{V^2}{R}$$

Fundamentals of Power Electronics

Equate and solve:

$$P = \frac{V_g^2}{R_e} = \frac{V^2}{R}$$

$$\frac{V}{V_g} = \pm \sqrt{\frac{R}{R_e}}$$

Steady-state LFR solution

$$\frac{V}{V_g} = \pm \sqrt{\frac{R}{R_e}}$$

is a general result, for any system that can be modeled as an LFR.

For the buck-boost converter, we have

$$R_e(D) = \frac{2L}{D^2 T_s}$$

Eliminate R_e :

$$\frac{V}{V_g} = -\sqrt{\frac{D^2 T_s R}{2L}} = -\frac{D}{\sqrt{K}}$$

which agrees with the previous steady-state solution of Chapter 5.

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Steady-state LFR solution with ac terminal waveforms

Converter average input power: $P_{av} = \frac{V_{g,rms}^2}{R_e}$

Converter average output power:

$$P_{av} = \frac{V_{rms}^2}{R}$$

Fundamentals of Power Electronics

Note that no average power flows into capacitor

Equate and solve:

$$\frac{V_{rms}}{V_{g,rms}} = \sqrt{\frac{R}{R_e}}$$

Averaged models of other DCM converters

- Determine averaged terminal waveforms of switch network
- In each case, averaged transistor waveforms obey Ohm's law, while averaged diode waveforms behave as dependent power source
- Can simply replace transistor and diode with the averaged model as follows:

Fundamentals of Power Electronics

DCM buck, boost

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

DCM Cuk, SEPIC

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Steady-state solution: DCM buck, boost

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Steady-state solution of DCM/LFR models

Converter	M, CCM	M, DCM
Buck	D	$\frac{2}{1 + \sqrt{1 + 4R_e/R}}$
Boost	$\frac{1}{1-D}$	$\frac{1+\sqrt{1+4R/R_e}}{2}$
Buck-boost, Cuk	$\frac{-D}{1-D}$	$-\sqrt{rac{R}{R_e}}$
SEPIC	$\frac{D}{1-D}$	$\sqrt{\frac{R}{R_e}}$
$I > I_{crit}$ for CCM $I < I_{crit}$ for DCM	$I_{crit} = \frac{1-D}{D}$	$\frac{D}{R_e(D)}$

Table 10.1. CCM and DCM conversion ratios of basic converters

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

10.2 Small-signal ac modeling of the DCM switch network

Fundamentals of Power Electronics

Perturb and linearize: let

$$d(t) = D + \hat{d}(t)$$

$$\left\langle v_{1}(t) \right\rangle_{T_{s}} = V_{1} + \hat{v}_{1}(t)$$

$$\left\langle i_{1}(t) \right\rangle_{T_{s}} = I_{1} + \hat{i}_{1}(t)$$

$$\left\langle v_{2}(t) \right\rangle_{T_{s}} = V_{2} + \hat{v}_{2}(t)$$

$$\left\langle i_{2}(t) \right\rangle_{T_{s}} = I_{2} + \hat{i}_{2}(t)$$

$$\hat{i}_{1} = \frac{\hat{v}_{1}}{r_{1}} + j_{1}\hat{d} + g_{1}\hat{v}_{2}$$

$$\hat{i}_{2} = -\frac{\hat{v}_{2}}{r_{2}} + j_{2}\hat{d} + g_{2}\hat{v}_{1}$$

Linearization via Taylor series

Given the nonlinear equation

$$\left\langle i_1(t) \right\rangle_{T_s} = \frac{\left\langle v_1(t) \right\rangle_{T_s}}{R_e(d(t))} = f_1\left(\left\langle v_1(t) \right\rangle_{T_s}, \left\langle v_2(t) \right\rangle_{T_s}, d(t)\right)$$

Expand in three-dimensional Taylor series about the quiescent operating point:

$$I_1 + \hat{i}_1(t) = f_1(V_1, V_2, D) + \hat{v}_1(t) \left. \frac{df_1(v_1, V_2, D)}{dv_1} \right|_{v_1 = V_1}$$

(for simple notation, drop angle brackets)

$$+ \hat{v}_{2}(t) \left. \frac{df_{1}(V_{1}, v_{2}, D)}{dv_{2}} \right|_{v_{2}} = V_{2}} + \hat{d}(t) \left. \frac{df_{1}(V_{1}, V_{2}, d)}{dd} \right|_{d} = D$$

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Equate dc and first-order ac terms

Fundamentals of Power Electronics

Output port same approach

$$\left\langle i_{2}(t)\right\rangle_{T_{s}} = \frac{\left\langle v_{1}(t)\right\rangle_{T_{s}}^{2}}{R_{e}(d(t))\left\langle v_{2}(t)\right\rangle_{T_{s}}} = f_{2}\left(\left\langle v_{1}(t)\right\rangle_{T_{s}},\left\langle v_{2}(t)\right\rangle_{T_{s}},d(t)\right)$$

$$I_2 = f_2(V_1, V_2, D) = \frac{V_1^2}{R_e(D) V_2}$$
 DC terms

$$\hat{i}_2(t) = \hat{v}_2(t) \left(-\frac{1}{r_2}\right) + \hat{v}_1(t)g_2 + \hat{d}(t)j_2 \qquad \text{Small-signal ac}$$
linearization

Fundamentals of Power Electronics

Output resistance parameter r_2

$$\frac{1}{r_2} = -\frac{df_2(V_1, v_2, D)}{dv_2} \bigg|_{v_2 = V_2} = \frac{1}{R} = \frac{1}{M^2 R_e(D)}$$

$$\langle i_2(t) \rangle_{T_s} \left(\begin{array}{c} Power \ source \\ characteristic \\ operating \\ point \\ \hline R \\ \hline \\ I_r_2 \\ \hline \\ \langle v_2(t) \rangle_{T_s} \end{array} \right)$$

Fundamentals of Power Electronics

Small-signal DCM switch model parameters

Table 10.2. Small-signal DCM switch model parameters

Switch type	g_1	j_1	r_1	g_2	j_2	r_2
Buck, Fig. 10.16(a)	$\frac{1}{R_e}$	$\frac{2(1-M)V_1}{DR_e}$	R_e	$\frac{2-M}{MR_e}$	$\frac{2(1-M)V_1}{DMR_e}$	$M^2 R_e$
Boost, Fig. 10.16(b)	$\frac{1}{\left(M-1\right)^2 R_e}$	$\frac{2MV_1}{D(M-1)R_e}$	$\frac{\left(M-1\right)^2}{M}R_e$	$\frac{2M-1}{(M-1)^2 R_e}$	$\frac{2V_1}{D(M-1)R_e}$	$(M-1)^2 R_e$
Buck-boost, Fig. 10.7(b)	0	$rac{2V_1}{DR_e}$	R_e	$\frac{2M}{R_e}$	$\frac{2V_1}{DMR_e}$	$M^2 R_e$

30

Fundamentals of Power Electronics

Small-signal ac model, DCM buck-boost example

A more convenient way to model the buck and boost small-signal DCM switch networks

Fundamentals of Power Electronics

Small-signal ac models of the DCM buck and boost converters (more convenient forms)

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

- When expressed in terms of *R*, *L*, *C*, and *M* (not *D*), the small-signal transfer functions are the same in DCM as in CCM
- Hence, DCM boost and buck-boost converters exhibit two poles and one RHP zero in control-to-output transfer functions
- *But*, value of *L* is small in DCM. Hence
 - RHP zero appears at high frequency, usually greater than switching frequency
 - Pole due to inductor dynamics appears at high frequency, near to or greater than switching frequency
 - So DCM buck, boost, and buck-boost converters exhibit essentially a single-pole response
- A simple approximation: let $L \rightarrow 0$

The simple approximation $L \rightarrow 0$

Buck, boost, and buck-boost converter models all reduce to

Transfer functions

$$\begin{array}{ll} \textit{control-to-output} & G_{vd}(s) = \frac{\hat{v}}{\hat{d}} \bigg|_{\hat{v}_g = 0} = \frac{G_{d0}}{1 + \frac{S}{\Theta_p}} & \textit{with} & G_{d0} = j_2 \left(R \parallel r_2 \right) \\ \omega_p = \frac{1}{\left(R \parallel r_2 \right) C} \\ \textit{line-to-output} & G_{vg}(s) = \frac{\hat{v}}{\hat{v}_g} \bigg|_{\hat{d} = 0} = \frac{G_{g0}}{1 + \frac{S}{\Theta_p}} & G_{g0} = g_2 \left(R \parallel r_2 \right) = M \end{array}$$

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Transfer function salient features

Converter	G_{d0}	G_{g0}	ω_p
Buck	$\frac{2V}{D} \frac{1-M}{2-M}$	М	$\frac{2-M}{(1-M)RC}$
Boost	$\frac{2V}{D} \frac{M-1}{2M-1}$	М	$\frac{2M-1}{(M-1)RC}$
Buck-boost	$rac{V}{D}$	M	$\frac{2}{RC}$

 Table 10.3.
 Salient features of DCM converter small-signal transfer functions

DCM boost example

 $R = 12 \Omega$ $L = 5 \mu H$ $C = 470 \mu F$ $f_s = 100 \text{ kHz}$

The output voltage is regulated to be V = 36 V. It is desired to determine $G_{vd}(s)$ at the

operating point where the load current is I = 3 A and the dc input voltage is $V_g = 24$ V.

Fundamentals of Power Electronics

Evaluate simple model parameters

$$\begin{split} P &= I \Big(V - V_g \Big) = \Big(3 \text{ A} \Big) \Big(36 \text{ V} - 24 \text{ V} \Big) = 36 \text{ W} \\ R_e &= \frac{V_g^2}{P} = \frac{(24 \text{ V})^2}{36 \text{ W}} = 16 \Omega \\ D &= \sqrt{\frac{2L}{R_e T_s}} = \sqrt{\frac{2(5 \text{ \mu H})}{(16 \Omega)(10 \text{ \mu s})}} = 0.25 \\ G_{d0} &= \frac{2V}{D} \frac{M - 1}{2M - 1} = \frac{2(36 \text{ V})}{(0.25)} \frac{\left(\frac{(36 \text{ V})}{(24 \text{ V})} - 1\right)}{\left(2 \frac{(36 \text{ V})}{(24 \text{ V})} - 1\right)} = 72 \text{ V} \Rightarrow 37 \text{ dBV} \\ f_p &= \frac{\omega_p}{2\pi} = \frac{2M - 1}{2\pi (M - 1)RC} = \frac{\left(2 \frac{(36 \text{ V})}{(24 \text{ V})} - 1\right)}{2\pi \left(\frac{(36 \text{ V})}{(24 \text{ V})} - 1\right)} = 112 \text{ Hz} \\ Expression (12 \text{ G})(470 \text{ \mu F}) \\ Expression (12 \text{ G})$$

Fundamentals of Power Electronics

of the discontinuous conduction mode

Control-to-output transfer function, boost example

10.3 Generalized Switch Averaging

An approach that directly relates the transfer functions of converters

operating in DCM, and/or

with current programmed control, and/or

with resonant switches, and/or

with other control schemes or switch implementations,

to the transfer functions of the parent CCM converter, derived in Chapter 7.

The models for these other modes, control schemes, and switch implementations are shown to be equivalent to the CCM models of Chapter 7, plus additional effective feedback loops that describe the switch behavior

Converter and switch network state equations

Averaged system equations

Fundamentals of Power Electronics

Averaging the switch network dependent quantities

Place switch network dependent outputs in vector $y_s(t)$, then average over one switching period, to obtain an equation of the form

$$\left\langle \mathbf{y}_{\mathbf{s}}(t) \right\rangle_{T_{s}} = \boldsymbol{f}\left(\left\langle \mathbf{u}_{\mathbf{s}}(t) \right\rangle_{T_{s}}, \left\langle \mathbf{u}_{\mathbf{c}}(t) \right\rangle_{T_{s}}\right)$$

Now attempt to write the converter state equations in the same form used for CCM state-space averaging in Chapter 7. This can be done provided that the above equation can be manipulated into the form

$$\langle \mathbf{y}_{s}(t) \rangle_{T_{s}} = \mu(t) \mathbf{y}_{s1}(t) + \mu'(t) \mathbf{y}_{s2}(t)$$

where $y_{s1}(t)$ is the value of $y_s(t)$ in the CCM converter during subinterval 1 $y_{s2}(t)$ is the value of $y_s(t)$ in the CCM converter during subinterval 2 μ is called the switch conversion ratio $\mu' = 1 - \mu$

Fundamentals of Power Electronics

Switch conversion ratio μ

If it is true that

$$\left\langle \mathbf{y}_{s}(t) \right\rangle_{T_{s}} = \mu(t) \mathbf{y}_{s1}(t) + \mu'(t) \mathbf{y}_{s2}(t)$$

then CCM equations can be used directly, simply by replacing the duty cycle d(t) with the switch conversion ratio $\mu(t)$:

Steady-state relations are found by replacing D with μ_0

Small-signal transfer functions are found by replacing $\hat{d}(t)$ with $\hat{\mu}(t)$

The switch conversion ratio μ is a generalization of the CCM duty cycle *d*. In general, μ may depend on the switch independent inputs, that is, converter voltages and currents. So feedback may be built into the switch network.

A proof follows later.

10.3.1 Buck converter example

Fundamentals of Power Electronics

Defining the switch network inputs and outputs

Switch input vector $\mathbf{u}_{s}(t) = \begin{bmatrix} v_{1}(t) \\ i_{2}(t) \end{bmatrix}$

Switch control input

 $\mathbf{u}_{\mathbf{c}}(t) = \left[d(t)\right]$

Switch output vector

$$\mathbf{y}_{\mathbf{s}}(t) = \begin{bmatrix} v_2(t) \\ i_1(t) \end{bmatrix}$$

Switch output waveforms, CCM operation

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Solve for μ , in general

$$\left\langle \mathbf{y}_{s}(t) \right\rangle_{T_{s}} = \boldsymbol{\mu}(t) \ \mathbf{y}_{s1}(t) + \boldsymbol{\mu}'(t) \ \mathbf{y}_{s2}(t) \qquad \Rightarrow \\ \left| \left\langle v_{2}(t) \right\rangle_{T_{s}} \right| = \boldsymbol{\mu}(t) \left| \left\langle v_{1}(t) \right\rangle_{T_{s}} \right| + (1 - \boldsymbol{\mu}(t)) \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \qquad \Rightarrow \\ \boldsymbol{\mu}(t) = \frac{\left\langle v_{2}(t) \right\rangle_{T_{s}}}{\left\langle v_{1}(t) \right\rangle_{T_{s}}} = \frac{\left\langle i_{1}(t) \right\rangle_{T_{s}}}{\left\langle i_{2}(t) \right\rangle_{T_{s}}}$$

This is a general definition of μ , for the switch network as defined previously for the buck converter. It is valid not only in CCM, but also in DCM and ...

Evaluation of μ

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Elimination of dependent quantities

we found that $\mu = \frac{1}{1 + R_e(d) \frac{\left\langle i_1(t) \right\rangle_{T_s}}{\left\langle v_2(t) \right\rangle_{T_s}}}$

Lossless switch network:

$$\left\langle i_{1}(t)\right\rangle_{T_{s}}\left\langle v_{1}(t)\right\rangle_{T_{s}} = \left\langle i_{2}(t)\right\rangle_{T_{s}}\left\langle v_{2}(t)\right\rangle_{T_{s}} \implies \frac{\left\langle i_{1}(t)\right\rangle_{T_{s}}}{\left\langle v_{2}(t)\right\rangle_{T_{s}}} = \frac{\left\langle i_{2}(t)\right\rangle_{T_{s}}}{\left\langle v_{1}(t)\right\rangle_{T_{s}}}$$

Hence

$$\mu \left(\left\langle v_1(t) \right\rangle_{T_s}, \left\langle i_2(t) \right\rangle_{T_s}, d \right) = \frac{1}{1 + R_e(d) \frac{\left\langle i_2(t) \right\rangle_{T_s}}{\left\langle v_1(t) \right\rangle_{T_s}}}$$

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

1

DCM switch conversion ratio μ

$$\mu\left(\left\langle v_{1}(t)\right\rangle_{T_{s}},\left\langle i_{2}(t)\right\rangle_{T_{s}},d\right) = \frac{1}{1+R_{e}(d)}\frac{\left\langle i_{2}(t)\right\rangle_{T_{s}}}{\left\langle v_{1}(t)\right\rangle_{T_{s}}}$$

- A general result for DCM
- Replace d of CCM expression with μ to obtain a valid DCM expression
- In DCM, switch conversion ratio is a function of not only the transistor duty cycle *d*, but also the switch independent terminal waveforms *i*₂ and *v*₁. The switch network contains built-in feedback.

Perturbation and linearization

$$\mu(t) = \mu_0 + \hat{\mu}(t)$$
$$\left\langle \mathbf{u}_{\mathbf{s}}(t) \right\rangle_{T_s} = \mathbf{U}_{\mathbf{s}} + \hat{\mathbf{u}}_{\mathbf{s}}(t)$$
$$\mathbf{u}_{\mathbf{c}}(t) = \mathbf{U}_{\mathbf{c}} + \hat{\mathbf{u}}_{\mathbf{c}}(t)$$

Steady-state components:

$$\boldsymbol{\mu}_0 = \boldsymbol{\mu}(\mathbf{U}_{\mathbf{s}}, \mathbf{U}_{\mathbf{c}}, D)$$

Buck example:

$$\mu_0 = \frac{1}{1 + R_e(D) \frac{I_2}{V_1}}$$

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Buck example: steady-state solution

In CCM, we know that

$$\frac{V}{V_g} = M(D) = D$$
$$I_L = \frac{V}{R}$$

DCM: replace *D* with μ_0 :

T T

$$\frac{V}{V_g} = M(\mu_0) = \mu_0$$

$$I_2 = \frac{V}{R}$$
with
$$\mu_0 = \frac{1}{1 + R_e(D) \frac{I_2}{V_1}}$$

Can now solve for V to obtain the usual DCM expression for V/V_g .

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

DCM buck example: small-signal equations

Express linearized conversion ratio as a function of switch control input and independent terminal inputs:

$$\hat{\mu}(t) = \frac{\hat{v}_1(t)}{V_s} - \frac{\hat{i}_2(t)}{I_s} + k_s \,\hat{d}(t)$$

The gains are found by evaluation of derivatives at the quiescent operating point

$$\frac{1}{V_s} = \frac{d\mu(v_1, I_2, D)}{dv_1} \bigg|_{v_1 = V_1} = \frac{\mu_0^2 I_2 R_e(D)}{V_1^2}$$
$$\frac{1}{I_s} = -\frac{d\mu(V_1, i_2, D)}{di_2} \bigg|_{i_2 = I_2} = \frac{\mu_0^2 R_e(D)}{V_1}$$
$$k_s = \frac{d\mu(V_1, I_2, d)}{dd} \bigg|_{d = D} = \frac{2\mu_0^2 I_2 R_e(D)}{DV_1}$$

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Result: small-signal model of DCM buck

Fundamentals of Power Electronics

Control-to-output transfer function

Magnitude of the loop gain $T_i(s)$

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

10.3.2 Proof of Generalized Averaged Switch Modeling

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

System state equations

$$\mathbf{K} \frac{d\mathbf{x}(t)}{dt} = \mathbf{A}_{\mathbf{F}}\mathbf{x}(t) + \mathbf{B}_{\mathbf{F}}\mathbf{u}(t) + \mathbf{B}_{\mathbf{s}}\mathbf{y}_{\mathbf{s}}(t)$$
$$\mathbf{y}(t) = \mathbf{C}_{\mathbf{F}}\mathbf{x}(t) + \mathbf{E}_{\mathbf{F}}\mathbf{u}(t) + \mathbf{E}_{\mathbf{s}}\mathbf{y}_{\mathbf{s}}(t)$$
$$\mathbf{u}_{\mathbf{s}}(t) = \mathbf{C}_{\mathbf{s}}\mathbf{x}(t) + \mathbf{E}_{\mathbf{u}}\mathbf{u}(t)$$
$$\mathbf{y}_{\mathbf{s}}(t) = \mathbf{f'}\left(\mathbf{u}_{\mathbf{s}}(t), \mathbf{u}_{\mathbf{c}}(t), t\right)$$

Average:

$$\mathbf{K} \frac{d\langle \mathbf{x}(t) \rangle_{T_s}}{dt} = \mathbf{A}_{\mathbf{F}} \langle \mathbf{x}(t) \rangle_{T_s} + \mathbf{B}_{\mathbf{F}} \langle \mathbf{u}(t) \rangle_{T_s} + \mathbf{B}_{\mathbf{s}} \langle \mathbf{y}_{\mathbf{s}}(t) \rangle_{T_s} \langle \mathbf{y}(t) \rangle_{T_s} = \mathbf{C}_{\mathbf{F}} \langle \mathbf{x}(t) \rangle_{T_s} + \mathbf{E}_{\mathbf{F}} \langle \mathbf{u}(t) \rangle_{T_s} + \mathbf{E}_{\mathbf{s}} \langle \mathbf{y}_{\mathbf{s}}(t) \rangle_{T_s} \langle \mathbf{u}_{\mathbf{s}}(t) \rangle_{T_s} = \mathbf{C}_{\mathbf{s}} \langle \mathbf{x}(t) \rangle_{T_s} + \mathbf{E}_{\mathbf{u}} \langle \mathbf{u}(t) \rangle_{T_s} \langle \mathbf{y}_{\mathbf{s}}(t) \rangle_{T_s} = \mathbf{f} \Big[\langle \mathbf{u}_{\mathbf{s}}(t) \rangle_{T_s}, \langle \mathbf{u}_{\mathbf{c}}(t) \rangle_{T_s} \Big]$$

Also suppose that we can write

$$\langle \mathbf{y}_{s}(t) \rangle_{T_{s}} = \mu(t) \mathbf{y}_{s1}(t) + \mu'(t) \mathbf{y}_{s2}(t)$$

Values of $y_s(t)$ during subintervals 1 and 2 are defined as $y_{s1}(t)$ and $y_{s2}(t)$

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

System averaged state equations

$$\mathbf{K} \frac{d\langle \mathbf{x}(t) \rangle_{T_s}}{dt} = \mathbf{A}_{\mathbf{F}} \langle \mathbf{x}(t) \rangle_{T_s} + \mathbf{B}_{\mathbf{F}} \langle \mathbf{u}(t) \rangle_{T_s} + \mu \mathbf{B}_{\mathbf{s}} \mathbf{y}_{\mathbf{s}\mathbf{1}}(t) + \mu' \mathbf{B}_{\mathbf{s}} \mathbf{y}_{\mathbf{s}\mathbf{2}}(t)$$
$$\langle \mathbf{y}(t) \rangle_{T_s} = \mathbf{C}_{\mathbf{F}} \langle \mathbf{x}(t) \rangle_{T_s} + \mathbf{E}_{\mathbf{F}} \langle \mathbf{u}(t) \rangle_{T_s} + \mu \mathbf{E}_{\mathbf{s}} \mathbf{y}_{\mathbf{s}\mathbf{1}}(t) + \mu' \mathbf{E}_{\mathbf{s}} \mathbf{y}_{\mathbf{s}\mathbf{2}}(t)$$

It is desired to relate this to the result of the state-space averaging method, in which the converter state equations for subinterval 1 are written as

$$\mathbf{K} \frac{d\mathbf{x}(t)}{dt} = \mathbf{A}_{1}\mathbf{x}(t) + \mathbf{B}_{1}\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}_{1}\mathbf{x}(t) + \mathbf{E}_{1}\mathbf{u}(t)$$

with similar expressions for subinterval 2

But the time-invariant network equations predict that the converter state equations for the first subinterval are

$$\mathbf{K} \frac{d\mathbf{x}(t)}{dt} = \mathbf{A}_{\mathbf{F}} \mathbf{x}(t) + \mathbf{B}_{\mathbf{F}} \mathbf{u}(t) + \mathbf{B}_{\mathbf{s}} \mathbf{y}_{\mathbf{s}\mathbf{1}}(t)$$

Now equate the two
$$\mathbf{y}(t) = \mathbf{C}_{\mathbf{F}} \mathbf{x}(t) + \mathbf{E}_{\mathbf{F}} \mathbf{u}(t) + \mathbf{E}_{\mathbf{s}} \mathbf{y}_{\mathbf{s}\mathbf{1}}(t)$$

expressions

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Fundamentals of Power Electronics

Equate the state equation expressions derived via the two methods

$$\mathbf{K} \frac{d\mathbf{x}(t)}{dt} = \mathbf{A}_{1}\mathbf{x}(t) + \mathbf{B}_{1}\mathbf{u}(t) = \mathbf{A}_{F}\mathbf{x}(t) + \mathbf{B}_{F}\mathbf{u}(t) + \mathbf{B}_{s}\mathbf{y}_{s1}(t)$$
$$\mathbf{y}(t) = \mathbf{C}_{1}\mathbf{x}(t) + \mathbf{E}_{1}\mathbf{u}(t) = \mathbf{C}_{F}\mathbf{x}(t) + \mathbf{E}_{F}\mathbf{u}(t) + \mathbf{E}_{s}\mathbf{y}_{s1}(t)$$

Solve for $\mathbf{B}_{s}\mathbf{y}_{s1}$ and $\mathbf{E}_{s}\mathbf{y}_{s1}$:

$$\mathbf{B}_{s}\mathbf{y}_{s1}(t) = \left(\mathbf{A}_{1} - \mathbf{A}_{F}\right)\mathbf{x}(t) + \left(\mathbf{B}_{1} - \mathbf{B}_{F}\right)\mathbf{u}(t)$$
$$\mathbf{E}_{s}\mathbf{y}_{s1}(t) = \left(\mathbf{C}_{1} - \mathbf{C}_{F}\right)\mathbf{x}(t) + \left(\mathbf{E}_{1} - \mathbf{E}_{F}\right)\mathbf{u}(t)$$

Result for subinterval 2:

$$\mathbf{B}_{s}\mathbf{y}_{s2}(t) = \left(\mathbf{A}_{2} - \mathbf{A}_{F}\right)\mathbf{x}(t) + \left(\mathbf{B}_{2} - \mathbf{B}_{F}\right)\mathbf{u}(t)$$
$$\mathbf{E}_{s}\mathbf{y}_{s2}(t) = \left(\mathbf{C}_{2} - \mathbf{C}_{F}\right)\mathbf{x}(t) + \left(\mathbf{E}_{2} - \mathbf{E}_{F}\right)\mathbf{u}(t)$$

Now plug these results back into averaged state equations

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Averaged state equations

$$\mathbf{K} \frac{d\langle \mathbf{x}(t) \rangle_{T_s}}{dt} = \mathbf{A}_{\mathbf{F}} \langle \mathbf{x}(t) \rangle_{T_s} + \mathbf{B}_{\mathbf{F}} \langle \mathbf{u}(t) \rangle_{T_s}$$

$$+ \mu \left(\left(\mathbf{A}_1 - \mathbf{A}_{\mathbf{F}} \right) \langle \mathbf{x}(t) \rangle_{T_s} + \left(\mathbf{B}_1 - \mathbf{B}_{\mathbf{F}} \right) \langle \mathbf{u}(t) \rangle_{T_s} \right)$$

$$+ \mu' \left(\left(\mathbf{A}_2 - \mathbf{A}_{\mathbf{F}} \right) \langle \mathbf{x}(t) \rangle_{T_s} + \left(\mathbf{B}_2 - \mathbf{B}_{\mathbf{F}} \right) \langle \mathbf{u}(t) \rangle_{T_s} \right)$$

$$\langle \mathbf{y}(t) \rangle_{T_s} = \mathbf{C}_{\mathbf{F}} \langle \mathbf{x}(t) \rangle_{T_s} + \mathbf{E}_{\mathbf{F}} \langle \mathbf{u}(t) \rangle_{T_s}$$

$$+ \mu \left(\left(\mathbf{C}_1 - \mathbf{C}_{\mathbf{F}} \right) \langle \mathbf{x}(t) \rangle_{T_s} + \left(\mathbf{E}_1 - \mathbf{E}_{\mathbf{F}} \right) \langle \mathbf{u}(t) \rangle_{T_s} \right)$$

$$+ \mu' \left(\left(\mathbf{C}_2 - \mathbf{C}_{\mathbf{F}} \right) \langle \mathbf{x}(t) \rangle_{T_s} + \left(\mathbf{E}_2 - \mathbf{E}_{\mathbf{F}} \right) \langle \mathbf{u}(t) \rangle_{T_s} \right)$$

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Collect terms

$$\mathbf{K} \frac{d\langle \mathbf{x}(t) \rangle_{T_s}}{dt} = \left(\mu \mathbf{A}_1 + \mu' \mathbf{A}_2 \right) \langle \mathbf{x}(t) \rangle_{T_s} + \left(\mu \mathbf{B}_1 + \mu' \mathbf{B}_2 \right) \langle \mathbf{u}(t) \rangle_{T_s} \\ \left\langle \mathbf{y}(t) \right\rangle_{T_s} = \left(\mu \mathbf{C}_1 + \mu' \mathbf{C}_2 \right) \langle \mathbf{x}(t) \rangle_{T_s} + \left(\mu \mathbf{E}_1 + \mu' \mathbf{E}_2 \right) \langle \mathbf{u}(t) \rangle_{T_s}$$

- This is the desired result. It is identical to the large-signal result of the state-space averaging method, except that the duty cycle d has been replaced with the conversion ratio µ.
- Hence, we can use any result derived via state-space averaging, by simply replacing d with μ.

Perturb and linearize

$$\mathbf{K} \frac{d\langle \mathbf{x}(t) \rangle_{T_s}}{dt} = \left(\mu \mathbf{A}_1 + \mu' \mathbf{A}_2 \right) \langle \mathbf{x}(t) \rangle_{T_s} + \left(\mu \mathbf{B}_1 + \mu' \mathbf{B}_2 \right) \langle \mathbf{u}(t) \rangle_{T_s} \\ \left\langle \mathbf{y}(t) \right\rangle_{T_s} = \left(\mu \mathbf{C}_1 + \mu' \mathbf{C}_2 \right) \langle \mathbf{x}(t) \rangle_{T_s} + \left(\mu \mathbf{E}_1 + \mu' \mathbf{E}_2 \right) \langle \mathbf{u}(t) \rangle_{T_s}$$

Let

.

$$\left\langle \mathbf{x}(t) \right\rangle_{T_s} = \mathbf{X} + \hat{\mathbf{x}}(t) \left\langle \mathbf{u}(t) \right\rangle_{T_s} = \mathbf{U} + \hat{\mathbf{u}}(t) \left\langle \mathbf{y}(t) \right\rangle_{T_s} = \mathbf{Y} + \hat{\mathbf{y}}(t) \mu(t) = \mu_0 + \hat{\mu}(t) \left\langle \mathbf{u}_s(t) \right\rangle_{T_s} = \mathbf{U}_s + \hat{\mathbf{u}}_s(t) \left\langle \mathbf{u}_c(t) \right\rangle_{T_s} = \mathbf{U}_c + \hat{\mathbf{u}}_c(t)$$

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Result

DC model	where	$d\mu \left(\left\langle \mathbf{u}_{\mathbf{s}}(t) \right\rangle_{T}, \left\langle \mathbf{u}_{\mathbf{c}}(t) \right\rangle_{T} \right) \right $		
$0 = \mathbf{A}\mathbf{X} + \mathbf{B}\mathbf{U}$	$\mathbf{A} = \left(\boldsymbol{\mu}_0 \mathbf{A}_1 + \boldsymbol{\mu}_0 \mathbf{A}_2\right)$	$\mathbf{k}_{\mathbf{s}}^{T} = \frac{\left(\left(1 - \frac{1}{2} + \frac{1}{T_{s}}\right) - \frac{1}{T_{s}}\right)}{d\left\langle \mathbf{u}_{\mathbf{s}}(t)\right\rangle_{T_{s}}} \left \left\langle \mathbf{u}_{\mathbf{s}}(t)\right\rangle_{T_{s}} = \mathbf{U}_{\mathbf{s}}\right $		
$\mathbf{Y} = \mathbf{C}\mathbf{X} + \mathbf{E}\mathbf{U}$	$\mathbf{B} = \left(\boldsymbol{\mu}_0 \mathbf{B}_1 + \boldsymbol{\mu}_0 \mathbf{B}_2\right)$	$\left\langle \mathbf{u}_{\mathbf{c}}(t) \right\rangle_{T_{s}} = \mathbf{U}_{\mathbf{c}}$		
	$\mathbf{C} = \left(\boldsymbol{\mu}_0 \mathbf{C}_1 + \boldsymbol{\mu}_0' \mathbf{C}_2\right)$	$d\mu \left(\left\langle \mathbf{u}_{s}(t) \right\rangle_{T_{s}}, \left\langle \mathbf{u}_{c}(t) \right\rangle_{T_{s}} \right) \right $		
Small-signal ac model	$\mathbf{E} = \left(\boldsymbol{\mu}_0 \mathbf{E}_1 + \boldsymbol{\mu}_0' \mathbf{E}_2\right)$	$\mathbf{K}_{\mathbf{c}}^{*} = \frac{\mathbf{d} \langle \mathbf{u}_{\mathbf{c}}(t) \rangle_{T_{s}}}{\mathbf{d} \langle \mathbf{u}_{\mathbf{c}}(t) \rangle_{T_{s}} = \mathbf{U}_{\mathbf{s}}} \left \begin{array}{c} \langle \mathbf{u}_{\mathbf{s}}(t) \rangle_{T_{s}} = \mathbf{U}_{\mathbf{s}} \\ \langle \mathbf{u}_{\mathbf{c}}(t) \rangle_{T_{s}} = \mathbf{U}_{\mathbf{c}} \end{array} \right $		
$\mathbf{K} \frac{d\hat{\mathbf{x}}(t)}{dt} = \mathbf{A}\hat{\mathbf{x}}(t) + \mathbf{B}\hat{\mathbf{u}}(t) + \left(\left(\mathbf{A}_{1} - \mathbf{A}_{2}\right)\mathbf{X} + \left(\mathbf{B}_{1} - \mathbf{B}_{2}\right)\mathbf{U}\right)\hat{\boldsymbol{\mu}}(t)$				
$\hat{\mathbf{y}}(t) = \mathbf{C}\hat{\mathbf{x}}(t) + \mathbf{E}\hat{\mathbf{u}}(t) + \left(\left(\mathbf{C}_1 - \mathbf{C}_2 \right) \mathbf{X} + \left(\mathbf{E}_1 - \mathbf{E}_2 \right) \mathbf{U} \right) \hat{\boldsymbol{\mu}}(t)$				
with the linearized switch gains	$\hat{\boldsymbol{\mu}}(t) = \mathbf{k}_{\mathbf{s}}^{T} \hat{\mathbf{u}}_{\mathbf{s}}(t) + \mathbf{k}_{\mathbf{c}}^{T} \hat{\mathbf{u}}_{\mathbf{c}}(t)$			

Chapter 10: Ac and dc equivalent circuit modeling of the discontinuous conduction mode

Fundamentals of Power Electronics

65

A generalized canonical model

- 1. In the discontinuous conduction mode, the average transistor voltage and current are proportional, and hence obey Ohm's law. An averaged equivalent circuit can be obtained by replacing the transistor with an effective resistor $R_e(d)$. The average diode voltage and current obey a power source characteristic, with power equal to the power effectively dissipated by R_e . In the averaged equivalent circuit, the diode is replaced with a dependent power source.
- 2. The two-port lossless network consisting of an effective resistor and power source, which results from averaging the transistor and diode waveforms of DCM converters, is called a loss-free resistor. This network models the basic power-processing functions of DCM converters, much in the same way that the ideal dc transformer models the basic functions of CCM converters.
- 3. The large-signal averaged model can be solved under equilibrium conditions to determine the quiescent values of the converter currents and voltages. Average power arguments can often be used.

Key points

- 4. A small-signal ac model for the DCM switch network can be derived by perturbing and linearizing the loss-free resistor network. The result has the form of a two-port *y*-parameter model. The model describes the small-signal variations in the transistor and diode currents, as functions of variations in the duty cycle and in the transistor and diode ac voltage variations. This model is most convenient for ac analysis of the buck-boost converter.
- To simplify the ac analysis of the DCM buck and boost converters, it is convenient to define two other forms of the small-signal switch model, corresponding to the switch networks of Figs. 10.16(a) and 10.16(b). These models are also *y*-parameter twoport models, but have different parameter values.

Key points

- 6. Since the inductor value is small when the converter operates in the discontinuous conduction mode, the inductor dynamics of the DCM buck, boost, and buck-boost converters occur at high frequency, above or just below the switching frequency. Hence, in most cases the inductor dynamics can be ignored. In the small-signal ac model, the inductance *L* is set to zero, and the remaining model is solved relatively easily for the low-frequency converter dynamics. The DCM buck, boost, and buck-boost converters exhibit transfer functions containing a single low-frequency dominant pole.
- 7. It is also possible to adapt the CCM models developed in Chapter 7 to treat converters with switches that operate in DCM, as well as other switches discussed in later chapters. The switch conversion ratio μ is a generalization of the duty cycle *d* of CCM switch networks; this quantity can be substituted in place of *d* in any CCM model. The result is a model that is valid for DCM operation. Hence, existing CCM models can be adapted directly.

Key points

8. The conversion ratio µ of DCM switch networks is a function of the applied voltage and current. As a result, the switch network contains effective feedback. So the small-signal model of a DCM converter can be expressed as the CCM converter model, plus effective feedback representing the behavior of the DCM switch network. Two effects of this feedback are increase of the converter output impedance via current feedback, and decrease of the *Q*-factor of the transfer function poles. The pole arising from the inductor dynamics occurs at the crossover frequency of the effective current feedback loop.