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We are missing ac and dc equivalent circuit models
for the discontinuous conduction mode
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Change in characteristics at the CCM/DCM boundary

● Steady-state output voltage becomes strongly load-dependent
● Simpler dynamics: one pole and the RHP zero are moved to very high 

frequency, and can normally be ignored

● Traditionally, boost and buck-boost converters are designed to operate 
in DCM at full load

● All converters may operate in DCM at light load

So we need equivalent circuits that model the steady-state and small-
signal ac models of converters operating in DCM

The averaged switch approach will be employed
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10.1 Derivation of DCM averaged switch model: 
buck-boost example
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and determine the 
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Basic DCM equations
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Peak inductor current:

Average inductor voltage:

In DCM, the diode switches off when the 
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Average switch network terminal voltages
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Average switch network terminal currents
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Average the i1(t) waveform:

Eliminate ipk:
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Input port: Averaged equivalent circuit
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Output port: Averaged equivalent circuit
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The dependent power source
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• Must avoid open- and short-circuit 
connections of power sources

• Power sink: negative  p(t)
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How the power source arises
in lossless two-port networks

In a lossless two-port network without internal energy storage: 
instantaneous input power is equal to instantaneous output power

In all but a small number of special cases, the instantaneous power 
throughput is dependent on the applied external source and load

If the instantaneous power depends only on the external elements 
connected to one port, then the power is not dependent on the 
characteristics of the elements connected to the other port. The other 
port becomes a source of power, equal to the power flowing through 
the first port

A power source (or power sink) element is obtained
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Properties of power sources

P1

P2 P3

P1 + P2 + P3

P1P1

n1 : n2

Series and parallel 
connection of power 
sources

Reflection of power 
source through a 
transformer
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The loss-free resistor (LFR)
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Power entering input port is transferred to output port
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Averaged modeling of CCM and DCM switch networks
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Averaged switch model: buck-boost example
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Solution of averaged model: steady state
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Steady-state LFR solution

V
Vg

= ± R
Re

is a general result, for any system that can 
be modeled as an LFR.

For the buck-boost converter, we have

Re(D) = 2L
D2Ts

Eliminate Re:

V
Vg

= –
D2TsR

2L
= – D

K

which agrees with the previous steady-state solution of Chapter 5.
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Steady-state LFR solution with ac terminal waveforms
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flows into capacitor
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Averaged models of other DCM converters

• Determine averaged terminal waveforms of switch network

• In each case, averaged transistor waveforms obey Ohm’s law, while 
averaged diode waveforms behave as dependent power source

• Can simply replace transistor and diode with the averaged model as 
follows:
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DCM buck, boost

Re(d)

+
–

L

C R

+

–

v(t)
Ts

vg(t) Ts

Re(d)+
–

L

C R

+

–

v(t)
Ts

vg(t) Ts

Buck

Boost

p(t)
Ts

p(t)
Ts

Re = 2L
d 2Ts



Fundamentals of Power Electronics 22
Chapter 10: Ac and dc equivalent circuit modeling 
of the discontinuous conduction mode
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Steady-state solution: DCM buck, boost
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Steady-state solution of DCM/LFR models

Table 10.1. CCM and DCM conversion ratios of basic converters

Converter M, CCM M, DCM

Buck D   2
1 + 1 + 4Re/R

Boost   1
1 – D   1 + 1 + 4R/Re

2

Buck-boost, Cuk   – D
1 – D

  – R
Re

SEPIC   D
1 – D

 R
Re

I > Icrit for CCM
I < Icrit for DCM

Icrit = 1 – D
D

Vg

Re(D)
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10.2 Small-signal ac modeling of the DCM switch network
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Linearization via Taylor series
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d f1 v1, V2, D
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+ v2(t)
d f1 V1, v2, D

dv2 v2 = V2

+ d(t)
d f1 V1, V2, d

dd d = D

+ higher–order nonlinear terms

Given the nonlinear equation

Expand in three-dimensional Taylor series about the quiescent 
operating point: (for simple 

notation, 
drop angle 
brackets)
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Equate dc and first-order ac terms

I1 = f1 V1, V2, D =
V1

Re(D)i1(t) = v1(t)
1
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Output port
same approach
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Output resistance parameter r2
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Small-signal DCM switch model parameters
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Table 10. 2 .  Small-signal DCM switch model parameters

Switch type g1 j1 r1 g2 j2 r2

Buck,
Fig. 10.16(a)

  1
Re

  2(1 – M)V1

DRe

 Re   2 – M
MRe

  2(1 – M)V1

DMRe

  M 2Re

Boost,
Fig. 10.16(b)

  1
(M – 1)2 Re

  2MV1

D(M – 1)Re

  (M – 1)2

M
Re

  2M – 1
(M – 1)2 Re

  2V1

D(M – 1)Re

  (M – 1)2Re

Buck-boost,
Fig. 10.7(b)

0   2V1

DRe

 Re
  2M

Re
  2V1

DMRe

  M 2Re
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Small-signal ac model, DCM buck-boost example
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A more convenient way to model the buck and boost 
small-signal DCM switch networks
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In any event, a small-signal two-port model is used, of the form
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Small-signal ac models of the DCM buck and boost 
converters (more convenient forms)
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DCM small-signal transfer functions

● When expressed in terms of R, L, C, and M (not D), the small-
signal transfer functions are the same in DCM as in CCM

● Hence, DCM boost and buck-boost converters exhibit two poles 
and one RHP zero in control-to-output transfer functions

● But, value of L is small in DCM. Hence
RHP zero appears at high frequency, usually greater than 

switching frequency
Pole due to inductor dynamics appears at high frequency, near 

to or greater than switching frequency
So DCM buck, boost, and buck-boost converters exhibit 

essentially a single-pole response
● A simple approximation: let L → 0
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The simple approximation L → 0

Buck, boost, and buck-boost converter models all reduce to

+
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+
– r1 j1d g1v2 g2v1 j2d r2 C R

DCM switch network small-signal ac model

vg v

Transfer functions

Gvd(s) =
v

d
vg = 0

=
Gd0

1 + s
ωp

Gd0 = j2 R || r2

ωp = 1
R || r2 C

Gvg(s) =
v

vg d = 0

=
Gg0

1 + s
ωp

Gg0 = g2 R || r2 = M

with
control-to-output

line-to-output
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Transfer function salient features

Tabl e 10 . 3 .  Salient features of DCM converter small-signal transfer functions

Converter Gd0 Gg0 ωp

Buck   2V
D

1 – M
2 – M M   2 – M

(1 – M)RC

Boost   2V
D

M – 1
2M – 1 M   2M – 1

(M– 1)RC

Buck-boost  V
D M   2

RC
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DCM boost example

R = 12 Ω

L = 5 µH

C = 470 µF

fs = 100 kHz

The output voltage is regulated to be V = 36 V. It is desired to determine Gvd(s) at the

operating point where the load current is I = 3 A and the dc input voltage is Vg = 24 V.
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Evaluate simple model parameters

P = I V – Vg = 3 A 36 V – 24 V = 36 W

Re =
V g

2

P =
(24 V)2

36 W
= 16 Ω

D = 2L
ReTs

=
2(5 µH)

(16 Ω)(10 µs)
= 0.25

Gd0 = 2V
D

M – 1
2M – 1

=
2(36 V)
(0.25)

(36 V)
(24 V)

– 1

2
(36 V)
(24 V)

– 1

= 72 V ⇒ 37 dBV

fp =
ωp

2π = 2M – 1
2π (M– 1)RC

=

2
(36 V)
(24 V)

– 1

2π (36 V)
(24 V)

– 1 (12 Ω)(470 µF)
= 112 Hz
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Control-to-output transfer function, boost example

–20 dB/decade

fp
112 Hz

Gd0  ⇒ 37 dBV

f

0˚
0˚

–90˚

–180˚

–270˚

|| Gvd ||

|| Gvd || ∠ Gvd
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–40 dBV

20 dBV
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60 dBV
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10.3 Generalized Switch Averaging

An approach that directly relates the transfer functions of 
converters

operating in DCM, and/or
with current programmed control, and/or

with resonant switches, and/or
with other control schemes or switch implementations,

to the transfer functions of the parent CCM converter, derived in 
Chapter 7.

The models for these other modes, control schemes, and switch 
implementations are shown to be equivalent to the CCM models 
of Chapter 7, plus additional effective feedback loops that 
describe the switch behavior
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Converter and switch network state equations

Time-invariant network
containing converter states  x(t)Converter

independent
inputs u(t)

Switch network

Control
inputs

Converter
dependent
signals y(t)

uc(t)

ys(t)us(t)
Switch
outputs

Switch
inputs

n ports
{

ys(t) = f '(us(t), uc(t), t)

K dx(t)
dt

= A Fx(t) + BFu(t) + Bsys(t)

y(t) = CFx(t) + EFu(t) + Esys(t)
us(t) = Csx(t) + Euu(t)
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Averaged system equations

Time-invariant network containing
averaged converter states  〈x(t)〉Ts

Averaged
independent  inputs

〈u(t)〉Ts

Averaged switch network

Averaged
control
inputs

Averaged
dependent  signals

〈y(t)〉Ts

〈uc(t)〉Ts

Averaged
switch
inputs

〈ys(t)〉Ts
 = f(〈us〉Ts

, 〈uc〉Ts
)

〈us(t)〉Ts
〈ys(t)〉Ts

Averaged
switch
outputs

K
d x(t)

Ts

dt
= A F x

Ts
+ BF u

Ts
+ Bs ys Ts

y(t)
Ts

= CF x
Ts

+ EF u
Ts

+ Es ys Ts

us(t) Ts
= Cs x

Ts
+ Eu u

Ts
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Averaging the switch network dependent quantities

ys(t) Ts
= f us(t) Ts

, uc(t) Ts

Place switch network dependent outputs in vector ys(t), then average 
over one switching period, to obtain an equation of the form

Now attempt to write the converter state equations in the same form 
used for CCM state-space averaging in Chapter 7. This can be done 
provided that the above equation can be manipulated into the form

ys(t) Ts
= µ(t) ys1(t) + µ'(t) ys2(t)

where  ys1(t) is the value of ys(t) in the CCM converter during subinterval 1

 ys2(t) is the value of ys(t) in the CCM converter during subinterval 2

µ is called the switch conversion ratio

µ’ = 1 – µ
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Switch conversion ratio µ

ys(t) Ts
= µ(t) ys1(t) + µ'(t) ys2(t)

If it is true that

then CCM equations can be used directly, simply by replacing the duty 
cycle d(t) with the switch conversion ratio µ(t):

Steady-state relations are found by replacing D with µ0

Small-signal transfer functions are found by replacing d(t) with µ(t)

The switch conversion ratio µ is a generalization of the CCM duty 
cycle d. In general, µ may depend on the switch independent inputs, 
that is, converter voltages and currents. So feedback may be built into 
the switch network.

A proof follows later.
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10.3.1  Buck converter example

+
–

L

C R

+

–

+

–

+

–

Switch network

vg vv2

i2i1

v1

iL

Re(d)

+
–

L

C R

+

–

v(t)
Ts

vg(t) Ts

p(t)
Ts

+

–

+

–

i1(t) Ts
i2(t) Ts

v1(t) Ts
v2(t) Ts

iL(t) Ts

Original 
converter

DCM
large-signal 
averaged 
model
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Defining the switch network inputs and outputs

+
–

L

C R

+

–

+

–

+

–

Switch network

vg vv2

i2i1

v1

iL

us(t) =
v1(t)
i2(t)

uc(t) = d(t)

ys(t) =
v2(t)
i1(t)

Switch input vector

Switch control input

Switch output vector



Fundamentals of Power Electronics 47
Chapter 10: Ac and dc equivalent circuit modeling 
of the discontinuous conduction mode

Switch output waveforms, CCM operation

dTs Ts
t

v2(t)

0

i1(t)

0

i2(t) Ts

v1 Ts ys1(t) =
v1(t) Ts

i2(t) Ts

, ys2(t) = 0
0

v2(t) Ts

i1(t) Ts

= µ(t)
v1(t) Ts

i2(t) Ts

+ (1 – µ(t)) 0
0

CCM switch outputs during 
subintervals 1 and 2 are:

Hence, we should define 
the switch conversion 
ratio µ to satisfy

For CCM operation, this equation is satisfied with µ = d.
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Solve for µ, in general

ys(t) Ts
= µ(t) ys1(t) + µ'(t) ys2(t)

v2(t) Ts

i1(t) Ts

= µ(t)
v1(t) Ts

i2(t) Ts

+ (1 – µ(t)) 0
0

µ(t) =
v2(t) Ts

v1(t) Ts

=
i1(t) Ts

i2(t) Ts

This is a general definition of µ, for the switch network as defined 
previously for the buck converter. It is valid not only in CCM, but 
also in DCM and ...

⇒  

⇒  
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Evaluation of µ

Re(d)

+
–

L

C R

+

–

v(t)
Ts

vg(t) Ts

p(t)
Ts

+

–

+

–

i1(t) Ts
i2(t) Ts

v1(t) Ts
v2(t) Ts

iL(t) Ts

µ(t) =
v2(t) Ts

v1(t) Ts

=
i1(t) Ts

i2(t) Ts

v2(t) Ts
= v1(t) Ts

– i1(t) Ts
Re(d)

1 =
v1(t) Ts

v2(t) Ts

–
i1(t) Ts

Re(d)

v2(t) Ts

= 1
µ –

i1(t) Ts
Re(d)

v2(t) Ts

µ = 1

1 + Re(d)
i1(t) Ts

v2(t) Ts

Solve 
averaged 
model for µ

⇒  

for DCM
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Elimination of dependent quantities

µ = 1

1 + Re(d)
i1(t) Ts

v2(t) Ts

i1(t) Ts
v1(t) Ts

= i2(t) Ts
v2(t) Ts

i1(t) Ts

v2(t) Ts

=
i2(t) Ts

v1(t) Ts

µ v1(t) Ts
, i2(t) Ts

, d = 1

1 + Re(d)
i2(t) Ts

v1(t) Ts

we found that

Lossless switch network:

⇒  

Hence
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DCM switch conversion ratio µ

µ v1(t) Ts
, i2(t) Ts

, d = 1

1 + Re(d)
i2(t) Ts

v1(t) Ts

• A general result for DCM

• Replace d of CCM expression with µ to obtain a valid DCM 
expression

• In DCM, switch conversion ratio is a function of not only the 
transistor duty cycle d, but also the switch independent terminal 
waveforms i2 and v1. The switch network contains built-in feedback. 
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Perturbation and linearization

µ(t) = µ0 + µ(t)

us(t) Ts
= Us + us(t)

uc(t) = Uc + uc(t)

µ0 = µ(Us, Uc, D)

Steady-state components:

Buck example:

µ0 = 1

1 + Re(D)
I2

V1
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Buck example: steady-state solution

In CCM, we know that

V
Vg

= M(D) = D

IL = V
R

DCM: replace D with µ0:

V
Vg

= M(µ0) = µ0

I2 = V
R

µ0 = 1

1 + Re(D)
I2

V1

with

Can now solve for V to 
obtain the usual DCM 
expression for V/Vg.
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DCM buck example: small-signal equations

µ(t) =
v1(t)
Vs

–
i2(t)
Is

+ k s d(t)

Express linearized conversion ratio as a function of switch control 
input and independent terminal inputs:

The gains are found by evaluation of derivatives at the quiescent 
operating point

1
Vs

=
dµ v1, I2, D

dv1 v1 = V1

=
µ0

2I2Re(D)
V 1

2

1
Is

= –
dµ V1, i2, D

di2 i2 = I2

=
µ0

2Re(D)
V1

k s =
dµ V1, I2, d

dd d = D
=

2µ0
2I2Re(D)
DV1



Fundamentals of Power Electronics 55
Chapter 10: Ac and dc equivalent circuit modeling 
of the discontinuous conduction mode

Result: small-signal model of DCM buck

+
–vg(t)

+–

L

+

v(t)

–

RC

1 : µ0
i(t)

I µ

Vg µ

i2

v1

+

–
+ –+

µ

1
Is

1
Vs

ks

d

i2v1

CCM buck small-signal model

Small-signal switch network
block diagram
Eq. (10.72)
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Control-to-output transfer function

+
–

L

+

v(t)

–

RC

i(t)

Vg µ

i2

µd

i2

+–ks

1
Is

Ti(s)

Zei(s)

Gvd(s) =
v(s)
d(s)

vg(s) = 0

Gvd(s) = Gvd∞(s)
Ti(s)

1 + Ti(s)

Ti(s) =
Vg

IsZei(s)

Gvd∞(s) = k sIs R || 1
sC

Zei(s) = R
1 + s L

R
+ s2LC

1 + sRC
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Magnitude of the loop gain Ti(s)

T0 f0
fz

fc0 dB

|| Ti ||

Ti

1 + Ti

T0

f
fz
f
f0

2 =
Vg

IsR

2π fRC

2π f
2
LC

fc =
µ0

D

2 fs
π
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10.3.2   Proof of Generalized Averaged Switch Modeling

Time-invariant network
containing converter states  x(t)Converter

independent
inputs u(t)

Switch network

Control
inputs

Converter
dependent
signals y(t)

uc(t)

ys(t)us(t)
Switch
outputs

Switch
inputs

n ports

{
ys(t) = f '(us(t), uc(t), t)

K dx(t)
dt

= A Fx(t) + BFu(t) + Bsys(t)

y(t) = CFx(t) + EFu(t) + Esys(t)
us(t) = Csx(t) + Euu(t)
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System state equations

K dx(t)
dt

= A Fx(t) + BFu(t) + Bsys(t)

y(t) = CFx(t) + EFu(t) + Esys(t)
us(t) = Csx(t) + Euu(t)

ys(t) = f ' us(t), uc(t), t

Average:

K
d x(t)

Ts

dt
= A F x(t)

Ts
+ BF u(t)

Ts
+ Bs ys(t) Ts

y(t)
Ts

= CF x(t)
Ts

+ EF u(t)
Ts

+ Es ys(t) Ts

us(t) Ts
= Cs x(t)

Ts
+ Eu u(t)

Ts

ys(t) Ts
= f us(t) Ts

, uc(t) Ts

Also suppose that we can write

ys(t) Ts
= µ(t) ys1(t) + µ'(t) ys2(t)

Values of ys(t) during 
subintervals 1 and 2 are 
defined as ys1(t) and ys2(t) 
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System averaged state equations

K
d x(t)

Ts

dt
= A F x(t)

Ts
+ BF u(t)

Ts
+ µBsys1(t) + µ'Bsys2(t)

y(t)
Ts

= CF x(t)
Ts

+ EF u(t)
Ts

+ µEsys1(t) + µ'Esys2(t)

It is desired to relate this to the result of the state-space averaging 
method, in which the converter state equations for subinterval 1 are 
written as

K dx(t)
dt

= A 1x(t) + B1u(t)

y(t) = C1x(t) + E1u(t)

with similar expressions for 
subinterval 2

But the time-invariant network equations predict that the converter 
state equations for the first subinterval are

K dx(t)
dt

= A Fx(t) + BFu(t) + Bsys1(t)

y(t) = CFx(t) + EFu(t) + Esys1(t)
Now equate the two 
expressions
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Equate the state equation expressions
derived via the two methods

K dx(t)
dt

= A 1x(t) + B1u(t) = A Fx(t) + BFu(t) + Bsys1(t)

y(t) = C1x(t) + E1u(t) = CFx(t) + EFu(t) + Esys1(t)

Solve for Bsys1 and Esys1 :

Bsys1(t) = A 1 – A F x(t) + B1 – BF u(t)

Esys1(t) = C1 – CF x(t) + E1 – EF u(t)

Result for subinterval 2:

Bsys2(t) = A 2 – A F x(t) + B2 – BF u(t)

Esys2(t) = C2 – CF x(t) + E2 – EF u(t)

Now plug these results back into averaged state equations
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Averaged state equations

K
d x(t)

Ts

dt
= A F x(t)

Ts
+ BF u(t)

Ts

+ µ A 1 – A F x(t)
Ts

+ B1 – BF u(t)
Ts

+ µ' A 2 – A F x(t)
Ts

+ B2 – BF u(t)
Ts

y(t)
Ts

= CF x(t)
Ts

+ EF u(t)
Ts

+ µ C1 – CF x(t)
Ts

+ E1 – EF u(t)
Ts

+ µ' C2 – CF x(t)
Ts

+ E2 – EF u(t)
Ts
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Collect terms

K
d x(t)

Ts

dt
= µA 1 + µ'A 2 x(t)

Ts
+ µB1 + µ'B2 u(t)

Ts

y(t)
Ts

= µC1 + µ'C2 x(t)
Ts

+ µE1 + µ'E2 u(t)
Ts

• This is the desired result. It is identical to the large-signal result of 
the state-space averaging method, except that the duty cycle d 
has been replaced with the conversion ratio µ.

• Hence, we can use any result derived via state-space averaging, 
by simply replacing d with µ.
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Perturb and linearize

x(t)
Ts

= X + x(t)

u(t)
Ts

= U + u(t)

y(t)
Ts

= Y + y(t)

µ(t) = µ0 + µ(t)

us(t) Ts
= Us + us(t)

uc(t) Ts
= Uc + uc(t)

Let

K
d x(t)

Ts

dt
= µA 1 + µ'A 2 x(t)

Ts
+ µB1 + µ'B2 u(t)

Ts

y(t)
Ts

= µC1 + µ'C2 x(t)
Ts

+ µE1 + µ'E2 u(t)
Ts
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Result

0 = AX + BU
Y = CX + EU

A = µ0A 1 + µ0'A 2

B = µ0B1 + µ0'B2

C = µ0C1 + µ0'C2

E = µ0E1 + µ0'E2

DC model
where

Small-signal 
ac model

K dx(t)
dt

= Ax(t) + Bu(t) + A 1 – A 2 X + B1 – B2 U µ(t)

y(t) = Cx(t) + Eu(t) + C1 – C2 X + E1 – E2 U µ(t)

with the linearized 
switch gains µ(t) = ks

Tus(t) + kc
Tuc(t)

ks
T =

dµ us(t) Ts
, uc(t) Ts

d us(t) Ts
us(t) Ts

= Us

uc(t)
Ts

= Uc

kc
T =

dµ us(t) Ts
, uc(t) Ts

d uc(t) Ts
us(t) Ts

= Us

uc(t)
Ts

= Uc
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A generalized canonical model

+

–

+
–

+–

Le

RC

1 : M(µ0)

+ +
µ

CCM small-signal canonical model

Small-signal switch network
block diagram
Eq. (10.106)

ks
T

kc
T

vg(s)

e(s)µ(s)

j(s)µ(s) v(s)

uc(s)

us(s)

Control input(s): d(s), etc.

Switch inputs: v(s), vg(s), i(s), etc.
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10.4 Summary of Key Points

1.  In the discontinuous conduction mode, the average transistor voltage 
and current are proportional, and hence obey Ohm’s law. An 
averaged equivalent circuit can be obtained by replacing the 
transistor with an effective resistor Re(d). The average diode voltage 
and current obey a power source characteristic, with power equal to 
the power effectively dissipated by Re. In the averaged equivalent 
circuit, the diode is replaced with a dependent power source.

2.  The two-port lossless network consisting of an effective resistor and 
power source, which results from averaging the transistor and diode 
waveforms of DCM converters, is called a loss-free resistor. This 
network models the basic power-processing functions of DCM 
converters, much in the same way that the ideal dc transformer 
models the basic functions of CCM converters.

3.  The large-signal averaged model can be solved under equilibrium 
conditions to determine the quiescent values of the converter currents 
and voltages. Average power arguments can often be used.
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Key points

4.  A small-signal ac model for the DCM switch network can be 
derived by perturbing and linearizing the loss-free resistor 
network. The result has the form of a two-port y-parameter model. 
The model describes the small-signal variations in the transistor 
and diode currents, as functions of variations in the duty cycle 
and in the transistor and diode ac voltage variations. This model 
is most convenient for ac analysis of the buck-boost converter.

5.  To simplify the ac analysis of the DCM buck and boost converters, 
it is convenient to define two other forms of the small-signal 
switch model, corresponding to the switch networks of Figs. 
10.16(a) and 10.16(b). These models are also y-parameter two-
port models, but have different parameter values.
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Key points

6.  Since the inductor value is small when the converter operates in 
the discontinuous conduction mode, the inductor dynamics of the 
DCM buck, boost, and buck-boost converters occur at high 
frequency, above or just below the switching frequency. Hence, in 
most cases the inductor dynamics can be ignored. In the small-
signal ac model, the inductance L is set to zero, and the 
remaining model is solved relatively easily for the low-frequency 
converter dynamics. The DCM buck, boost, and buck-boost 
converters exhibit transfer functions containing a single low-
frequency dominant pole.

7.  It is also possible to adapt the CCM models developed in Chapter 
7 to treat converters with switches that operate in  DCM, as well 
as other switches discussed in later chapters. The switch 
conversion ratio µ is a generalization of the duty cycle d of CCM 
switch networks; this quantity can be substituted in place of d in 
any CCM model. The result is a model that is valid for DCM 
operation. Hence, existing CCM models can be adapted directly.
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Key points

8.  The conversion ratio µ of DCM switch networks is a function of the 
applied voltage and current. As a result, the switch network 
contains effective feedback. So the small-signal model of a DCM 
converter can be expressed as the CCM converter model, plus 
effective feedback representing the behavior of the DCM switch 
network. Two effects of this feedback are increase of the 
converter output impedance via current feedback, and decrease 
of the Q-factor of the transfer function poles. The pole arising from 
the inductor dynamics occurs at the crossover frequency of the 
effective current feedback loop.


