
Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected

6 Run-time math exceptions in watch expres-
sions cause the target program to crash
when debugging.

None, except don’t
evaluate floating
point watch expres-
sions with bad
domain arguments.

6.04-current

21 After using the print preview option with
Dynamic C in full-screen mode, the taskbar
will no longer automatically pop up (if set to
"auto hide") until Dynamic C is exited.

Avoid using print
preview if you prefer
to keep your task bar
as “autohide.”

6.04-current

42 Compiler decrements the address of month,
rather than the value stored in hl.

int dom[12] ={31, 29, 31, 30, 31, 30, 31, 31,
30, 31, 30, 31};

void main(){

auto char month;

unsigned int day;

day = 0;

month = 0;

// only a problem if month is an auto char.

// hl is not restored after the increment

// address of month (-1) gets added as the

// offset (rather than the value of month).

day = dom[month++];

// Pre-increment is also incorrect.

day = dom[++month];

}

To avoid this, either
do not declare the
char as auto, or do
the incrementing
before or after the
array access.

7.02P-current

fixed in a
pending
release

50 djnz not decrementing b register when sin-
gle stepping if there is no code between the
djnz and the jump destination.

Example:

#asm

ld b, 2

wait:

djnzwait

#endasm

Add a NOP or don’t
try to single step this
busy wait code:

#asm

ld b, 2

wait:

nop

djnzwait

#endasm

6.04-current

100 No error warning is given for indirect calls
to cofunctions at compile time.

None 6.04-current

fixed in a
pending
release
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 1

105 Incorrect handling of float constants at com-
pile time causes crash.

For example:

main(){

unsigned long c;c = 2e32 - 1;

}

do it like this:

main(){

float f;unsigned long
c;

f = 2e32 - 1;

c = (unsigned long)f;

}

6.04-current

fixed in a
pending
release

148 When tabbing through the Function
Lookup/Insert window selections after the
mode radio buttons, the parameter # from
the "Insert Call" mode can also be seen and
set from the "View Only" mode.

None 6.04 - current

fixed in a
pending
release

151 The initializers in the following code are
semantically equivalent. The expression for
p1 compiles correctly (assuming bug fixes
apply for defects #113-115). The expression
for p2 generates a compile time error.

struct foo {int x; int y;} foovar;

main() {

int *p1= &((*(&foovar)).x);

int *p2 = &((&foovar)->x);

}

None 6.04-current

fixed in a
pending
release

160 Constant folding does not work properly for
expressions that cast int* to an integral type
and then add. This defect therefore causes
initializers to constant data to be evaluated
incorrectly and misaligned

int z =10;;

main() {

(long)&z+1; // compiler should evaluate to
constant value bug instead generates call to
L_add

(long)((char*)&z + 1); // semanti-
cally equivalent expression that folds cor-
rectly

(char)&z+1; // compiler should evaluate to
constant value bug instead generates call to
L_add

(char)((char*)&z + 1); // semanti-
cally equivalent expression that folds cor-
rectly

}

None 6.04-current

Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 2

161 In the following program, a function
address/pointer is used in arithmetic expres-
sions and it compiles. This usage should be
flagged as an error by the compiler.

In the generated code for the initializers,
only the address is generated and the arith-
metic is ignored. The increment treats it as
though the type where int*.

int foo();

main() {

int x = foo + 5; // no error reported

int (*fp)() = 5+foo+3; // no error reported

int (*fp2)() = foo;

int (*fp3)();

fp3 = foo;

fp3++; // no error reported

}

foo() {return 10;}

None 6.04- current

fixed in a
pending
release

168 The following program does not compile,
but should.

int (*fp)();

main() {

fp = &main; // won't compile

fp = main; // work-around

}

The ‘&’ is redundant
here anyway, since
main is evaluated as
an address

6.04-current

fixed in a
pending
release

169 The address of operator '&' causes compila-
tion errors when used with arrays.

main() {

int ia[10];

int (*pa)[10]; // pointer to an array of int

int *p;

// "p = &ia" does not compile, but should
with a warning

// since "pointer to int" and "pointer to
array of int" don't match

p = &ia;

p = *&ia; // is semantically equivalent to
next line, but will not compile

p = ia;

}

None 6.04-current

fixed in a
pending
release

Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 3

194 Given a label, if a space exists between
colon and label, DC will give error.

main(){

goto label_a;

//label_a : // will not work

label_a: // works

}

None 6.04-current

fixed in a
pending
release

207 Because no warning is generated when a
global assembly label is redefined, a user
application can inadvertently override
library code or data.

It is a good idea not
to use short global
label names.

6.04-current

210 // calling a function with more than one

// indirect function call as an argument fails

// if the function pointed to takes arguments

int intfunc(int x);

typedef int (*func2)();

main(){

func2 fp1,fp2;

fp1 = fp2 = intfunc;

foo((*fp1)(1),(*fp2)(2));

}

int intfunc(int x){}

foo(int a, int b){}

None 6.04-current

fixed in a
pending
release

220 The code for BitWrPortI does not protect
against a race condition with an ISR that is
updating the same register.

This can be worked around by blocking
interrupts during calls to BitWrPortI()

None 6.04-current

fixed in a
pending
release

226 The following program generates "internal
error: invalid register store"

main() {

auto word sequence_mode;

auto int debug_on;

sequence_mode=debug_on=0;

}

sequence_mode=0;

debug_on=0;

6.53-current

fixed in a
pending
release

229 The Print Options have a default margin of
1" but will actually about print a 0.3" mar-
gin.

None 6.04-current

fixed in a
pending
release

Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 4

232 Sizeof operator behaves incorrectly with
structs, typedefs and unions.

typedef struct {

int a;

int b;

char buf[10];

} rec;

char byteaccessible[sizeof(rec)];

main() {

}

None 6.04-current

fixed in a
pending
release

237 Print Preview artifact

1. Open a sample program.

2. Open print preview.

3. Click on the printer icon.

4. Open properties and adjust any of the
parameters.

5. Accept the new parameters and close the
properties window.

6. A print preview artifact remains.

To clear the artifact
grab the Dynamic C
window from behind
the print preview arti-
fact. Position the
Dynamic C window
so that you can click
the "print preview"
icon on Dynamic C.
An error message,
"Exception #32739
(no message abail-
able). Ok to
resume?", will appear
and click "Yes".

Only make adjust-
ments to the print
properties OUT-
SIDE of the print pre-
view screen (i.e. File-
>Print->Properties).

6.04-current

238 The runwatch mechanism takes snapshots
of each watch in the watch list at different
points in time.

The compiler/libraries should take a single
snapshot of the variables in the watch list
and update the display

from a single point in time. Adding watches
for x and y in the following program dem-
onstrates the problem.

main() {

int x,y;

x = y;

while(1) {

x++; y++;

runwatch();

}

}

None 6.04-current

Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 5

246 The expression (x--) is not evaluated cor-
rectly if x is an auto char. The error only
happens if in functions that are not "useix".

make the function
using the expression
useix or make x static
or make x an int

6.04-current

fixed in a
pending
release

249 Incorrect parameter type causes DC to crash

HttpSpec http_flashspec[] =

{ HTTPSPEC_FILE, "/",
index_html, NULL, 0, NULL, &view},
// Remove ampersand to cause crash

None 7.02P - current

253 If help on a function is obtained via Control-
H and then Insert Call is selected the source
file location gets corrupted.

None 6.57-current

fixed in a
pending
release

263 The printf line should generate an error (due
to the extra semicolon), but instead the com-
piler passes the value of i to printf.

void main()

{

int i;

i = 0;

printf("i = %d\n", i++;);}

None 7.02P - current

266 local data in cofunctions limited to 128
bytes

use global data 6.04-current

272 Dynamic C crashes when loading initial
loader window is stopped prematurely

1. Open Dynamic C and close the "Loading
Initial Loader" window as soon as it
appears.

2. Open a sample and compile. Again close
the "Loading Initial Loader" window as
soon as it appears.

3. GPF

None 6.04 - current

fixed in a
pending
release

274 Exceptions: 230, 231, 232, 239, 242 are not
used but are documented. Exception 241 is
not implemented but should be exceptions:

245, 246, 247, 248 are used but not docu-
mented. Exception 255 is undocumented
and thrown for multiple reasons

non fatal exceptions are thrown from sev-
eral places also

This is both a documetation defect and a
bug

None 6.57-current

fixed in a
pending
release

Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 6

279 A missing EndHeader line in PPPOE.LIB
causes the compiler to crash.

None 7.02P-current

fixed in a
pending
release

282 A do-while bug has been uncovered in
DCRTCP.LIB, in the function packdom().
packdom() recently changed, which has
triggered this bug. A bad jump is generated
for the end of the do-while statement.

None 6.52-current

fixed in a
pending
release

291 The RS232 function serXwrite() will block
until all or the data to be written is copied on
to the port buffer.

None 6.04-current

294 Dynamic C crashes when a program is com-
piled which "#use's a library which contains
the following:

/*** BeginHeader***/

int MyErrors[6];

int s;

void InitErrorCodes (void) {

s = sizeof(MyErrors);

}

/*** EndHeader */

None 6.04-current

fixed in a
pending
release

297 when you INSERT(not append) a block of
code and you decide to undo your changes,
the undo/redo command "picks up" an extra
line of code.

None 6.04-current

fixed in a
pending
release

299 If the harddisk fills up while you are editing
a file, and you try and save your work,
DynamicC will ignore the problem, and not
give any indication that it didn't save your
work.

None 6.04-current

fixed in a
pending
release

301 The comments in coremodule Keylcd.c
indicate that the user connect PA4..PA7 to
D0..D3 of the LCD. This is not correct for
any LCD which is compatible with the
HD44780. The data lines should be con-
nected to D4..D7 when using the 4 bit pro-
gramming mode.

None 6.04-current

fixed in a
pending
release

Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 7

304 ldp (ix),hl and ex af,af' do not expand in
multiline assembly macros

#define MAC $\

ex af,af' $\

ldp (ix),hl $\

nop

main(){

;

#asm

MAC

#endasm

}

this expands to just nop. If no blank space
precedes any instruction in the multi-line
assembly macro definition, compilation
fails.

None 6.04-current

fixed in a
pending
release

310 There is a low limit on the number of char-
acters of data which can appear in the watch
window. This limit did not previously exist.

None 6.55 - current

fixed in a
pending
release

311 RS232 - opening with baud rate 0 causes
divide by zero error

None 6.52 - current

fixed in a
pending
release

312 Assigning the return value of of an indirect
call to an auto long breaks the indirect call.

long (*fptr)();

long foo(unsigned x);

main(){

auto unsigned long x; // take away the
auto or the long and this works

fptr = foo;

printf ("x=%08lx\n",x = (*fptr)(10));

}

long foo(unsigned x){

return 0x100ul * x;

}

None 6.04 - current

fixed in a
pending
release

Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 8

313 The timeout functions set_timeout() and
chk_timeout() are implemented incorrectly
in DCRTCP.LIB. They are based on
MS_TIMER. set_timeout() adds the
requested number of seconds to
MS_TIMER. chk_timeout() then compares
MS_TIMER to the given timeout value.
This means that if, when the number of sec-
onds is added to MS_TIMER, this causes
the 32-bit unsigned value to roll over, then
the next chk_timeout will trigger the time-
out early (as long as MS_TIMER has also
not yet rolled over).

With TCP/IP connections, this could cause
prematurely dropped connections around
the rollover point, which will occur every
49.7 days.

These same timeout functions are used
throughout the TCP/IP libraries (such as
HTTP.LIB), so similar problems could
occur elsewhere.

None 6.51 - current

Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 9

314 Calling a function via a function pointer and
assigning the return value to a dereferenced
pointer does not work correctly. Splitting it
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 10

321 1: Run "COF ECHOBLK.C" from the
serial folder with the following defined:

#class static

#memmap xmem.

2: Once the program is compiled do not
enter data into the serial window. After 20
seconds a "Timed Out" message should be
displayed. Instead a "Ti" message is dis-
played. The rest of the message is lost. The
sample is not affected in any other way.

None 7.02-current

323 If you delete the user defined BIOS file
name from the compiler options dialog, but
leave the "Use" check box checked, DC be
crashes on BIOS compile.

None 6.04 - current

fixed in a
pending
release

325 If you compile to a file with the "Include
debug code..." option unchecked, then com-
pile to target with option checked, it com-
piles without debug code the first time.

Compile twice 7.02 - current

fixed in a
pending
release

329 1: Using RabbitLink run “ Cof EchoBlk.c”
from the Samples\Serial folder and
Dynamic C will display an error as follows:

"Target communication state: Compiling
User Program Error receiving write
acknowledgment"

2: Attempt to recompile the sample and
Dynamic C will crash with an "Abnormal
Termination" message.

3: No data or parameters will be saved.

None 7.02-current

fixed in a
pending
release

330 Using fshift() can cause a lookup table in
RAM to be corrupted. This prevents other
files from being opened until the filesystem
is reformatted or the program restarts.

None 7.02 - current

331 Optimization bug with using the <= opera-
tor as shown below.

short nI, mI;

main() {

nI= 16; mI= 1;

if (nI <= 0 && mI <= 0) {

// shouldn't enter here but does

}

}

add parenthesis

if ((nI <= 0) && (
mI <= 0)) {

6.19 - current

fixed in a
pending
release

Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 11

333 The following piece of code, although
incorrect, crashes the compiler

instead of generating an error:

typedef struct foo foostruct;

foostruct foolist = { };

main(){}

If the 'struct' keyword is removed OR
'foolist' is not initialized, the

proper errors show up instead.

None 6.04 - current

fixed in a
pending
release

334 The LCD driver appends two bytes to a
message which has been previously
declared via char[] = "text";

None 6.04-current

fixed in a
pending
release

337 The "Include debug code/RST 28 Instruc-
tion" is useless when compiling via TCP/IP.
Although

the program is successfully compiled,
Dynamic C will not start running it and the
"disconnect and

press reset to run" message doesn't really
help the typical RabbitLink user, especially
since between

the lack of RST28s and the necessary reset,
console communications between the Rab-
bitLink

and the target will be lost.

None 7.03-current

fixed in a
pending
release

346 There is a C conversion programming error
in fs_block_init in fs_flash.lib which cause
a sector boundary check to fail.

None 7.02-current

fixed in a
pending
release

348 Declarative expressions inside a cast will be
compiled, when they should generate an
error.

None 6.04-current

fixed in a
pending
release

Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 12

349 Assume a variable is externed in one library
(the extern is in a BeginHeader/EndHeader
block), then defined outside the Begin-
Header/EndHeader block in the same
library. If the address of that variable is
used in another library, the address is not
assigned correctly. Instead, it is assigned as
the address 0x0000.

Define the variable
directly in the Begin-
Header/EndHeader
block instead of
using extern. or
extern the void
pointer as below

/*** BeginHeader
barfunc */

void barfunc(void);

extern void* const
bardata;

/*** EndHeader */

void* const bardata =
&(foodata);

void barfunc(void)

{

printf("Entered bar-
func()\n");

}

7.03 - current

fixed in a
pending
release

355 RFU can overwrite the ID block None 6.53-current

357 In FLASHWR.LIB the structure FlashData
is declared in the header as _FlashData().
There should be no underscore.

Remove the under-
score

7.02-current

fixed in a
pending
release

358 printf hex format always prints %x in caps
(3AE instead of 3ae) and does not recognize
%X at all.

None 6.04-current

fixed in a
pending
release

359 Trying to compile the following program
makes Dynamic C crash:

#use "dcrtcp.lib"

void SendMessage(mssg)

{

tcp_Socket tcpSock;

sock_write(&tcpSock, mssg,
strlen(mssg)+1);

}

main()

{

while(1){

}

None 7.02-current

fixed in a
pending
release

Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 13

360 Can not use 33+ character functions in
BeginHeader/EndHeader blocks

Shorten the function
name to 32 or fewer
characters.

6.04-current

361 If the watch expression list is empty and
watches are added, you have to close the
watch expression

window and reopen it before you can delete
them. In other words, when you add a
watch expression

to an empty list, the delete button should
become active.

None 7.02-current

fixed in a
pending
release

370 The result of x%1 gave incorrect result of
x.

None 6.57-current

fixed in a
pending
release

376 OP6700: Bug in dispContrast function.

The dispContrast function does not work for
many values. The values 45..60 put garbage
or a blank screen.

None 6.57-current

377 This program causes a GPF because of the
[] on bananas.

#define MAX_CARDS 100

typedef struct

{

unsigned long stuff;

unsigned long morestuff;

unsigned long hello;

}mystruct;

mystruct bananas[MAX_CARDS];

mystruct apples[MAX_CARDS];

mystruct *Apples[]={bananas[]};// DC
won't like this

void main()

{

printf("Hello");

}

Do not use this incor-
rect syntax

7.02-current

fixed in a
pending
release

381 Exceeding 249 lines on an editor line con-
fuses the debugger when setting break
points.

Don't make the line
so long.

6.04-current

Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 14

382 Inspecting a long variable via RabbitLink
does not show the correct value

The lower 16 bits seem to be OK but the
upper 16 bits are not correct.

None 7.03P - current

384 The watch window assumes that a root
function called from an xmem function is
also in xmem -- the address it uses to access
a passed variable is off by one byte (as if the

XPC value was pushed as well).

None 6.04 - current

Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 15

388 You can not allocate more than 32k of
socket buffers, even if the RAM is avail-
able.

Change the following
lines:

#ifdef
DISABLE_DNS

_sock_buf_area =
xal-
loc(MAX_SOCKET
S *
SOCK_BUF_SIZE);

for (r = 0; r <
MAX_SOCKETS;
r++) {

#else

_sock_buf_area =
xal-
loc((MAX_SOCKET
S + 1) *
SOCK_BUF_SIZE);

for (r = 0; r <
(MAX_SOCKETS +
1); r++) {

#endif

to this:

#ifdef
DISABLE_DNS

_sock_buf_area =
xal-
loc(MAX_SOCKET
S *
(long)SOCK_BUF_S
IZE);

for (r = 0; r <
MAX_SOCKETS;
r++) {

#else

_sock_buf_area =
xal-
loc((MAX_SOCKET
S + 1) *
(long)SOCK_BUF_S
IZE);

for (r = 0; r <
(MAX_SOCKETS +
1); r++) {

#endif

6.57 - current

Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 16

398 Disconnecting (or disabling polling) while a
transfer of the printf buffer from the target
to Dynamic C is occurring will lock up the
RabbitLink while it waits endlessly for the
transfer to continue. This can also occur
when F4 is pressed.

Don't use printfs. 7.03P - current

399 Execution cursor not updated in library
source file when single stepping through
pure assembly function.

None 6.04 - current

Bugs Open as of Dynamic C 7.04P3

Reference
Number Description Work-Around

Version(s)
Affected
Bugs Open as of Dynamic C 7.04P3 May 15, 2001 17

