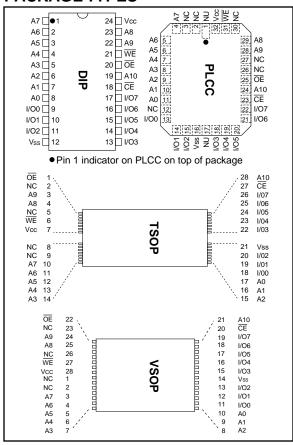
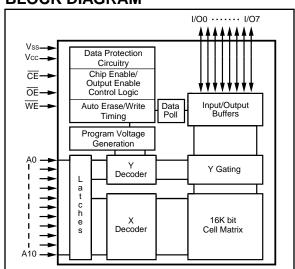


28C16A

16K (2K x 8) CMOS EEPROM


FEATURES

- Fast Read Access Time-150 ns
- · CMOS Technology for Low Power Dissipation
 - 30 mA Active
 - 100 μA Standby
- Fast Byte Write Time—200 μs or 1 ms
- Data Retention >200 years
- High Endurance Minimum 10⁴ Erase/Write Cycles
- · Automatic Write Operation
 - Internal Control Timer
 - Auto-Clear Before Write Operation
 - On-Chip Address and Data Latches
- Data polling
- · Chip Clear Operation
- · Enhanced Data Protection
 - Vcc Detector
 - Pulse Filter
 - Write Inhibit
- Electronic Signature for Device Identification
- 5-Volt-Only Operation
- · Organized 2Kx8 JEDEC Standard Pinout
- · 24-pin Dual-In-Line Package
- 32-pin PLCC Package
- 28-pin Thin Small Outline Package (TSOP) 8x20mm
- 28-pin Very Small Outline Package (VSOP) 8x13.4mm
- Available for Extended Temperature Ranges:
 - Commercial: 0°C to +70°C
 - Industrial: -40°C to +85°C


DESCRIPTION

The Microchip Technology Inc. 28C16A is a CMOS 16K non-volatile electrically Erasable PROM. The 28C16A is accessed like a static RAM for the read or write cycles without the need of external components. During a "byte write", the address and data are latched internally, freeing the microprocessor address and data bus for other operations. Following the initiation of write cycle, the device will go to a busy state and automatically clear and write the latched data using an internal control timer. To determine when a write cycle is complete, the 28C16A uses Data polling. Data polling allows the user to read the location last written to when the write operation is complete. CMOS design and processing enables this part to be used in systems where reduced power consumption and reliability are required. A complete family of packages is offered to provide the utmost flexibility in applications.

PACKAGE TYPES

BLOCK DIAGRAM

1.0 ELECTRICAL CHARACTERISTICS

1.1 MAXIMUM RATINGS*

Vcc and input voltages w.r.t. Vss.....-0.6V to + 6.25V Voltage on $\overline{\text{OE}}$ w.r.t. Vss....-0.6V to +13.5V Voltage on A9 w.r.t. Vss...-0.6V to +13.5V Output Voltage w.r.t. Vss...-0.6V to Vcc+0.6V Storage temperature ...--65°C to +125°C Ambient temp. with power applied-50°C to +95°C

*Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: PIN FUNCTION TABLE

Name	Function					
A0 - A10	Address Inputs					
CE	Chip Enable					
ŌĒ	Output Enable					
WE	Write Enable					
1/00 - 1/07	Data Inputs/Outputs					
Vcc	+5V Power Supply					
Vss	Ground					
NC	No Connect; No Internal Connection					
NU	Not Used; No External Connection i Allowed					

TABLE 1-2: READ/WRITE OPERATION DC CHARACTERISTICS

			VCC = $+5V \pm 10\%$ Commercial (C): Tamb = 0° C to $+70^{\circ}$ C Industrial (I): Tamb = -40° C to $+85^{\circ}$ C				
Parameter	Status	Symbol	Min	Max	Units	Conditions	
Input Voltages	Logic '1' Logic '0;	VIH VIL	2.0 -0.1	Vcc+1 0.8	V V		
Input Leakage	_	ILI	-10	10	μΑ	VIN = -0.1V to VCC+1	
Input Capacitance	_	CIN	_	10	pF	VIN = 0V; Tamb = 25°C; f = 1 MHz	
Output Voltages	Logic '1' Logic '0'	Voh Vol	2.4	0.45	V V	IOH = -400μA IOL = 2.1 mA	
Output Leakage	_	ILO	-10	10	μΑ	Vout = -0.1V to Vcc+0.1V	
Output Capacitance	_	Соит	_	12	pF	VIN = 0V; Tamb = 25°C; f = 1 MHz	
Power Supply Current, Active	TTL input	Icc	_	30	mA	f = 5 MHz (Note 1) Vcc = 5.5V;	
Power Supply Current, Standby	TTL input TTL input CMOS input	ICC(S)TTL ICC(S)TTL ICC(S)CMOS	_	2 3 100	mA mA μA	CE = VIH (0°C to +70°C) CE = VIH (-40°C to +85°C) CE = VCC-0.3 to VCC+1	

Note 1: AC power supply current above 5 MHz; 1 mA/MHz.

TABLE 1-3: READ OPERATION AC CHARACTERISTICS

AC Testing Waveform: VIH = 2.4V; VIL = 0.45V; VOH = 2.0V; VOI = 0.8V

Output Load: 1 TTL Load + 100pF

Input Rise and Fall Times: 20 ns

Ambient Temperature: Commercial (C): Tamb = 0° C to +70 $^{\circ}$ 0 $^{\circ}$ C Industrial (I): Tamb = -40° C to +85 $^{\circ}$ C

Parameter	Sym	28C16A-15		28C16A-20		28C16A-25		Units	Conditions
		Min	Max	Min	Max	Min	Max	Offics	Conditions
Address to Output Delay	tACC	_	150	_	200	_	250	ns	OE = CE = VIL
CE to Output Delay	tCE	_	150	_	200	_	250	ns	OE = VIL
OE to Output Delay	tOE	_	70	_	80	_	100	ns	CE = VIL
CE or OE High to Output Float	tOFF	0	50	0	55	0	70	ns	
Output Hold from \overline{CE} or \overline{OE} , whichever occurs first	toH	0	_	0	_	0	_	ns	
Endurance	_	1M	_	1M	_	1M	_	cycles	25°C, Vcc = 5.0V, Block Mode (Note)

Note: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on our BBS or website.

FIGURE 1-1: READ WAVEFORMS

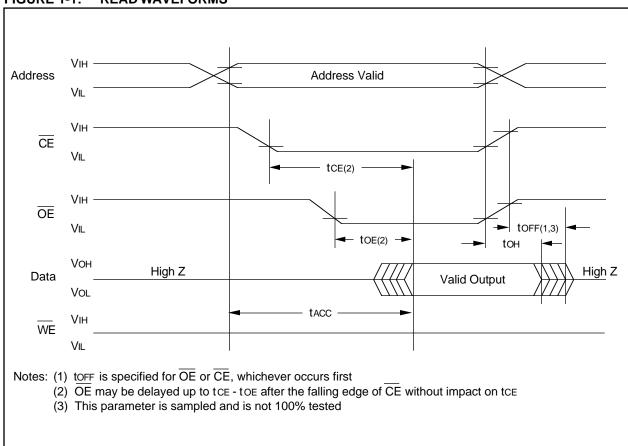


TABLE 1-4: BYTE WRITE AC CHARACTERISTICS

AC Testing Waveform: VIH = 2.4V and VIL = 0.45V; VOH = 2.0V; VOL = 0.8V

Output Load: 1 TTL Load + 100 pF

Input Rise/Fall Times: 20 ns

Ambient Temperature: Commercial (C): Tamb = 0° C to +70 $^{\circ}$ C Industrial (I): Tamb = -40° C to +85 $^{\circ}$ C

			(1):		
Parameter	Symbol	Min	Max	Units	Remarks
Address Set-Up Time	tas	10	_	ns	
Address Hold Time	tah	50	_	ns	
Data Set-Up Time	tDS	50	_	ns	
Data Hold Time	tDH	10	_	ns	
Write Pulse Width	tWPL	100	_	ns	Note 1
Write Pulse High Time	twph	50	_	ns	
OE Hold Time	toeh	10	_	ns	
OE Set-Up Time	toes	10	_	ns	
Data Valid Time	tDV	_	1000	ns	Note 2
Write Cycle Time (28C16A)	twc	_	1	ms	0.5 ms typical
Write Cycle Time (28C16AF)	twc	_	200	μs	100 μs typical

- Note 1: A write cycle can be initiated be $\overline{\text{CE}}$ or $\overline{\text{WE}}$ going low, whichever occurs last. The data is latched on the positive edge of $\overline{\text{CE}}$ or $\overline{\text{WE}}$, whichever occurs first.
 - 2: Data must be valid within 1000ns max. after a write cycle is initiated and must be stable at least until tDH after the positive edge of $\overline{\text{WE}}$ or $\overline{\text{CE}}$, whichever occurs first.

FIGURE 1-2: PROGRAMMING WAVEFORMS

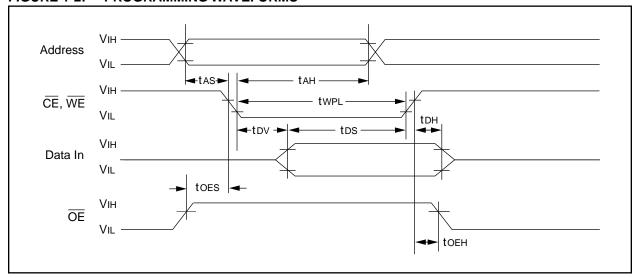


FIGURE 1-3: DATA POLLING WAVEFORMS

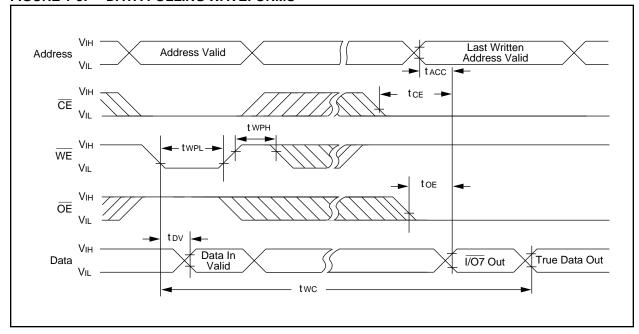


FIGURE 1-4: CHIP CLEAR WAVEFORMS

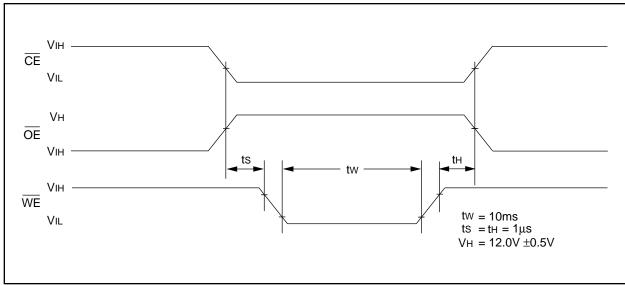


TABLE 1-5: SUPPLEMENTARY CONTROL

Mode	CE	ŌĒ	WE	A9	Vcc	I/Oı	
Chip Clear	VIL	VH	VIL	Х	Vcc		
Extra Row Read	VIL	VIL	VIH	A9 = VH	Vcc	Data Out	
Extra Row Write	*	VIH	*	A9 = VH	Vcc	Data In	
Note 1: VH = 12.0V±0.5V * Pulsed per programming waveforms.							

2.0 DEVICE OPERATION

The Microchip Technology Inc. 28C16A has four basic modes of operation—read, standby, write inhibit, and byte write—as outlined in the following table.

Operation Mode	CE	ŌĒ	WE	I/O			
Read	L	L	Н	Dout			
Standby	Н	Х	Х	High Z			
Write Inhibit	Н	Х	Х	High Z			
Write Inhibit	Х	L	Х	High Z			
Write Inhibit	Х	Х	Н	High Z			
Byte Write	L	Н	L	DIN			
Byte Clear	Automatic Before Each "Write"						

X = Any TTL level.

2.1 Read Mode

The 28C16A has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and is used to gate data to the output pins independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from \overline{CE} to output (tCE). Data is available at the output toe after the falling edge of \overline{OE} , assuming that \overline{CE} has been low and addresses have been stable for at least tACC-tOE.

2.2 Standby Mode

The 28C16A is placed in the standby mode by applying a high signal to the $\overline{\text{CE}}$ input. When in the standby mode, the outputs are in a high impedance state, independent of the $\overline{\text{OE}}$ input.

2.3 <u>Data Protection</u>

In order to ensure data integrity, especially during critical power-up and power-down transitions, the following enhanced data protection circuits are incorporated:

First, an internal Vcc detect (3.3 volts typical) will inhibit the initiation of non-volatile programming operation when Vcc is less than the Vcc detect circuit trip.

Second, there is a \overline{WE} filtering circuit that prevents \overline{WE} pulses of less than 10 ns duration from initiating a write cycle.

Third, holding \overline{WE} or \overline{CE} high or \overline{OE} low, inhibits a write cycle during power-on and power-off (Vcc).

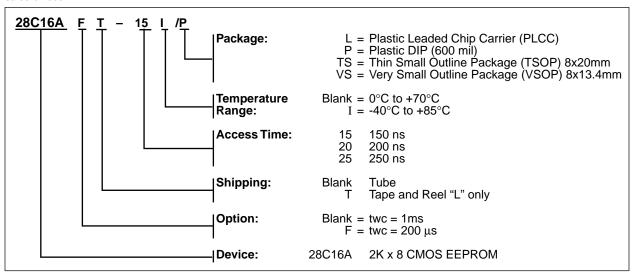
2.4 Write Mode

The 28C16A has a write cycle similar to that of a Static RAM. The write cycle is completely self-timed and initiated by a low going pulse on the $\overline{\text{WE}}$ pin. On the falling edge of $\overline{\text{WE}}$, the address information is latched. On rising edge, the data and the control pins ($\overline{\text{CE}}$ and $\overline{\text{OE}}$) are latched.

2.5 Data Polling

The 28C16A features Data polling to signal the completion of a byte write cycle. During a write cycle, an attempted read of the last byte written results in the data complement of I/O7 (I/O0 to I/O6 are indeterminable). After completion of the write cycle, true data is available. Data polling allows a simple read/compare operation to determine the status of the chip eliminating the need for external hardware.

2.6 <u>Electronic Signature for Device</u> <u>Identification</u>


An extra row of 32 bytes of EEPROM memory is available to the user for device identification. By raising A9 to $12V \pm 0.5V$ and using address locations 7EO to 7FF, the additional bytes can be written to or read from in the same manner as the regular memory array.

2.7 Chip Clear

All data may be cleared to 1's in a chip clear cycle by raising $\overline{\text{OE}}$ to 12 volts and bringing the $\overline{\text{WE}}$ and $\overline{\text{CE}}$ low. This procedure clears all data, except for the extra row.

28C16A Product Identification System

To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices.

