

Data sheet acquired from Harris Semiconductor SCHS052A - Revised March 2002

CMOS Analog Multiplexers/Demultiplexers

High-Voltage Types (20-Volt Rating)

CD4067B - Single 16-Channel

Multiplexer/Demultiplexer

CD4097B -Differential 8-Channel Multiplexer/Demultiplexer

■ CD4067B and CD4097B CMOS

analog multiplexers/demultiplexers* are digitally controlled analog switches having low ON impedance, low OFF leakage current, and internal address decoding. In addition, the ON resistance is relatively constant over the full input-signal range.

The CD4067B is a 16-channel multiplexer with four binary control inputs, A,B,C,D, and an inhibit input, arranged so that any combination of the inputs selects one switch.

The CD4097B is a differential 8-channel multiplexer having three binary control inputs A, B, C, and an inhibit input. The inputs permit selection of one of eight pairs of switches.

A logic "1" present at the inhibit input turns all channels off.

The CD4067 and CD4097 are supplied in 24-lead dual-in-line welded-seal ceramic packages (D suffix), 24-lead dual-in-line frit-seal ceramic packages (F suffix), 24-lead dual-in-line plastic packages (E suffix), 24-lead small-outline package (NSR suffix), and in chip form (H suffix).

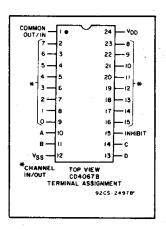
Recommended Operating Conditions at TA = 25°C (Unless Otherwise Specified)

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges. Values shown apply to all types except as

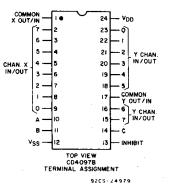
1	10	te	d.

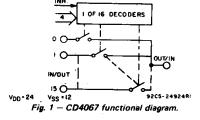
notea.			
Characteristic	Min.	Max.	Units
Supply-Voltage Range (T _A =Full Package- Temp. Range)	: 3	18	٧
Multiplexer Switch Input Current Capability	1	25	mΑ
Output Load Resistance	100	_	$\cdot \Omega$

NOTE:


In certain applications, the external load-resistor current may include both V_{DD} and signal-line components. To avoid drawing VDD current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.8 volt (calculated from RON values shown in ELECTRICAL CHARAC-TERISTICS CHART). No VDD current will flow through RL if the switch current flows into terminal 1 on the CD4067; terminals 1 and 17 on the CD4097.

Features:


- Low ON resistance: 125 Ω (typ.) over 15 V_{p-p} signal-input range for V_{DD} – V_{SS} = 15 V
- High OFF resistance: channel leakage of ±10 pA (typ.) @ VDD-VSS=10 V
- Matched switch characteristics: RoN=5 Ω (typ.) for VDD-VSS=15 V
- Very low quiescent power dissipation under all digital-control input and supply conditions: 0.2 μW (typ.) @ VDD-VSS=10 V
- Binary address decoding on chip
- 5-V, 10-V, and 15-V parametric ratings
- 100% tested for quiescent current at 20 V
- Standardized symmetrical output characteristics
- Maximum input current of 1 µA at 18 V over full package temperature range; 100 nA at 18 V and 25°C
- Meets all requirements of JEDEC Tentative Standard No. 138, "Standard Specifications for Description of 'B' Series CMOS Devices"


Applications:

- Analog and digital multiplexing and demultiplexing
- A/D and D/A conversion
- Signal gating

CD4067B, CD4097B Types

CD4067 TRUTH TABLE

A	В	С	D	Inh	Selected Channel
х	Х	х	Х	1	None
0	0	0	0	0	0
1	0	0	0	.0.	1 .
0	1 ,	0	0	0	2
1	1	0	0	0	3
0	0	1	0	0	4
1	0	1	0	0	5
0	1	1	0	0	6
1	1	1	0	0	.7
0	0	0	1	0	8
1	0	0	1	0	9
0	1	0	1	0	10
1	1	0	1	0	11
0	0	1	1	0	12
1	0	1	1	0	13
0	1	1	1	0	14
1	1	1	1	0	15

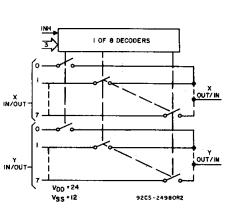


Fig. 2-CD4097 functional diagram.

CD4097 TRUTH TABLE

A	В	С	Inh	Selected Channel
x	х	х	1	None
0	0	0	0	0X, 0Y
1	0	0	0	1X, 1Y
0	1	0	0	2X, 2Y
1	1	0	0	3X, 3Y
0	0	1	0	4X, 4Y
1	0	1	0	5X, 5Y
0	1	1	0	6X, 6Y
1	1	1	0	7X, 7Y

When these devices are used as demultiplexers, the channel in/out terminals are the outputs and the common out/in terminals are the inputs.

ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	CONDITIONS LIMITS AT INDICATED TE						MPER/	ATURES	s (°¢)	Units	
	V _{is}	v _{ss}	V _{DD}	-55 -40 +85 +125		+25]		
0100101	(V)	(V)	(V)	<u> </u>	<u> </u>		L	Min.	Тур.	Max.	<u>l</u>
	יאוטי	V _{is}) AND OUT									
Quiescent			5	5	5	150	150		0.04	5	
Device Cur- rent, IDD			10	10	10	300	.300	_	0.04	10	μA
Max.			15	20	20	600	600	- :	0.04	20	┨
ON-state Re			20	100	100	3000	3000	-	0.08	100	
sistance		2 400									
V _{SS} ≤		0	5	800	850	1200	1300	-	470	1050	100
Vis≪VDD		0	10	310	330	520	550	_	180	400	Ω
ron Max.		0	15	200	210	300	320	_	125	240	
Change in						1					
on-state Resistance	l					Ì	•		1	1	
(Between	ļ ·						1.5		1		
Any Two		0	5	_	_	l –			15	_	1
Channels)		0	10				-		. 10	<u> </u>	Ω
Δr_{on}	, ,	0	15		_			_	5	-	1
OFF Chan-											
nel Leak-											
age Cur- rent: Any										l	
Channel					•				l	3.	
OFF Max.		o	10						ا مدا	1.00*	
or		١	18	±1	100*	±100	0*	- ±0.1	±100*	nΑ	
All Chan-								Ī	i	l	
nels OFF (Common										1	
OUT/IN)								ŀ		1	İ
Max.									İ		i
Capacitance:										i e	
Input, C _{is}					-	-	_	-	5		
Output,										1	
Cos				į į							į
CD4067		– 5	5	_		_			55		рF
CD4097					-		-		35	<u> </u>	"
Feed- through,									ha	ŀ	
C _{ios}				_	_	_	_		0.2	Į.	
Propaga-								_		— —	-
tion Delay	V= -	R _L = 200 KΩ	5	_				_	30	60	
Time (Sig-	V _{DD}		10				_	_	15	30	ns
nal Input	Л	t _r ,t _f =20 ns	15	_	_	_		_	10	20	
to Output		ŀ					L	L		<u></u>	L
CONTROL	(ADDI	RESS or INHIB					1 m				
Input Low		R _L =1 KΩ	5		1.5	i .		L –	— .	1.5]
Voltage,	=V _{DD}	to V _{SS}	10		3			-		3	1
V _{IL} Max.	- V DD thru		15		4			Γ_		4	1
Input High	1 ΚΩ	on all OFF	5		3.5		· ·	2.5		+	\ \
Voltage,		Channels	10	\vdash	7			3.5		1	1
V _{IH} Min.	1			 				7		↓ =	1
, 9.3	<u>t </u>		15	L	. 11			11	1 – .	-	1

^{*} Determined by minimum feasible leakage measurement for automatic testing.

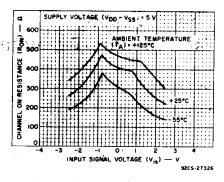


Fig. 3—Typical ON resistance vs. input signal voltage (all types).

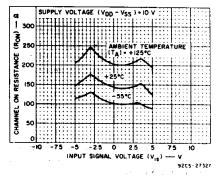


Fig. 4—Typical ON resistance vs. input signal voltage (all types).

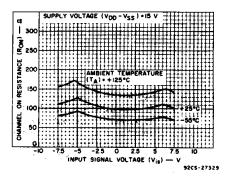


Fig. 5—Typical ON resistance vs. input signal voltage (all types).

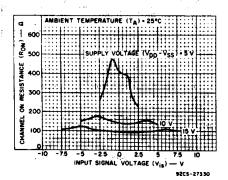
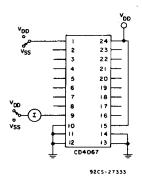



Fig. 6—Typical ON resistance vs. input signal voltage (all types).

ELECTRICAL CHARACTERISTICS (Cont'd)

CHARAC- TERISTIC		ıs	LIMITS AT INDICATED TEMPERATURES (°C)							Units	
:	Vis	v _{ss}	V _{DD}	-55	-40	+85	+125		+25		
	(V)	(V)	(V)					Min.	Тур.	Max.	
Input Current, I _{IN} Max.	V _{IN} = 0, 18 V		18	±0.1	±0.1	±1	±1		±10 ⁻⁵	±0.1	μΑ
Propagation Delay Time: Address or		KΩ,C _L = _r ,t _f =20 ns									
Inhibit-to-		0	5	_				_	325	650	
Signal OUT (Channel		0	10			-	-	_	135	270	ns
turning ON)		0	15	-	_	_			95	190	
Address or Inhibit-to-) Ω,C _L = t _r ,t _f =20 ns									
Signal OUT		0	5]	-	. → ·	_		220	440	
(Channel turning		0	10	_	_				90	180	ns
OFF)		0	15	-		1	_	_	65	130	
Input Capaci- tance, C _{IN}	Any Address or Inhibit Input						_	-	5	7.5	pF

TEST CIRCUITS

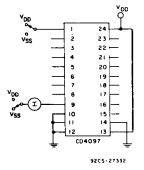


Fig. 7-OFF channel leakage current-any channel OFF.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (V _{DD})	
Voltages referenced to V _{SS} Terminal)	
INPUT VOLTAGE RANGE, ALL INPUTS	0.5V to V _{DD} +0.5V
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$	500mW
For T _A = +100°C to +125°C	.Derate Linearity at 12mW/OC to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Ty	pes) 100mW
OPERATING-TEMPERATURE RANGE (TA)	55°C to +125°C
STORAGE TEMPERATURE RANGE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max	+265°C

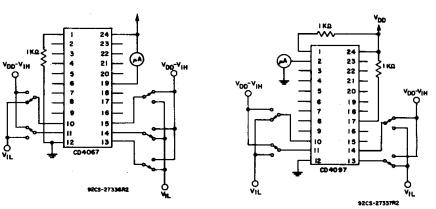
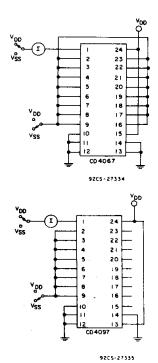
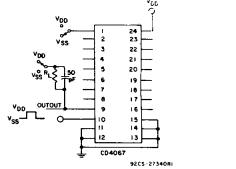


Fig. 8—Input voltage—measure \leq 2 μ A on all OFF channels (e.g., channel 12).




Fig. 9-OFF channel leakage current-all channels OFF.

ELECTRICAL CHARACTERISTICS (Cont'd)

			TE	ST COND	TIONS					
CHARAC- TERISTIC	V _{is} (V)	V _{DD} (V)	R _L (ΚΩ)				TYPICAL VALUES	UNITS		
Cutoff	5●	10	1							
(-3-dB) Frequency	İ			V at Co	mmon OUT/IN	CD4067	14			
Channel ON	20 log	$\frac{V_{os}}{V_{is}} = -3$	3 dB			CD4097	20	MHz		
(Sine Wave Input)		' V _{is}		V _{os} at An	y Channel	60	1411 12			
Total	2●	5					0.3			
Harmonic	3●	10	10				0.2]		
Distortion, THD	5 [•]	15					0.12	%		
		k'Hz sine	wave				i i			
40-dB	5 •	10	1							
Feedthrough	v			Vos at Common OUT/IN CD4067			20			
Frequency (All Channels	20 100 =41		20 log	$\frac{V_{OS}}{V} = -40 \text{ dB}$				CD4097	12	MHz
OFF	Vis			V _{os} at An	y Channel	8				
	5 [•]	10	1							
Signal Cross-				Between A	Any 2 Channels [▲]		. 1			
talk (Fre- quency at	20 100	$\frac{V_{os}}{V_{is}} = -2$	מר טו	Between Sections	Measured on C	ommon	10			
-40 dB)	20 log	Vis	+0 ub	CD4097 Only	Measured on A Channel	ny	18	MHz		
	-	10	10*							
Address-or- Inhibit-to- Signal Crosstalk	VC=∧	DD ^V S re Wave)					75	mV (Peak)		

- Worst case.
- * Both ends of channel.

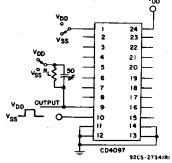


Fig. 11— Turn-on and turn-off propagation delay—address select input to signal output (e.g. measured on channel 0).

TEST CIRCUITS (Cont'd)

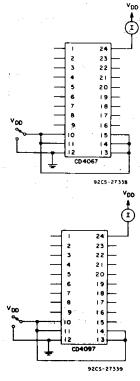
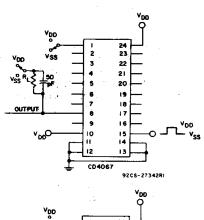



Fig. 10- Quiescent device current.

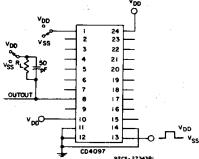
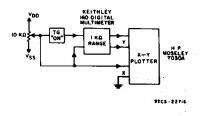
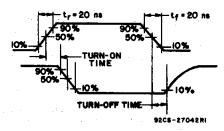




Fig. 12— Turn-on and turn-off propagation delay inhibit input to signal output (e.g. measured on channel 1).

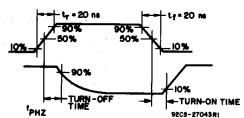


Fig. 13- Channel ON resistance measurement circuit.

Fig. 14- Propagation de/ay waveform channel being turned ON (R_L = 10 K Ω , C_L = 50 pF).

Fig. 15- Propagation delay waveform, channel being turned OFF (R $_{L}$ = 300 Ω , $C_L = 50 \ pF$).

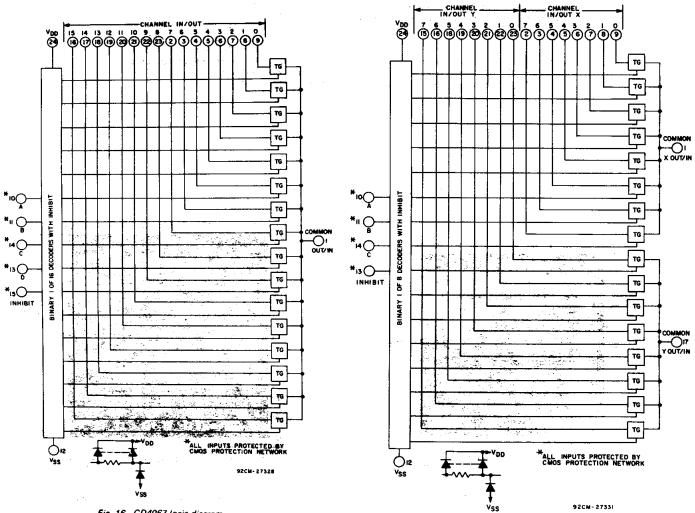


Fig. 16-CD4067 logic diagram.

Fig. 17-CD4097 logic diagram.

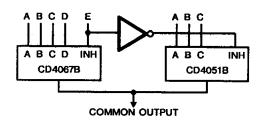
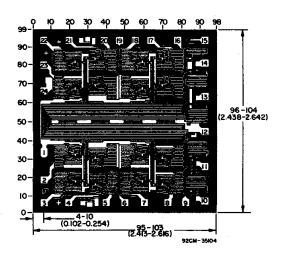


Fig. 18-24-to-1 MUX Addressing

SPECIAL CONSIDERATIONS


In applications where separate power sources are used to drive V_{DD} and the signal inputs, the V_{DD} current capability should exceed V_{DD}/R_L (R_L=effective external load). This provision avoids permanent current flow or clamp action on the V_{DD} supply when power is applied or removed from the CD4067B or CD4097B.

When switching from one address to another, some of the ON periods of the channels of the multiplexers will overlap momentarily, which may be objectionable in certain applications. Also when a channel is turned on or off by an address input, there is a momentary conductive path from the channel to VSS, which will dump some charge from any capacitor connected to the input or output of the channel. The inhibit input turning on a channel will similarly dump some charge to VSS.


The amount of charge dumped is mostly a function of the signal level above VSS. Typically, at $VDD-VSS=10\ V$, a 100-pF

capacitor connected to the input or output of the channel will lose 3-4% of its voltage at the moment the channel turns on or off. This loss of voltage is essentially independent of the address or inhibit signal transition time, if the transition time is less than 1-2 µs. When the inhibit signal turns a channel off, there is no charge dumping to VSS. Rather, there is a slight rise in the channel voltage level (65 mV typ.) due to capacitive coupling from inhibit input to channel input or output. Address inputs also couple some voltage steps onto the channel signal levels.

In certain applications, the external load-resistor current may include both V_{DD} and signal-line components. To avoid drawing V_{DD} current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.8 volt (calculated from R_{ON} values shown in ELECTRICAL CHARACTERISTICS CHART). No V_{DD} current will flow through R_L if the switch current flows into terminal 1 on the CD4067B, terminals 1 and 17 on the CD4097B.

Dimensions and pad layout for CD4067BH.

Dimensions and pad layout for CD40978H.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3}) inch).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated