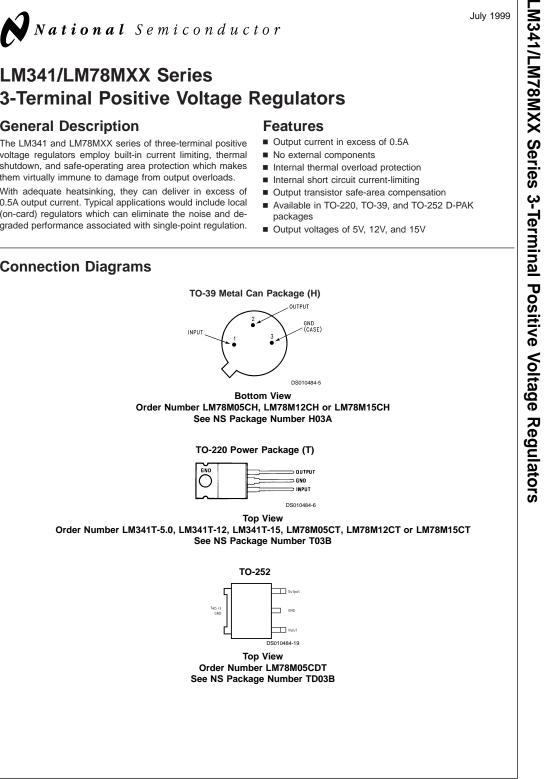
July 1999

National Semiconductor

LM341/LM78MXX Series **3-Terminal Positive Voltage Regulators**

General Description


The LM341 and LM78MXX series of three-terminal positive voltage regulators employ built-in current limiting, thermal shutdown, and safe-operating area protection which makes them virtually immune to damage from output overloads.

With adequate heatsinking, they can deliver in excess of 0.5A output current. Typical applications would include local (on-card) regulators which can eliminate the noise and degraded performance associated with single-point regulation.

Features

- Output current in excess of 0.5A
- No external components
- Internal thermal overload protection
- Internal short circuit current-limiting
- Output transistor safe-area compensation
- Available in TO-220, TO-39, and TO-252 D-PAK
- packages
- Output voltages of 5V, 12V, and 15V

Connection Diagrams

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

. .

		·	0,	,	
TO-3	9 Package	e (H)			300°C
TO-2	20 Packag	je (T)			260°C

Storage Temperature Range	–65°C to +150°C
Operating Junction Temperature Range	–40°C to +125°C
Power Dissipation (Note 2)	Internally Limited
Input Voltage	
$5V \le V_O \le 15V$	35V
ESD Susceptibility	TBD

Electrical Characteristics

Limits in standard typeface are for $T_J = 25^{\circ}$ C, and limits in **boldface type** apply over the -40°C to +125°C operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods.

LM341-5.0, LM78M05C

Unless otherwise specified: V_{IN} = 10V, C_{IN} = 0.33 µF, C_O = 0.1 µF

Symbol	Parameter	Conditions		Min	Тур	Max	Units
Vo	Output Voltage IL= 500 mA			4.8	5.0	5.2	V
		$5 \text{ mA} \leq I_{L} \leq 500 \text{ mA}$		4.75	5.0	5.25	1
		$P_{D} \le 7.5W, 7.5V \le V_{IN}$	$P_{D} \le 7.5W, 7.5V \le V_{IN} \le 20V$				
V _{R LINE}	Line Regulation	$7.2V \le V_{IN} \le 25V$ $I_{I} = 100 \text{ mA}$				50	mV
			I _L = 500 mA			100	
V _{R LOAD}	Load Regulation	$5 \text{ mA} \le \text{I}_{\text{L}} \le 500 \text{ mA}$	$5 \text{ mA} \leq \text{I}_{\text{L}} \leq 500 \text{ mA}$			100	
Ι _Q	Quiescent Current	I _L = 500 mA			4	10.0	mA
ΔI_Q	Quiescent Current Change	Change $5 \text{ mA} \le I_L \le 500 \text{ mA}$				0.5	1
		$7.5V \le V_{IN} \le 25V, I_{L} =$	500 mA			1.0	
V _n	Output Noise Voltage	f = 10 Hz to 100 kHz			40		μV
$\frac{\Delta V_{IN}}{\Delta V_{O}}$	Ripple Rejection	f = 120 Hz, I _L = 500 mA			78		dB
V _{IN}	Input Voltage Required	I _L = 500 mA		7.2			V
	to Maintain Line Regulation						
ΔV _O	Long Term Stability	I _L = 500 mA				20	mV/khrs

Electrical Characteristics

Limits in standard typeface are for $T_J = 25^{\circ}$ C, and limits in **boldface type** apply over the -40°C to +125°C operating temperature range. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. (Continued)

LM341-12, LM78M12C

Unless otherwise specified: V_{IN} = 19V, C_{IN} = 0.33 μ F, C_O = 0.1 μ F

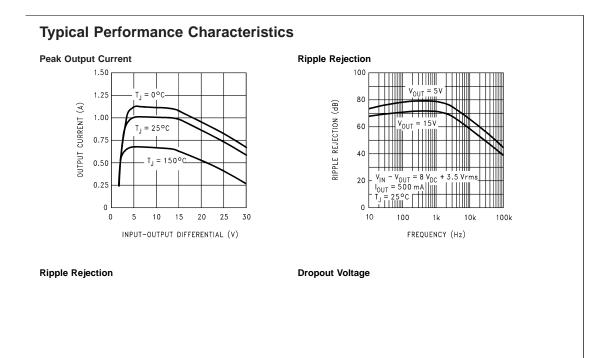
Symbol	Parameter	Conditions	Min	Тур	Max	Units
Vo	Output Voltage	ut Voltage I _L = 500 mA		12	12.5	V
		$5 \text{ mA} \le \text{I}_{\text{L}} \le 500 \text{ mA}$	11.4	12	12.6	
		$P_D \le 7.5W$, 14.8V $\le V_{IN} \le 27V$				
V _{R LINE}	Line Regulation	$14.5V \le V_{IN} \le 30V$ $I_{L} = 100 \text{ mA}$			120	mV
		I _L = 500 mA			240	
V _{r load}	Load Regulation	$5 \text{ mA} \le \text{I}_{\text{L}} \le 500 \text{ mA}$			240	
l _Q	Quiescent Current	I _L = 500 mA		4	10.0	mA
ΔI_Q	Quiescent Current Change	$5 \text{ mA} \leq \text{I}_{\text{L}} \leq 500 \text{ mA}$			0.5	1
		$14.8V \le V_{IN} \le 30V, I_L = 500 \text{ mA}$			1.0	1
V _n	Output Noise Voltage	f = 10 Hz to 100 kHz		75		μV
$\frac{\Delta V_{IN}}{\Delta V_{O}}$	Ripple Rejection	f = 120 Hz, I _L = 500 mA		71		dB
V _{IN}	Input Voltage Required	I _L = 500 mA	14.5			V
	to Maintain Line Regulation					
ΔV_{O}	Long Term Stability	I _L = 500 mA			48	mV/khrs

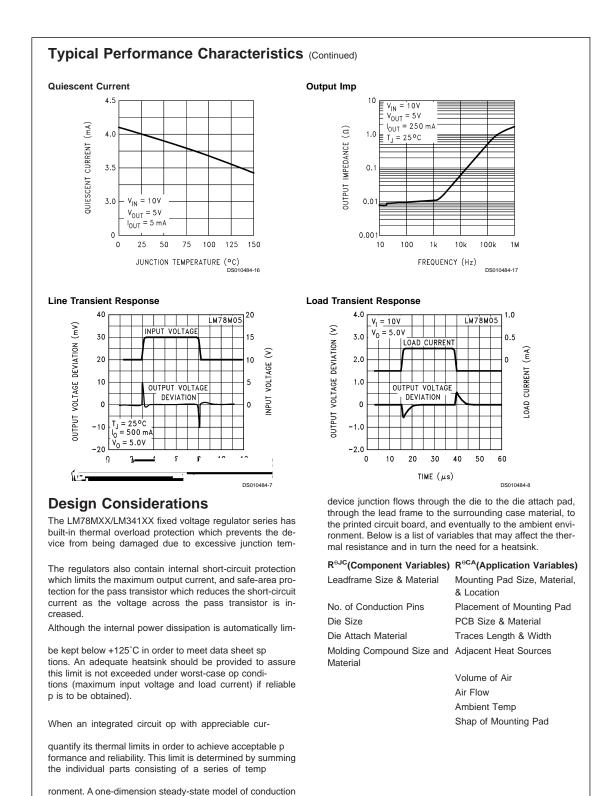
LM341-15, LM78M15C

Unless otherwise specified: V_{IN} = 23V, C_{IN} = 0.33 µF, C_O = 0.1 µF

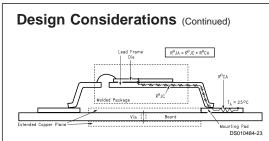
Symbol	Parameter	Condition	s	Min	Тур	Max	Units
Vo	Output Voltage	I _L = 500 mA		14.4	15	15.6	V
	$5 \text{ mA} \le \text{I}_{\text{L}} \le 500 \text{ m}$			14.25	15	15.75	
		$P_{D} \le 7.5W$, $18V \le V_{IN} \le 30V$					
V _{R LINE}	Line Regulation	$17.6V \le V_{IN} \le 30V$	I _L = 100 mA			150	mV
			I _L = 500 mA			300	
V _{R LOAD}	Load Regulation	$5 \text{ mA} \le \text{I}_{\text{L}} \le 500 \text{ mA}$				300	1
Ι _Q	Quiescent Current	I _L = 500 mA			4	10.0	mA
ΔI_Q	Quiescent Current Change	$5 \text{ mA} \le \text{I}_{\text{L}} \le 500 \text{ mA}$				0.5	
		$18V \le V_{IN} \le 30V, I_{L} = 50$	00 mA			1.0	1
V _n	Output Noise Voltage	f = 10 Hz to 100 kHz			90		μV
$\frac{\Delta V_{IN}}{\Delta V_{O}}$	Ripple Rejection	$f = 120 \text{ Hz}, I_{L} = 500 \text{ mA}$	A		69		dB
V _{IN}	Input Voltage Required	I _L = 500 mA		17.6			V
	to Maintain Line Regulation						
ΔV _O	Long Term Stability	$I_1 = 500 \text{ mA}$				60	mV/khrs

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.


Note 2: The typical thermal resistance of the three package types is:

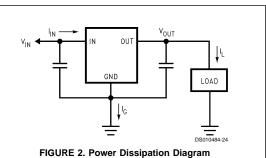

T (TO-220) package: $\theta_{(JA)}$ = 60 °C/W, $\theta_{(JC)}$ = 5 °C/W

H (TO-39) package: $\theta_{(JA)}$ = 120 °C/W, $\theta_{(JC)}$ = 18 °C/W


DT (TO-252) package: $\theta_{(JA)} = 92 \text{ °C/W}, \theta_{(JC)} = 10 \text{ °C/W}$

₹ ^{R1} 80k	📩 D3	j	⊷ v _{in}
	 -		
-	k 		
2			
-	7		
	-		
	*		
	-		DS010484-1
<u></u>			
	 -		

heat transfer is demonstrated in The heat generated at the


FIGURE 1. Cross-sectional view of Integrated Circuit Mounted on a printed circuit board. Note that the case temperature is measured at the point where the leads contact with the mounting pad surface

The LM78MXX/LM341XX regulators have internal thermal shutdown to protect the device from over-heating. Under all possible operating conditions, the junction temperature of the LM78MXX/LM341XX must be within the range of 0°C to 125°C. A heatsink may be required depending on the maximum power dissipation and maximum ambient temperature of the application. To determine if a heatsink is needed, the power dissipated by the regulator, P_D, must be calculated:

 $I_{IN} = I_L + I_G$

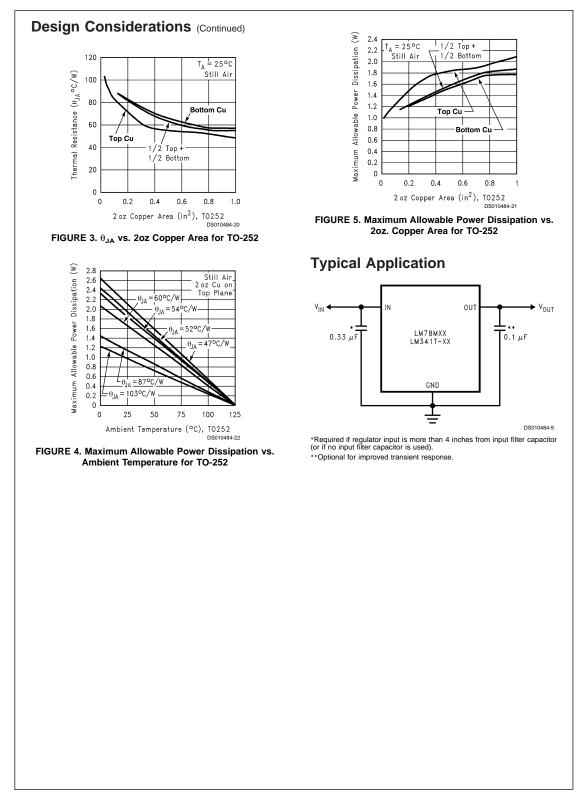
 $\mathsf{P}_\mathsf{D} = (\mathsf{V}_\mathsf{IN} – \mathsf{V}_\mathsf{OUT}) \ \mathsf{I}_\mathsf{L} + \mathsf{V}_\mathsf{IN} \mathsf{I}_\mathsf{G}$

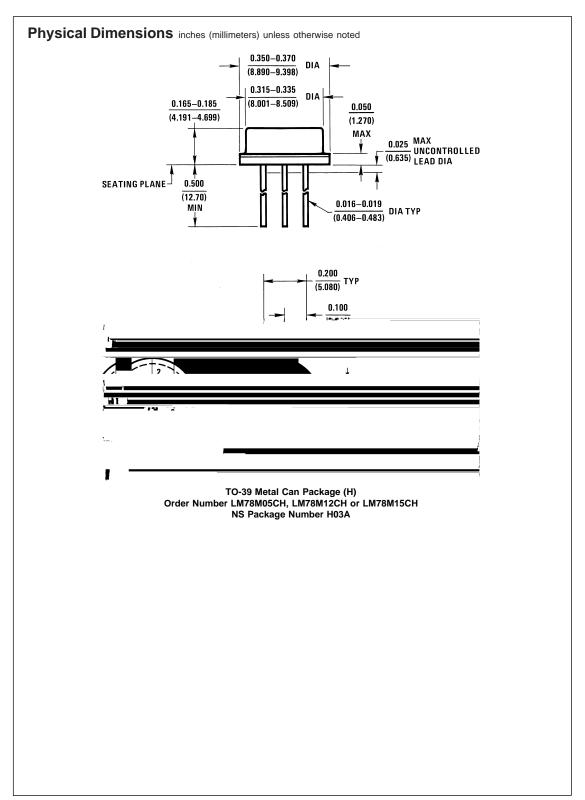
shows the voltages and currents which are present in the circuit.

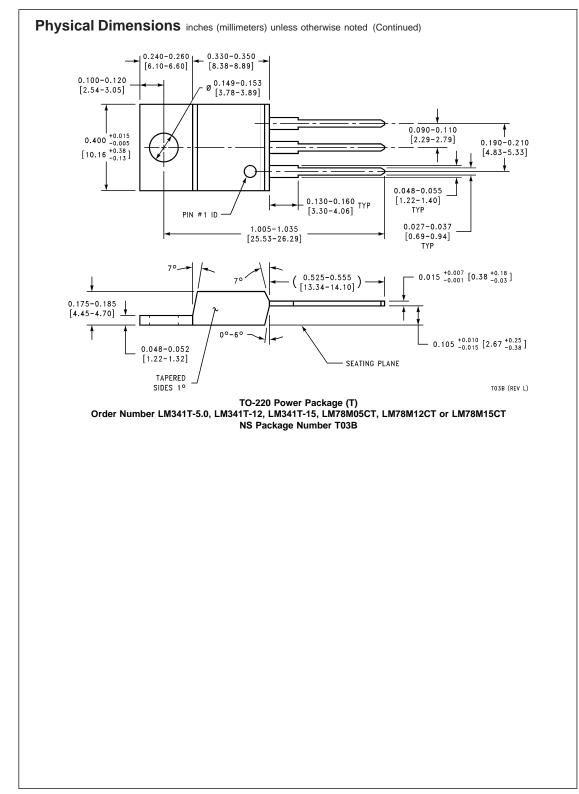
The next parameter which must be calculated is the maximum allowable temperature rise, $T_R(max)$:

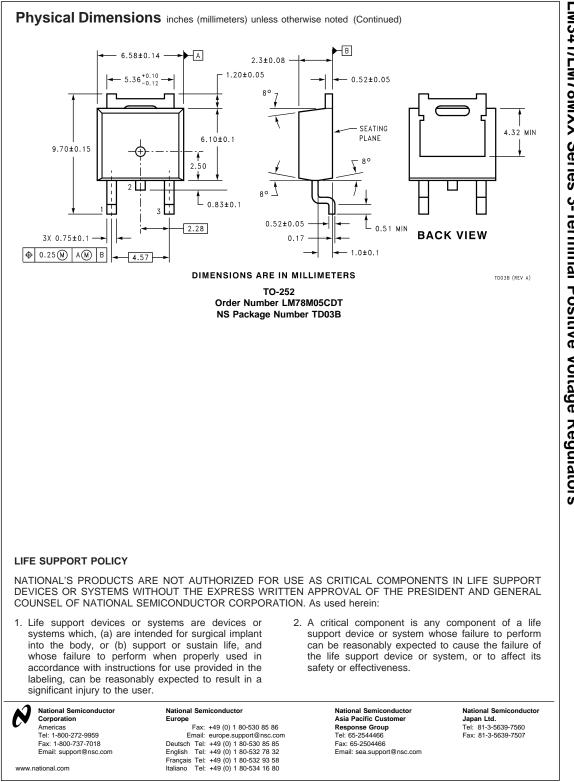
 $\theta_{JA} = TR (max)/P_D$

If the maximum allowable value for $\theta_{JA}{}^{\circ}C/w$ is found to be $\geq 60{}^{\circ}C/W$ for TO-220 package or $\geq 92{}^{\circ}C/W$ for TO-252 package, no heatsink is needed since the package alone will dissipate enough heat to satisfy these requirements. If the calculated value for θ_{JA} fall below these limits, a heatsink is required.


As a design aid, *Table 1* shows the value of the θ_{JA} of TO-252 for different heatsink area. The copper patterns that we used to measure these θ_{JA} are shown at the end of the Application Note Section. reflects the same test results as what are in the *Table 1*


shows the maximum allowable power dissipation vs. ambient temperature for theTO-252 device. shows the maximum allowable power dissipation vs. copper area (in²) for the TO-252 device. Please see AN1028 for power enhancement techniques to be used with TO-252 package.


Layout	Сорр	Thermal Resistance				
	Top Sice (in ²)*	Bottom Side (in ²)	(θ _{JA} , °C/W) TO-252			
1	0.0123	0	103			
2	0.066	0	87			
3	0.3	0	60			
4	0.53	0	54			
5	0.76	0	52			
6	1	0	47			
7	0	0.2	84			
8	0	0.4	70			
9	0	0.6	63			
10	0	0.8	57			
11	0	1	57			
12	0.066	0.066	89			
13	0.175	0.175	72			
14	0.284	0.284	61			
15	0.392	0.392	55			
16	0.5	0.5	53			


TABLE 1. θ_{JA} Different Heatsink Area

*Tab of device attached to topside copper

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.