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Implementing a DSP Kernel for
Online Dynamic Handwritten

Signature Verification Using the
TMS320 DSP Family

Abstract 

Biometric authentication techniques are in high demand for
entrance monitoring and security systems. The techniques must
be cheap, reliable and, foremost, unintrusive to the authorized
person.

The only technique to meet all three requirements is handwritten
signature verification. A recent development shows how focussing
on the dynamic properties enables a high quality result at a
drastically reduced computational effort.  Here, we discuss an
elegant realization, based on the TMS320 line of digital signal
processors, that serves as a kernel in small to large safety and
security related systems.

This document was an entry in the 199x DSP Solutions
Challenge, an annual contest organized by TI to encourage
students from around the world to find innovative ways to use
DSPs. For more information on the TI DSP Solutions Challenge,
see TI’s World Wide Web site at www.ti.com.
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Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.
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Introduction

Authentication has become an essential part of highly
computerized services and/or security-sensitive installations in
modern society. A number of techniques researched over the past
decade checks on the person's face, voice, iris or fingerprint.

For optimal security, practical systems usually apply at least two
different authentication techniques. However, the techniques tend
to require additional measurements to be usable or inoffensive to
the person involved.

A popular means of authentication historically has been the
handwritten signature. Though such signatures are never the
same for the same person at different times, there appears to be
no practical problem for human beings to discriminate visually the
real signature from the forged one. It will be extremely useful
when an electronic device can display at least the same virtuosity.

Nevertheless, signatures do get forged. Most of the authentication
techniques used by machines to detect such forgeries are very
complex. Even the most trained professionals find it difficult to
identify a painting by Van Gogh, Brueghel, or Rembrandt by
looking at the signature. They also look at other features, such as
(chemical) composition of the paint and the type of brush used.
Signatures on modern artwork are made impossible to forge by
mixing the ink with certain small parts of the artist's DNA. For
large-scale uses, such as banking, we cannot permit ourselves
this luxury. Moreover, with the introduction of electronic pen-based
human interfaces, the use of ink has disappeared and one has to
rely on other means for automatic authentication.

Automatic verification is far from perfect.1 Most techniques require
complex functions and a lot of computing power; however, as
shown in this paper, some techniques are simple enough for a
low-cost DSP.

In this application report, we first introduce the basic signature
verification terminology. Then we review the work of Oupta and
Joyce as it provides a reasonable starting point for realization in
TMS320 DSP-technology.2 3 We add neural clustering techniques
to enhance the discriminating power and arrive at a very simple
and low-cost solution that can be embedded in existing pen-based
systems, such as handheld computers and transaction units.
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Signature Verification

The design of a signature verification system requires solutions to
five types of problems (see Figure 1):

� Data acquisition

� Preprocessing

� Feature extraction

� Comparison process

� Performance evaluation

A static signature verification system receives a 2-D image as
input from a camera or scanner. Such a system requires a lot of
memory and computing power to process the images. The major
algorithmic challenge is the required invariance to the current
disposition of the writer: no two signatures are fully identical, even
after transformation.

Figure 1. Data Flow Diagram of a Signature Verification System
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A dynamic signature verification system gets its input from a
digitizer or other, usually pen-based, dynamic input device. The
signature is then represented as one or several time-varying
signals. In other words, the verification system focuses on how the
signature is being written rather than how the signature was
written. This provides a better means to grasp the individuality of
the writer but fails to recognize the writing itself.

Intuitively, this must be correct, being fully in-line with science
fiction literature: "The irregularity of the hammer blows used by
each artisan followed characteristic patterns to an extent that the
maker can be identified without question by sampling that pattern.
Collectors developed the method to verify authenticity. It's as
definite as an eye print, more positive than any skin-print
anomaly,” as Herbert stated on pg.165.4

The performance of a signature verification system is generally
evaluated according to the error representation of a two-class
pattern recognition problem, that is, with the type I (FRR-false
rejection rate) and type II (FAR: false acceptance rate) errors. As
the ideal case (i.e., 0 percent on both errors) is questionable to
exist, a choice has to be made depending on the application
between one of the two error rates equal to zero or the
minimization of the total error, FRR + FAR. For entry systems, the
false rejection is the most important; for security systems, the
false acceptance is most important.

Dynamic signature verification methods can be classified in two
main groups. The first group contains methods dealing with
functions as features. In this case, the complete signals (i.e.,
position, pressure, velocity, acceleration vs. time, etc.) are
considered as, or represented by, mathematical time functions
whose values directly constitute the feature set. In the second
group, the methods refer to parameters as features (total time,
means, number of zero crossings, etc.) which are computed from
the measured signals.

The algorithms used in the preprocessing part are not detailed
here. Depending on the type of digitizer and features used,
preprocessing reduces spurious noise, detects gaps, amplifies,
filters, conditions, digitizes, truncates, normalizes and/or encodes.

The algorithms used in the comparison and decision parts differ
by group. Comparing functions comes with problems such as
consistency, nonlinear time axis distortions and random variations.
Solutions to these problems include regional correlation, dynamic
time warping and tree matching.
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Parameter comparison is very straightforward. Vectors of
parameters in a feature space often describe the signatures and
their closeness is evaluated with the use of specific metric, such
as Euclidean distance. The decision part needs a threshold on this
metrical distance value to control the FAR and FRR, and is thus a
very important factor in the performance of the system.
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Simple Dynamic Handwritten Signature Verification
Technique

Gopal W. Gupta and Rick C. Joyce describe a simple dynamic
signature verification technique based on parameter features that
are easy to determine and/or compute: 2

� Total time

� Number of sign changes in the x and y velocities and x and y
accelerations

� Number of zero values in the x and y accelerations

� Pen-up time

� Total path length

Data Acquisition

The digitizer used in their experiments is a graphics tablet to
capture a signature as samples of (x, y) coordinate pairs 100 to
200 times a second. With such equipment, it is straightforward to
compute velocities and accelerations from the data.

Preprocessing

Although no preprocessing has been used in their experiments,
they recognize that smoothing the data, i.e. averaging out the
measurement errors, would be helpful to obtain better
approximations to the velocities and accelerations. In our own
experiments, using a commercial 5- by 5-inch graphics tablet with
a sampling rate of 120 Hz, the ACECAT-II, we found that
removing dropouts and peaks should be sufficient.

Feature Extraction

As mentioned above, seven features are computed from the (pre-
processed) data. Computing x and y velocities, accelerations, and
number of zeros in the accelerations are trivial. As the digitizers
use samples at a frequent rate, we can use the digitizer time units
of 1/100 to l/200 seconds, i.e., the number samples, for the overall
time and pen-up time. The values of the features are placed in a
vector T.
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Enrollment

For the comparison process we need a reference. Gupta and
Joyce simply used the mean and standard deviations of the
values of the features of 5 to 10 sample signatures to obtain two
vectors R and S.

Comparison

To compare the signature, we simply compute the distance vector
D = R – T, and normalize D by dividing each value by the
corresponding standard deviation in the vector S to obtain a vector
Z whose norm is then computed. In practice, it is possible to have
standard deviations of zero. In such case, a value or 10 percent of
the mean value is used for the standard deviation.

Decision-Making

The computed norm is now compared to a pre-defined threshold.
The signature is authenticated only if the norm is smaller than the
threshold. The value of the threshold depends on the application.
Table 1 presents the results of their initial experiment. Their aim
was to approach an FRR of 0 percent or very close to it. No skilled
forgeries are used, i.e., FAR represents the acceptance of random
signatures, also called zero-effort FAR.

Also, only seven features are used: total time, number of sign
changes in the x and y velocities and x and y accelerations, per-
up time, and the total path length.

Table 1. Evaluating Different Number of Sample Signatures from Gupta and
Joyce

Number of Sample Signatures

3 5 7 10

Threshold FRR FAR FRR FAR FRR FAR FRR FAR

4 64.2% 1.5% 35.9% 1.8% 22.0% 1.8% 14.3% 2.1%

6 37.8% 2.5% 11.5% 5.8% 6.9% 8.6% 3.2% 8.6%

8 23.7% 6.1% 5.6% 9.8% 3.0% 13.2% 1.0% 13.2%

10 14.0% 8.9% 3.0% 12.9% 0.6% 16.0% 0.0% 18.8%

12 9.6% 13.2% 2.0% 18.5% 0.2% 20.6% 0.0% 23.7%

14 7.4% 16.3% 1.3% 22.8% 0.2% 27.1% 0.0% 27.4%

16 5.2% 19.4% 0.8% 25.9% 0.2% 30.8% 0.0% 32.0%

Having more features does not necessarily improve performance.
In fact, when trying to minimize the total error, the best results
were obtained using a set of four features:
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� Total signature time

� Number of acceleration sign changes in the x-direction

� Total pen-up time

� Number of zero values in the x-acceleration

These four features gave a result of 2.5 percent FRR with a FAR
of 8.6 percent (when the threshold value was 5). Minimizing FAR
or FRR to 0 percent resulted in a 78.9 percent FRR and a 17.8
percent FAR respectively, using only three features. G. Gupta and
R. Joyce are confident that they can reduce the zero-effort FAR
considerably by including a small number of shape-related
features in the set of features. Such features are currently under
study.
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As shown in Figure 2, this leaves the architectural scheme of the
signature verification system largely unaltered. In developing the
neural network, we are first confronted with the choice of topology
and learn rule. Though the use of temporal effects would be
preferable for the current experiments, we have refrained from
such computationally intensive schemes and preferred in the first
instance a straight feed-forward network. Because of the inherent
non-linearity of neural clustering, this already provides a step
beyond the previous work of Gupta and Joyce.

After data acquisition and preprocessing of the time-varying input
signal, the neural network measures the likeness to the various
trained patterns. A final decision-making step is still required to
qualify the most likely result from all others. Depending on the
application, these results are thresholded to minimize the FRR
and/or FAR. In other words, the nature of the application differs
only in this final stage.

For illustration purposes, we discuss here first a small experiment
with three people using the InterAct environment. Figure 3 shows
some typical observations.

� The network plot showing the topology used for the
identification,

� The activity plot showing by node size the degree by which the
neurons participate in the identification,

� The error plot showing the acceptance error over the applied
test patterns.
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Figure 3. InterAct Observations on a Small Experiment

From a random selection of 25 students, we assembled a set of
signatures at different moments in time to experiment with the
network dimensions. On a conventional feed forward network, the
neural recognition is on a per person basis, where the number n of
input neurons ranges between 4 and 9 (as required for adequate
enrollment), while usually 2 - 3 hidden and 1 output neuron
suffices.
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The networks are trained off-line in the InterAct environment and
finally produced in a small, table-oriented software model. During
this generation process, the non-linear transfer characteristics of
the individual neuron are sharpened to minimize the
computational effort during execution on the target hardware while
maintaining the trained functionality.
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Software Architecture

The signature will be written on the ACECAT-II graphics tablet and
continuously provide the pen status and (x,y) location with a
sampling rate of 120 Hz. This information is scanned for outliers
and dropouts and stored in a linear list. From inspection of this list,
the nine data items for further processing follow:

1) Total time (T), i.e., the number of samples in the list (from first
pen-down to last pen-up) with the sampling rate as common
time-base.

2) Number of zero crossings in x-velocity (XV), i.e., the number of
sign changes in the differences in the pair over the x
coordinates.

3) Number of zero crossings in y-velocity (YV), i.e., the number of
sign changes in the differences of the pair over the y co-
ordinates.

4) Number of zero crossings in x-acceleration (XA), i.e., the
number of sign changes in the differences of the pair over the
x velocities.

5) Number of zero crossings in y-acceleration (YA), i.e., the
number of sign changes in the differences of the pair over the
y velocities.

6) Number of zero values in x-acceleration (XAZ), i.e., the
number of samples with a zero x-acceleration value.

7) Number of zero values in y-acceleration (YAZ), i.e., the
number of samples with a zero y acceleration value.

8) The overall pen-up time (PU) i.e., the number of samples with
the pen up.

9) The overall path length (PL), i.e., the sum of the Euclidean
distances between the samples

As accommodated by the next procedure.

T - N; XV – YV – XA = YA = XAZ = YAZ= PU = PL = O

last_xv = last_xa = last_yv =last_ya =0;

for (i = 1; i < N; i++)

{ xv, = sample [i].x – sample [i-1].x;

if(xv ^ last_xv < 0) XV + = 1;

xa = xv – last_xv;

if (xa ^ last_xa<O) XA +=1;
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if (xa==O) XAZ += 1;

last_xv = xv;

last_xa = xa;

yv, = sample [i].y – sample [i-1].y;

if(yv ^ last_yv < 0) YV + = 1;

ya = yv – last_yv;

if (ya ^ last_ya<O) YA +=;:

if (ya==O) YAZ += 1;

last_yv = yv;

last~ya = ya;

If (sample[i].pen_up) PU += 1;

PL += sqrt(xv * xv + yv * yv)}

This procedure needs between 300 and 350 cycles per sample,
which on a TMS320C10-14 provides a 100 µs response time. With
the sampling rate of 200 Hz, there is sufficient room for the further
processing to be on-line. Further, the data storage requirements
are 16 words.

The feed-forward artificial neural network is an assembly of
neurons that are connected through synapses in such a way that
only a single direction of the data flow is supported, i.e., all signals
flow from the inputs to the outputs. A second restriction is based
on the structuring of the network in so-called levels: all signals
pass all levels in consecutive order, or, in other words, all
synapses that emanate from level i connect to level i+1. As a
consequence, the feed-forward neural network is extremely easy
to emulate.

By moving from the input level through the intermediate (hidden)
levels to the output levels, all calculations are guaranteed to be
based on fresh synapse values. Note, that so far there is no need
to limit ourselves to synapse connections between neighboring
levels, but we have introduced this restriction solely as a
precaution against eventual problems when introducing on-chip
learning at a later stage of development.

Figure 4 illustrates feed-forward networks. The network is first
shown to be a succession of levels; secondly, a single level is
detailed to be a computational matrix.
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Figure 4. A leveled network

Now look at the computational meaning of synapse and neuron.
Each synapse takes a value from the output of a designated
neuron in the previous level and multiplies this value with the
synapse weight. The result is passed onto the input of the neuron
in the present level. There it will be summed with the multiplication
results from all other feeding synapses. Hence, the emulation for a
single neuron requires addressing all feeding synapses in
succession, whereby each synapse in turn takes values from
other, specifically addressed neurons. It is therefore of importance
for the emulation to have the synapses in a calculation order.

We can now turn this informal description into a hardware
architecture. As discussed above, we need to handle all levels in
consecutive order, all neurons in a level in any order and, finally
all synapses connected to the input of a single neuron according
to the above procedure. This leads naturally to the following
arrangement.

get network inputs;
address first neuron:  /*input layer */
do {intermediate = bias of neuron;
       address first synapse on input;
       do {address this synapse;
              get feeding neuron;
              address this neuron;
                 get its value;
                 get synapse weight;
                 multiply weight with value;
                 add result to intermediate;
       } while (there are more synapses);
         apply nonlinearly to intermediate;
         address fed neuron;
           store result in neuron;
           address next neuron;
} while (there are more neurons);
deliver network outputs.
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Figure 5. Neural Software Architecture and Table Composition

The operation on the tables is supported by two generally
applicable emulation routines: one for the synapse multiplication,
and one for the neural summing and discrimination. The latter
procedure reads simply as follows:

NVS[0].value = net_inputs [O]; NVS[1].value =
net_inputs[1];

/* scan all entries in the NVS table …………………………….*/

for (counter = 0; counter < NPS->nr_neurons;
counter+ +)

{ result = NVS[counter].bias;

/* loop through the SVS table ………………………………….*/

for (ssac = NVS[counter].offset_s; ssac > = 0 ;
ssac+ +)

{result + = SVS[ssac].weight *
NVS[SVS[ssac].offset_n].value;

if (SVS[ssac].lasts == 1) break; }

/* collect for new neuron status            */

if (NVS[counter].offset_s >=0)
NVS[counter].value=PC_nonlin2(result);

result=O;  }

      SPU

          NVS

S
S

A
C

value       *synapse

*neuron          weight

     SVS

N
S

A
C

N
S

A
R

value bias bias value
N 1.00 -.17 -0.17 0.00 -1
N 1.00 -.12 -0.12 0.00 -1
N 0.18 1.70 1.70 0.00 0
N 0.92 -.50 -.50 0.00 2
S 0 0 0.24 0.24
S 1 1 -2.14 -2.14
S 0 0 -1.68 -1.68
S 2 0 0.06 0.06
S 1 1 -1.06 -1.06

neur next weight weight
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This procedure needs 25 cycles per synapse, which Ieads for our
network to 750 to 800 cycles for a complete recall. On a
TMS320C10-14 this leads to a 225 µs execution time.  Further,
the storage requirements on the data memory are 130 words. The
preprocessed data can not be used directly as input to the neural
network. The obligatory normalization of the preprocessed data is
elementary in the current application, as the features derived from
the signature lie usually in very narrow bands.

From a realistic signature, 300 and 600 samples are taken. Thus,
even without a direct handling of the sampled data, the time
elapse for a complete authentication will be worst case 0.1
seconds. Further, data memory requirements of the software parts
are sufficiently less than the available 256 words to accommodate
for the needs of other service routines.

So far, the experience with the above-described dynamic
signature verification system is largely limited to experiments on
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Discussion

The technique described requires very basic operations as
subtracting, comparing, incrementing counters, multiplying, and
dividing. With a sample rate of 200 Hz, even the slowest member
of the first generation of TMS320 DSP devices is capable of doing
the needed operations while waiting for the next sample (e.g., with
a 200 Hz sampling rate, the TMS320C10-14 has about 17850
instructions to process one sample). However, the facility of fixed-
point arithmetic had a major impact in the selection of this
hardware platform.

So far, we have limited the discussion to the technical ability of
identifying a person by his/her signature. It stands to reason that
such a technique will have problems when the person has to be
identified out of a prospective set of millions of signatures. Such a
search space would need a number of features that are simply not
of statistical significance. The verification problem is however a
different nature. Here, we have to ensure that the signature is
sufficiently alike to the one presented in the past. This past is
represented by the learned status of the neural network and, as
shown above, a table gives this neural network status by a string
of numbers. This allows for a condensed (possibly encrypted) and
downloadable representation.

Thus, we have constructed an authentication kernel comprising of
some personalized tables and some general-purpose procedures,
that can be part of a variety of entrance monitoring and security
systems. We will briefly discuss two typical applications. In
computer systems, the encrypted password file monitors the login
procedure. For pen-based computers, we suggest the alternative
of entering the user's signature. The clear advantage is that the
need to remember the password is removed, while on the other
hand the shared use of passwords becomes no longer possible.

A similar remark can be made with regards to the use of credit
and smart-cards in commercial transactions. Here, a signature
can be used instead of a secret number to relieve the individual of
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Summary

Neural networks are especially suited to understand the dynamics
of movements. Writing down a signature is such a movement. It is
discussed that dynamic signature verification is a technical reality
and that such provides a real personal code in safety and security-
related operations. Typical examples are login control for pen-
based computer systems and smart-card commercial
transactions. Details of the authentication kernel are given for the
TMS32OC10-14.
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