designideas

Circuit gang-programs EEPROMs over I²C bus

Denisa Stefan, Catalyst Semiconductor, Sunnyvale, CA

YOU USE THE FULLY controlled circuit in Figure 1 to parallel-program two-wire serial EEPROMs via the $\mathrm{I}^{2} \mathrm{C}$ bus. Gang programmers must address all memory devices during a write operation. To verify the memory contents, however, the system must address only one memory at a time during read operations. Therefore, the system in Figure 1 addresses the memory devices either in parallel or one at a time. Information transfer between devices connected to the $\mathrm{I}^{2} \mathrm{C}$ bus system requires a SDA (serial-data) and SCL (se-rial-clock) signals. A device connected to the bus can operate as a transmitter or a receiver. A master device initiates a data transfer on the bus, generates clock signals, and terminates the transfer. The master addresses a slave device. To connect devices on an $\mathrm{I}^{2} \mathrm{C}$ multimaster bus, the SDA and SCL lines must be bidirectional and must connect to a positive supply voltage through pullup resistors.

In $\mathrm{I}^{2} \mathrm{C}$-bus addressing, the first byte after a Start condition determines the slave that the master selects. A slave address is seven bits long and usually comprises a
Circuit gang-programs EEPROMsover ${ }^{2} C$ bus.73
LFSR provides encryption 74
Resistor network extendsSchmitt trigger's reach.76
Routine yields fast bit reversing for DSP algorithms 78A 4- to 20-mA loop needsno external power source.80

Figure 1

An I ${ }^{2} \mathrm{C}$ expander and analog switches provide gang programming and serial read access for multiple EEPROMs.
fixed part and a programmable part. The eighth bit, or LSB, determines the direction of the transfer, either read or write. The programmable part of the slave's address allows you to connect the maximum possible number of identical devices to the $\mathrm{I}^{2} \mathrm{C}$ bus. This number depends on the number of address-input pins the $\mathrm{I}^{2} \mathrm{C}$ device has. In Figure 1, the serial-data line, SDA, connects to each CAT24WC16 EEPROM via bidirectional Maxim (www.maxim-ic.com) MAX352 quad SPST analog switches. The switches derive their control from a 16 bit Philips (www.semiconductors. philips.com) PCF8575 I/O expander for the $\mathrm{I}^{2} \mathrm{C}$ bus. The clock line, SCL, connects to all memory devices. For driving the
large capacitive loads required, a Philips 82B715 $\mathrm{I}^{2} \mathrm{C}$-bus extender serves as a buffer. The software sequence for parallel writing to all memory devices is to set the port pins by writing to the PCF8575 to command closing all switches and then send an $\mathrm{I}^{2} \mathrm{C}$-bus command to write to the CAT24WC16 EEPROMs.

The software flow for reading the contents of one memory device is to set the port pins by writing to the PCF8575 to close the switch associated with the memory to read, set all the other switches to open, and then send an $\mathrm{I}^{2} \mathrm{C}$ command to read the selected CAT24WC16 EEPROM.

Is this the best Design Idea in this issue? Vote at www.ednmag.com.

LFSR provides encryption

Antonella Di Lillo and Giovanni Motta, Brandeis University, Waltham, MA

Abstract

FSRs (linear-feedback shift registers) find extensive use in cryptography. -For example, the cryptographic algorithms in the GSM (Global System for Mobile communications) mo-bile-phone system rely on the use of LFSRs. An LFSR comprises a register containing a sequence of bits and a feedback function. In general, this function is an XOR (exclusive-OR) operation on certain bits in the register. The list of these bits is a "tap sequence." You use an

Figure 1

A linear-feedback shift register, combined with an XOR operation, is ideal for encryption.

LFSR to generate a pseudorandom sequence of bits that undergo an XOR op-

LISTING 1-LFSR ENCRYPTION AND DECRYPTION

```
// Usage: LSFR <Key>
// Ker is a non-zero 32 bit integer
// Alternative taps : 0xBF75CC1F, 0xC679E105,
// 0x844EC703, OxBE4F7253, OxDF3B0B11,...
#include <stdio.h>
#include <time.h>
// XOR of the bits in a 32 bit integer
Int xor_32(int a) {
    a A=a>> 1;
    a. A=a >> 2;
    a A= a >> 4;
    a A= a >> 8;
    a A= a >> 16;
    return(a & 0x1);
j
int main(int argc, char *argv[]) {
    int LSPR, ecchar, i, cnt = 0, kcps;
    int taps = 0xE04D11E7; // Polynomial
    clock_t start;
    double interval;
    if(argc<2) { // Usage
        fprintf(stderr, "Usage:\n");
        fprintf(stderr, "\t%s <Key>\n", argv[0]);
        return -1;
    }
    if(!(LSFR = atoi(argv[1]))) {// LSFR Status
        Eprintf(stderr, "Key must be non zeroln");
        return -1;
    }
    start = clock();
    while((c_char = fgetc(stdin)) != EOF) {
        for(i=0; ; i<8; i++)
            LSFR = (LSFR<<1) | xOr_32(LSFR & taps);
        fputc((LSFR & 0xFF) ^ c_char, stdout);
        cnt++;
}
    interval = (double)(clock()-start) /
                    CLOCKS_PER_SEC;
    kcps = (int)(cnt / interval);
    Eprintf(stderr, "Encoded %d chars *, cnt);
    Eprintf(stderr, "in %f seconds ", interval);
    Eprintf(stderr, "(%d char/sec)\n", kcps);
    return 0;
}
```

eration. The XOR result then connects to the input of the LFSR. Repeating the process at the decoder side returns the original sequence of bits. Listing 1 presents the encryption and decryption process. To generate a pseudorandom sequence, you load the register with a nonzero content, and the software then computes the XOR of the taps and shifts all bits in the register one bit to the left. Finally, the routine inserts the results of the XOR operation in the rightmost position (Figure 1). The program adds this 1 -bit result to the sequence and repeats the procedure to generate other bits.
LFSRs are well-suited to hardware implementations, but their use in software programs unfortunately often suffers from inefficient implementations. LFSRs with few taps, or sparse LFSRs, are easier to use because you need calculate the XOR of only a few bits. On the other hand, for cryptographic purposes, you must avoid sparse polynomials because the resulting algorithms are easy to break. The C program in Listing 1 has the advantage of implementing the XOR of a 32 -bit integer with an efficient algorithm, thus making an efficient way to implement the software of an LFSR. The program encrypts a standard input into a standard output one character at a time. You use an LFSR to generate eight random bits at a time, and the routine XORs the random bits to the current character. The encryption key is a nonzero integer that you use as the initial status of the register. The key is the same for both encoding and decoding. The variable taps represent the 32 binary coefficients of a primitive polynomial of degree 31. Several other choices are possible; Listing 1 suggests five of them in the comments. You can safely remove the code that describes the number of characters encrypted and the running time to make the program even smaller. You can download the software from the Web version of this article at www.ednmag.com.

Is this the best Design Idea in this issue? Vote at www.ednmag.com.

Resistor network extends Schmitt trigger's reach

Anthony Smith, Scitech, Biddenham, UK

THe circuit in Figure 1 shows a familiar technique for converting a lowlevel analog signal to digital form. Resistors R_{1} and R_{2} set the quiescent dc level at the Schmitt inverter's input to a value roughly equal to the midpoint of the hysteresis band. Capacitor C_{1} removes dc content from $V_{\text {IN }}$, such that the Schmitt trigger's input signal, V_{I}, centers itself on the midhysteresis level. Provided that $\mathrm{V}_{\text {IN }}$ is large enough to cross IC_{1} 's

Figure 1

This Schmitt-trigger circuit is useful for converting an ac signal to digital form. threshold level, the output signal, $\mathrm{V}_{\text {out }}$, provides a faithful digital representation of $\mathrm{V}_{\text {IN }}$. Unfortunately, the circuit suffers from several drawbacks. The presence of C_{1} makes it impossible for IC_{1} to switch at specifically defined dc levels on V_{IN}. Furthermore, for low-frequency waveforms, C_{1} must be extremely large to prevent unwanted signal attenuation. Also, if V_{IN} is of random period or is asymmetrical with time (for example, a pulse train with low duty cycle), the signal at V_{I} will not swing symmetrically about the quiescent dc level and may fail to cross one of IC_{1} 's thresholds. You can solve all these problems by replacing C_{1} with a resistor, as in Figure 2.

In Figure 2, R_{1} and the parallel combination of R_{2} and R_{3} act as an attenuator that allows IC_{1} to switch at specific, user-defined dc levels that may be much greater than IC_{1} 's switching thresholds. Furthermore, R_{2} and R_{3} introduce an offset that allows V_{IN} 's lower threshold to be negative if required. R_{1} and R_{2} relate to R_{3} as follows:

$$
\mathrm{R}_{1}=\frac{\mathrm{R}_{3}\left(\mathrm{~V}_{\mathrm{TL}} \mathrm{~V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{TU}} \mathrm{~V}_{\mathrm{N}}\right)}{\mathrm{V}_{\mathrm{S}}\left(\mathrm{~V}_{\mathrm{TU}}-\mathrm{V}_{\mathrm{TL}}\right)},
$$

Figure 3
Eliminating the input capacitor avoids problems with asymmetrical input waveforms.
are the required upper and lower $\mathrm{V}_{\text {IN }}$ thresholds, respectively; and V_{TU} and V_{TL} are the Schmitt trigger's upper and lower switching thresholds. By measuring $V_{T U}$ and $V_{T L}$ for a given Schmitt inverter and selecting a suitable value for R_{3}, you can calculate the corresponding values of R_{1} and R_{2}. The circuit accommodates almost any values of V_{P} and V_{N}. The only restriction is that the hysteresis $\left(\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{N}}\right)$ is sufficiently larger than IC_{1} 's hysteresis ($\mathrm{V}_{\mathrm{TU}}-$ V_{TL}); otherwise, the equations can yield negative resistor values. If IC_{1} is a CMOS device (for example, $74 \mathrm{HC14}$, $74 \mathrm{AC} 14,4093 \mathrm{~B}$, or 40106B), you can use large resistances, thus ensuring high input impedance.

For cases in which it is inconvenient to measure the exact values of $V_{T U}$ and $V_{\text {TL }}$, you can replace R_{1} and R_{2} with variable resistors to accommodate the worst-case spread in V_{TU} and V_{TL}. However, because R_{2} and R_{3} have a large influence on R_{1}, the spread of values you need for R_{2} results in a broad variation in the $R_{2}-R_{3}$ parallel combination and results in an even broader spread of values for R_{1}. Replacing R_{2} and R_{3} with a potentiometer network, as in Figure 3, provides a solution to the "spread" problem. Because R_{2} varies with R_{3}, the spread in the $\mathrm{R}_{2}-\mathrm{R}_{3}$ parallel combination, and hence in R_{1}, is narrower. This arrangement results in some fairly onerous equations relating the variables. However, you can simplify matters by observing that for a particular CMOS Schmitt inverter, each of its thresholds is a constant fraction of the supply voltage, V_{s}. Therefore, you can

design ideas

define $\mathrm{V}_{\mathrm{TU}}=\mathrm{UV}_{\mathrm{S}}$ and $\mathrm{V}_{\mathrm{TL}}=\mathrm{LV}_{\mathrm{S}}$, where U and L are the respective fractions. This simplification results in the following equations:

$$
\begin{gathered}
\mathrm{R}_{1}= \\
\mathrm{R}_{2} \frac{\mathrm{~V}_{\mathrm{S}}(\mathrm{~L}-\mathrm{U})+\mathrm{V}_{\mathrm{P}}(1-\mathrm{L})+\mathrm{V}_{\mathrm{N}}(\mathrm{U}-1)}{\mathrm{V}_{\mathrm{S}}(\mathrm{U}-\mathrm{L})} \\
\mathrm{R}_{2}=\mathrm{R}_{\mathrm{X}} \frac{\mathrm{LV}_{\mathrm{P}}-\mathrm{UV}_{\mathrm{N}}}{\mathrm{~V}_{\mathrm{S}}(\mathrm{~L}-\mathrm{U})+\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{N}}}, \text { and } \\
\mathrm{R}_{3}=\mathrm{R}_{\mathrm{X}}-\mathrm{R}_{2}
\end{gathered}
$$

The design procedure is to select the desired values for V_{s}, V_{P}, and V_{N} and then to cal-

Figure 4 culate R_{1}, R_{2}, and R_{3} in terms of R_{X} for the worst-case spread in U and L. You can then scale the values of $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} accordingly. As an example, assume that you need to set V_{p} at 6 V and V_{N} at -7.5 V using a 74 HC 14 operating from a 5 V supply. Although slight differences exist between manufacturers, the "typical" spread in thresholds for the 74 HC 14 on a 5 V rail yields the following values: $\mathrm{U}=0.5$ (minimum) to 0.7 (maximum), and $\mathrm{L}=0.2$ (minimum) to 0.44 (maximum). These values are subject to the restrictions on hysteresis: $(\mathrm{U}-\mathrm{L})=0.09$ (minimum) to 0.5 (maximum). You can intuitively see that R_{1} is at a maximum when IC_{1} 's hysteresis is small and the parallel combination of R_{2} and R_{3} is large. This scenario occurs when IC_{1} has a narrow hysteresis band centered roughly on $V_{s} / 2$. In this example, R_{1} is a maximum of $7.25 \mathrm{R}_{\mathrm{x}}$ when $\mathrm{L}=0.435$ and $\mathrm{U}=0.525$. Conversely, R_{1} is at a minimum

These waveforms indicate clean hysteretic switching with a triangle-wave input.
when IC_{1} 's hysteresis is large and the parallel combination of R_{2} and R_{3} is small. This scenario occurs when $L=0.2$ and $\mathrm{U}=0.7$, resulting in $\mathrm{R}_{1}=1.067 \mathrm{R}_{\mathrm{x}}$. The range of potentiometer R_{p} must allow you to set the quiescent value of V_{I} anywhere from the minimum midhysteresis band level (occurring when L and U are both minima), to the maximum midhysteresis level (occurring when L and U are both maxima). In this example, the values are $\mathrm{R}_{2}=0.4125 \mathrm{R}_{\mathrm{X}}$ and $\mathrm{R}_{3}=0.5875 \mathrm{R}_{\mathrm{x}}$ (when $\mathrm{L}=0.2$ and $\mathrm{U}=0.5$) and $\mathrm{R}_{2}=0.6467 \mathrm{R}_{\mathrm{x}}$ and $\mathrm{R}_{3}=0.3533 \mathrm{R}_{\mathrm{x}}$ (when $\mathrm{L}=0.44$ and $\mathrm{U}=0.7$). Assuming that you use resistors with $\pm 1 \%$ tolerance and potentiometers with $\pm 10 \%$ tolerance, you can accommodate the required spread in R_{2} and R_{3} with an adequate margin by making $\mathrm{R}_{\mathrm{A}}=1.1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{p}}=1 \mathrm{k} \Omega$, and $R_{B}=1.3 \mathrm{k} \Omega$. The corresponding spread in R_{1} (including the tolerance in R_{x} itself)
is 3.495 to $25.549 \mathrm{k} \Omega$. You can obtain this range by using a parallel connection of a $50-\mathrm{k} \Omega$ potentiometer and a $51-\mathrm{k} \Omega$ resistor that is in series with a $3.3-\mathrm{k} \Omega$ resistor.

The oscilloscope screen in Figure 4 illustrates the performance of the example circuit, in which $\mathrm{V}_{\text {IN }}$ is a $\pm 10 \mathrm{~V}$ triangle wave. By adjusting the two potentiometers in turn, we made the output waveform switch when $\mathrm{V}_{\mathrm{IN}}=6 \mathrm{~V}$ and -7.5 V . Despite the interaction between the potentiometers, you can fairly easily (with a little patience) set the thresholds. Although the circuit is not intended for precision applications, it does extend the range of the garden-variety Schmitt inverter and allows you to implement positive and negative thresholds of several tens or even hundreds of volts. Moreover, the circuit allows V_{N} to be positive, provided that V_{p} is sufficiently greater than V_{N} to avoid negative resistance values. You can obtain operation of greater than $10-\mathrm{MHz}$ frequency if you use suitable devices for IC_{1}. The 74 AC 14 or 74 HC 14 yield response times of just a few nanoseconds with a rail-to-rail output. For best high-frequency performance, use low resistor values, a shunt trimmer capacitor across R_{1} to provide compensation, or both. Finally, use Schottky clamp diodes as in Figure 3 to protect the inputs of IC_{1} from overvoltage conditions.

Is this the best Design Idea in this issue? Vote at www.ednmag.com.

Routine yields fast bit reversing for DSP algorithms

Mohammed Aziz, University of Leeds, UK

IF YOU NEED EFFICIENT realtime performance in DSP applications, you need an efficient bit-reversing routine. For several FFT programs, data permutation can take 10 to

Length (N)	Listing 1 (msec)	Evans (msec)	Gold-Radar (msec)
32	10	159	200
64	18	294	418
128	34	549	847

50% of the computation time, depending on the input-data dimensions and length. The idea behind bit reversing is to shuffle the data by flipping the address bits around the mid-
dle of the address length so that if the data length is $\mathrm{N}=16$, four bits from 0000 to \qquad

The routine in Listing 1 produces markedly faster results than other algorithms.

LISTING 1-BIT-REVERSE ALGORITHM

\#define BRmod \#define in-arry \#define out-arry \#define N
//bit-reverse of $\mathrm{N} / 2, \mathrm{~N}$-length of input data $/ /$ bit-reversed address of input data location //address of output array
//length of input data

BR-Algorithm:
bit set model BR0; //this allows BR-mode $\mathrm{b} 0=\mathrm{in}$-arry; $10=0 ; \mathrm{m} 0=\mathrm{BRmod} ; / /$ this is circular buffers b8=out-arry; 18=N; m8=1;
$\mathrm{r} 0=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 0)$;
lentr $=(\mathrm{N}-1)$, do br until lee; $\quad / /$ this is a loop counter br: $\mathrm{r} 0=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 0), \mathrm{pm}(\mathrm{i} 8, \mathrm{~m} 8)=\mathrm{r} 0$; $\mathrm{pm}(\mathrm{i} 8, \mathrm{~m} 8)=\mathrm{r} 0$;
bit clr model BR0; $\quad / /$ this clears the BR-mode
ing from the input array "in-arry" and writing to the bit-reversed output array "out-arry" in parallel to double the speed. It then uses circular buffers and indirect addressing to go through the Nel ements, lending itself to simple and straightforward data moving. Existing techniques, such as Evans and Gold-Rader algorithms, do data checking and bit reversing before moving the data, thereby incurring overhead. Table 1 and Figure 1 give the runtime results for the different algorithms (Listing 1, Evans, and Gold-Rader) simulated on a $40-\mathrm{MHz}$ SHARC DSP (ADSP-21060) from Analog Devices (www.analog.com). The runs represent three lengths of 32, 64, and 128 elements and involve 10,000 iterations each in simulating the 2-D case.

Is this the best Design Idea in this issue? Vote at www.edn mag.com.

A 4- to 20-mA loop needs no external power source

Shyam Tiwari, Sensors Private Ltd, Gwalior, India

The simple circuit in Figure 1 uses a low-current-drain MAX4073 H amplifier to sense the current flowing through a 4 - to 20mA loop. The circuit senses the current through a 1Ω resistor with a fixed gain of 100 and uses no battery or dc power supply. The low current drain of the amplifier $(0.5 \mathrm{~mA})$ enables the circuit to tap its power from the 4 - to $20-\mathrm{mA}$ loop to power the amplifier chip. Note that the current flowing in the amplifier's pow-er-supply Pin 3 (nominally 0.5 mA but may vary slightly) is not part of the sensing loop. It forms a negative offset in the measurement and is not a serious problem. To make this current nearly constant, a 3.3V zener diode and an LED in

A current-sensing circuit derives its power from the 4 - to 20-mA current loop.

