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BY MODIFYING FILTER-DESIGN EQUATIONS TO IMPLEMENT

EXACT COMPONENT VALUES, YOU CAN MINIMIZE FILTER-

RESPONSE DISTORTION AND STATISTICALLY PREDICT

BEHAVIOR.

Active filters are ubiquitous in electronic de-
sign today, performing signal-frequency ma-
nipulation and conditioning for audio, IF (in-

termediate frequency), and digital-signal processing.
The success of active filters is due primarily to inte-
gration capability and the extensive body of theo-
retical knowledge. Although DSPs can outperform
active filters in dynamic range, active filters can
achieve good performance with significantly lower
power demands.

Engineers have many vendor and product options
when implementing an active filter. With the advent
of switching technology, you can use continuous-
time filters with good accuracy in applications up
to video frequencies (Reference 1). Semiconductor
process improvements have made it possible and
perhaps even economically mandatory to imple-
ment entire analog-signal-processing blocks, in-
cluding filters, on silicon.

Despite the availability of active-filter ICs, most
engineers still resort to RC (resistor/capacitor) ac-
tive implementations consisting of opera-
tional amplifiers, resistors, and capacitors. In-
deed, the popularity of RC active filters has not
diminished since their heyday in the 1970s. The fact
that active-filter development is mature helps engi-
neers; active-filter textbooks and “cookbooks”
abound. Furthermore, op-amp technology has ad-
vanced to meet the seemingly contradictory de-
mands of high speed and low power.

Op amps are often the most critical elements in
any RC-active-filter design and deserve much at-
tention (see sidebar “Critical op-amp parameters”).
Voltage-feedback op amps are still the mainstay of
RC active filters, but current-feedback topologies of-
fer gain that’s independent of bandwidth, as well as
good current outputs at high frequencies (Reference
2). With more designs concentrating on portable
systems, low-voltage CMOS op amps offer rail-to-
rail voltage-handling capability down to power sup-
ply voltages of 3V or less (Reference 3).

Op amps are not the only critical aspects of an ac-
tive filter, however. Filter performance is directly re-
lated to the various available realization forms avail-
able (Reference 4). These forms are cascade,
multiple feedback, and direct. In cascade realization,
biquad structures (filters implementing complex
poles or zeros) are cascaded together with inde-
pendent, per-stage tuning. In multiple-feedback, or
“multiloop,” “follow-the-leader,” or “state-variable”
realization, biquad structures and gain blocks sum
at different points in the circuit path to achieve the
desired response. You determine parameters using
a computer to solve a system of linear but under-
constrained equations, and you can reduce overall
sensitivities through subsequent optimization.

Direct realization is a realization of RLC (resis-
tor/inductor/capacitor)-transfer functions in which
you replace certain elements by synthetic elements
composed of one or more op amps and other ele-
ments. The simulated inductor, for example, replaces
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The ideal matched-filter response (dotted line) and the approximating filter
response (solid line) out to 20 kHz for a 2-kbps data rate shows good corre-
spondence between ideal and approximating filtering response out to the
first side lobe.
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the inductor by a combination
of a gyrator and a ca-
pacitor or an imped-
ance converter and a resistor.
An alternative is to replace cer-
tain elements by frequency-
dependent negative resistors.

The cascade realization is by
far the easiest to implement
and finds extensive use in
most applications. However, it
suffers from poor sensitivity,
due to the isolation between
blocks whereby different
stages cannot provide com-
pensation for each other. You
should consider cascade and

multiple-feedback alter-
natives when the require-
ments call for high-Q,
low-drift filters.

Of the variety of avail-
able biquad topologies for
cascade implementation,
only a few select configu-
rations have found favor
with engineers. Among
the most popular are
Sallen-Key filters, in
which the time constants
are decoupled, meaning
that the filter has zero ac-
tive-frequency sensitivity
(Reference 5). However,

The deviation of the approximating filter from the ideal filter in the main
lobe, containing 92% of the energy, is well within 1 dB almost to the notch
frequency.
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CRITICAL OP-AMP PARAMETERS
Op amps are the most important elements of an active RC filter.
Fortunately, manufacturers have provided extensive documenta-
tion of the electrical characteristics of op amps. However, the
amount of information is often considerable, and engineers must
concentrate on the most important characteristics of the design.
This article considers the critical op-amp parameters that are use-
ful for high-frequency designs. In addition, assume that the design
is implementing voltage-feedback op amps.

GBW (gain-bandwidth) product is typically the first figure of
merit that engineers consider in specifying an op amp. GBW is the
product of the open-loop gain of the op amp and the open-loop
bandwidth. The purpose of GBW is to determine whether the op
amp can meet a frequency requirement at the specified gain: The
higher the gain required, the less the bandwidth the op amp can
support. The advantage of implementing high gains is the sensitiv-
ity reduction of the filter gain to amplifier gain.

GBW is only a partial indicator of the amplifier’s capability to
handle high-frequency signals. An equally important parameter to
determine the potential speed of an amplifier is its slew rate. Slew
rate is the maximum rate of change of output voltage under large-
signal conditions. If you write the output voltage, vo, of the op
amp as vo5Vp cosvt, so that dvo/dt5vVpsinvt,
then the slew rate equals

The maximum output voltage, Vp, at the fre-
quency, v, for an op amp slew rate S then
equals:

FFiigguurree  AA provides a nomograph for slew
rates. It can relate frequency, peak voltage,
and slew rate. Specifying any two parame-
ters determines the third. You generally

measure slew rate under unity-gain conditions that yield a worst-
case value.

Peak output voltage and current are also
important parameters for high-frequency ap-
plications. One critical item to note is that peak output voltage de-
pends upon capacitive load. Large capacitive loads reduce the
peak output-voltage swing and therefore reduce slew rate. Also,
large capacitive loads can introduce oscillations. For high-speed op
amps, vendors sometimes specify full-power bandwidth. This pa-
rameter is also an indicator for the suitability of an op amp in a
given high-frequency application.

Input offset voltage and current are the result of the physical
device. Ideal op amps have zero output for zero input. However,
the op-amp input stage may depend on the technology (bipolar
or FET) and match. Input offset current is the difference of the in-
put bias currents, and input offset voltage is the voltage that you
must apply to the input to obtain zero output voltage. To alleviate
the effect of the input bias currents, it is good practice to make
sure that the dc path resistance from the positive and negative in-
puts of the op amp are equal. For inverting infinite-gain topolo-
gies, you should place a resistor between the noninverting termi-
nal and ground with a value equal to the dc resistance that the
inverting terminal sees.
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Sallen-Key filters have potentially high
active-Q sensitivity, so you must typical-
ly make a gain-versus-sensitivity design
compromise.

Other available biquad topologies al-
low trade-offs in required loop gain, ac-
tive- and passive-Q sensitivity, and ac-
tive-frequency sensitivity. Two such basic
topologies are the single-amplifier and

the multiamplifier biquads. In both cas-
es, you can modify the filters’ design
equations so that the design resolves to
standard component values. Specifically,
you can solve for nearly identical resis-
tor values, treating the capacitors as vari-
ables. By tabulating standard value ratios,
you can establish common standard val-
ues for the capacitors in the design. The

following examples use this approach in
a matched-filter design for variable rates.
This approach presents a unique design
opportunity to highlight the power of the
proposed method.

SINGLE- AND MULTIPLE-AMPLIFIER BIQUADS

The sidebar“Lowpass, single-amplifi-
er, biquad design” contains both original

LOWPASS, SINGLE-AMPLIFIER, BIQUAD DESIGN
The lowpass, single-amplifier, biquad (FFiigguurree  AA) is from RReeffeerreennccee  AA
with the following design equations: Set C25KC1. Given that vLp,
zLp,2H0 (dc gain), choose C1, K, and calculate:

where

You want the term in the square root to be positive; hence the implicit
design requirement is:

The sensitivities are:

You can now modify the design per the matched-filter require-
ments. In the modified design equations, you set C25KC1,
H0520.09P21, so that Km0.3738.

Given that vLp, zLp, choose K, R2 and calculate:

For variable data rate fr, you can calculate the capacitances as:

The sensitivities are:

Reference
A. Huelsman, LP, JG Graeme, and GE Tobey, Operational Ampli-

fiers, McGraw-Hill, New York, NY, 1971.
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and modified equations. From the orig-
inal design equations, the term z51/2Q
defines the peaking of the response (Ref-
erence 6). Also, because the variable F in-
cludes a square-root term, you must sat-
isfy the implicit design requirement so F
is not complex. From the sensitivities,

you realize that this filter has zero active
sensitivity because it uses the infinite gain
of the op amp. By carefully choosing an
appropriate ratio K and dc gain H

0
it is

possible to manipulate F for small sensi-
tivities. You should consider this in the
actual design.

The sidebar “Notch, multiple-ampli-
fier, biquad design” also contains both
original and modified equations. As with
the single-amplifier biquad, the infinite
gain of the op amp achieves zero active
sensitivities. Some passive sensitivities
also approach zero. This notch imple-

NOTCH, MULTIPLE-AMPLIFIER, BIQUAD DESIGN
The notch, multiple-amplifier, biquad design (FFiigguurree  AA) is from RReeffeerr--
eennccee  AA  with the following design equations. Set R85R105R. Given
that vNp, QNp51/2zNp, vNz,2H0(`), choose C3, C4, R, and calculate:

In the modified design equations, you set R85R105R. Given that vNp,
QNp51/2zNp vNz, choose R, R11. Make R65QNpR11 to force C35C4.
Now, calculate:
Including the selectable-rate feature with rate fr, the capacitances are:

The sensitivities remain the same.

Reference
A. Fleischer, PE, and J Tow, “Design formulas for biquad active fil-

ters using three operational amplifiers,” Proceedings of the IEEE, Vol-
ume 61, pg 662, May 1973.

You can use the equations to implement this notch, multiple-amplifier biquad.
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ments a true zero of transmission so that
the Q of the zero is infinite. Although you
cannot achieve this figure in practice, a
good op-amp selection lets your design
achieve more than 50-dB rejection. Al-
though this biquad requires three op
amps, eight resistors, and two capacitors,
this topology offers excellent sensitivity.
The most critical sensitivity is the pole
peaking with respect to R

6
. Therefore,

you should choose R
6

to have low toler-
ance.

You can apply a lowpass, single-am-
plifier biquad and a notch, multiple-am-
plifier biquad in a matched-filter design.
As you will see, the matched filter con-
sists of a lowpass section followed by a
notch at the desired frequency rate. You
can extend the design-equation modifi-

cations to any filter as long as you follow
the same basic rules.

MATCHED-FILTER-DESIGN EXAMPLE

Matched filters find use in data-recov-
ery systems to optimize the SNR by
matching their frequency response to the
spectrum of the input signal. Filters with
data rates higher than 10 Mbps come in
analog form with expensive hybrid oper-
ational amplifiers and tunable inductors
and capacitors. Filters with typical data
rates lower than 1 Mbps can benefit from
an active-RC implementation with its in-
herent benefits. One such benefit is the
ability to exploit the filter-design equa-
tions to obtain exact component values
and superior sensitivity.

For pulse data such as BPSK (binary

phase-shift keying) or QPSK (quadrature
phase-shift keying), the matched-filter
response must match the pulse spec-
trum, given by the relation:

where f
r
=1/T

r
is the pulse rate and f is the

frequency (Reference 7). Equation 1 is
normalized by f

r
so that the energy is uni-

ty; that is,

The simplest implementation of the
above matched filter is a second-order,
lowpass transfer function in cascade with

MATCHED-FILTER ANALYSIS
You can use this Mathcad file as a template for analyzing matched-fil-
ter responses. The following example defines all variables and per-
forms normalization to generate the required parameters. It compares
the ideal matched-filter response with an ideal brick-wall filter to
demonstrate the deviation in response over the entire spectrum.
R=4000, and the data rate is:

frequencies for analysis.

is the matched-filter response you want to approximate. You perform

normalization by multiplying by 1/R, the data rate. This operation pro-
duces a normalized power of unity as shown.

where Pow=1. Rate normalizes power.
F(0) = 2.5310-4.
At dc, F is 1/R=1/4000, the normalized value. Converting to decibels
produces the classic sinX/X response.
F dB(f)=103log(F(f)), and F dB(0) =S36.021(FFiigguurree  AA).

To calculate the SNR of the filter over the spectrum, you calculate
the ratio of two integrals. The numerator is the product of the root of
the responses, and the denominator is the ideal response. Due to the
performed normalization, any deviation from an ideal response shows
up as a negative SNR.
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a first-order, notch transfer function. The
use of two biquadratic equations allows
us to fine-tune the transfer function
through the filter Q’s (or peaking ) in ad-
dition to frequency. The second-order,
lowpass section also ensures a zero at in-
finity; that is, the filter’s asymptotic roll-
off is S20 dB/decade, and you reject
high-frequency terms.

The approximating matched-filter
transfer function,

is composed of H
L
(s), the lowpass biquad

section, and H
N
(s), the notch biquad sec-

tion. The following equation yields the
lowpass transfer function:

where 

K
L
5 gain of lowpass stage,

and

with v
r
52pf

r
, and the subscript p de-

notes pole. The following equation gives
the notch transfer function.

where

and the subscript z denotes zero.
Figure 1 is a plot of the ideal matched-

filter response and the approximating fil-
ter response out to 20 kHz for a 2-kbps
data rate, showing good correspondence

where Num SNR=1.

where Den SNR=1.

SNR=0 for the matched filter.
Now, implement a brick-wall filter for comparison.
H(f)=if (f>4000, 131028, F(0)), HdB(f)=103log (H(f)), and HdB(0)

=S36.021 (FFiigguurree  BB).
Now, calculate the SNR for the brick-wall filter, 

where NumB=2.301.

where DenB=252.008.

where SNR=S20.377.
The brick-wall filter response degrades SNR by 20.4 dB over the ideal
matched filter with a corner at 4000 Hz.
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between ideal and approximating out to
the first side lobe. Figure 2 shows
a plot of the deviation of the ap-
proximating filter from the ideal filter in
the main lobe, containing 92% of the en-
ergy. The deviation is well within 1 dB al-
most to the notch frequency. Near the
notch frequency, the magnitude is so
small that the contribution of these er-
rors to the total is negligible.

To evaluate the SNR performance of
the approximating filter, you calculate the
energy ratio of both filters assuming that
you are at the optimum sampling point;
that is, t50 (Reference 8). For the ideal
matched filter, the ratio is

You take the square root of H
m

(f) be-
cause H

m
(f) was defined to be the mag-

nitude squared in Equation 1.
For the approximating filter, the ratio

is

Because you normalized the
energy of the matched filter in Equation
1, g50 dB. For the approximating filter,
and the value represents the actual SNR
degradation. For the parameter values in
equations 5 to 13, you numerically cal-
culated the approximating filter’s SNR
degradation to be ~g,0 dB. (see sidebar
“Matched-filter analysis” for a Mathcad
sheet that calculates SNRs of matched fil-
ters).

Figure 3 shows a 2-kbps design im-
plemented using the previous design
equations. It features 1%-tolerance resis-
tors and 10%-tolerance capacitors. The
choice of a good quad op amp is impor-
tant to ensure good design performance.
This design uses the Motorola MC33284,
which gives low offset voltages and high
precision. The dc gain of the filter is 0.75.
Measured results are excellent; notch fre-
quency is 4074 Hz (with less than 2% er-
ror), and rejection is S56 dB.

Applications often call for selectable
rates due to the variety of signal rates in

This 2-kbps design features 1%-tolerance resistors and 10%-tolerance capacitors.
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You can change Figure 3’s capacitance values for the desired rates and leave the magnitude
response of the filter intact.
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a system. Solutions for this type of prob-
lem abound, including banks of dedicat-
ed-rate filters and switched-in networks
for the different rates. If you modify the
design equations to include data rate as
a parameter, you can have one design
cover different data rates. By considering
the design’s different component values,
you can also catalog all data rates you can
achieve with a basic design.

MODIFYING THE DESIGN EQUATIONS

Standard component values of a pre-
scribed tolerance are fixed and offer finite
resolution. If you need a nonstandard
value for a design, you often select the
closest value of a prescribed tolerance.
This compromise unnecessarily distorts
the filter response. The approach here
modifies filter-design equations to reflect
standard component values and ratios.
In this way, the design has no inherent
bias, and the circuit performance derives
mainly from the component values’ dis-
tribution and potential drift, each of
which you can readily analyze and con-
trol through statistical process.

To implement exact standard values in
the design, it’s beneficial to fix the values
of the components that are most numer-
ous—in this case, the resistors—leaving
variable those components that are few
in number—in this case, the capacitors.
In addition, you can modify the design
equations to fix the resistor values. Note

that obtaining exact standard values de-
pends mainly upon allowable compo-
nent-value tolerance ratios. If in the
modification, a given design parameter is
acceptable if it is within 1% of the exact
value.

First, consider the notch filter, with
Q

Np
=1.333. Among 5%-tolerance resis-

tors, you can set R
11

=1.23factor and
R

6
=1.63factor, where factor is the base

standard value of the design. Also,
R

4
=1.2543R

11
=1.53factor. You now

have a good starting point with
R

4
=1.53factor, R

6
=R

7
=1.63factor, and

R
5
=R

8
=R

9
=R

10
=R

11
=R=1.23factor. Fi-

nally, you need to calculate the capaci-
tance, determined from 

The sidebar “Notch, multiple-amplifier,
biquad design”shows the modified equa-
tions.

As the sidebar “Lowpass, single-am-
plifier, biquad design” shows, the modi-
fied equations are slightly difficult to de-
rive because of the implicit design
requirement. To make R

3
=R

2
, K must be

equal to F2. By selecting K=0.3333 and
F=0.8625-0.2839=0.5785, the ratio
K/F2=0.9958, or approximately 1 (less
than 1%). The ratio K=0.3333 is fairly
convenient for 10%-tolerance capacitors.

Because you have set R
1
=R

2
=R

3
, you can

use the same resistor value as the most
numerous value in the notch stage; that
is, you can set R

1
=R

2
=R

3
=1.23factor.

From this equation, you calculate the ca-
pacitances as

You can now review the effect of the
modified design on the 2-kbps, low-rate
requirement. Assuming that factor=1
kV, then R

4
=1.5 kV, R

6
=R

7
=1.6 kV, and

R
1
=R

2
=R

3
=R

5
=R

8
=R

9
=R

10
=R

11
=R=1.2

kV. You can readily determine the ca-
pacitances of C

1
, C

2,
C

3
, and C

4
to be ap-

proximately 0.082 (1.2% from actual),
0.027, 0.033, and 0.033 mF, respectively.

The previous process lets you design
an active-RC matched filter with exact
standard component values that are
within 1% of the ideal. Because the ca-
pacitors were the least numerous of the
components, you fix the resistor values
and modify the capacitance based on the
required rate. You next concentrate on
determining standard capacitance values
for the selectable-rate feature.

Equations 16 and 17 yield the capaci-
tance values that depend on the rate, and
Equation 18 is fixed. If you rewrite these
equations in terms of the rate, you obtain

TABLE 1—STANDARD-VALUE RATIOS FOR 5% TOLERANCE
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which in turn implies

Equation 20 is independent of the
rate, meaning that as long as you main-
tain the corresponding capacitance ra-
tios, you can change capacitance values
for the desired rates and leave the mag-
nitude response of the filter intact. Fig-
ure 4 shows the resulting design.

Of course, you can select other resis-
tor-to-capacitor ratios for different rates,
and it is of interest to select ratios that
provide the greatest choice of standard
component values. For example, for 5%-
tolerance values and calculating the for-
ward ratio, the most common integer ra-
tio is 2-to-1, corresponding to 22-to-11,
24-to-12, 30-to15, 36-to-18, and 20-to-
10. The next most common integer ra-
tio is 3-to1, corresponding to 30-to-10,
33-to-11, 36-to-12, and 39-to-13. The
most common ratio is 1.5-to-1, corre-
sponding to 15-to-10, 18-to-12, 24-to-
16, 27-to-18, 30-to-20, 33-to-22, and 36-
to-24. Other common ratios are 1.2-to-1
and 1.1-to-1. By expanding the ratio tol-
erances to 61%, a greater range of com-
ponent ratios becomes available. For ex-
ample, if you allow the 1.1-to-1 ratio to
vary from 1.089-to-1 to 1.111-to-1, then
you can have as many as 16 component
ratios: 11-to-10, 12-to-11, 20-to-18, 22-
to-20, 24-to-22, 30-to-27, 33-to-30, 36-
to-33, 43-to-39, 47-to-43, 56-to-51, 62-
to-56, 68-to-62, 75-to-68, 82-to-75, and
91-to-82. Table 1 provides a complete
span of ratios for 5% standard compo-
nent values.

This article presents an approach for
designing RC-active filters with exact
standard component values to minimize
response distortion. The basic idea is to
modify the design equations and force
the resistor values to ideal values while
calculating capacitors using common
standard value ratios. You can apply the
technique to a matched-filter design with
less-than-0.2-dB deviation from ideal. To

incorporate a variable-rate capability,
you further modify the design equations
to reflect rate as a parameter. Simulation
and test results show that the design has
excellent response.

The method took into account not just
exact standard-component values, but
also parts count: You use the most com-
mon element value to limit the number
of standard values necessary for the de-
sign. In the matched-filter example, the
most common value was 1.23factor
(eight resistors), 1.63factor (two resis-
tors), and 1.53factor (one resistor). You
can apply the same approach to other bi-
quad topologies, including Sallen-Key
filters.k
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