design

 ideas

 ideas}

Model a nonideal transformer in Spice

Vittorio Ricchiuti, Siemens ICN, L'Aquila, Italy

DESIGNERS OFTEN USE transformers as voltage, current, and impedance adapters. Transformers usually comprise two inductively coupled coils, wound around a ferrite core. The coupling between the windings is never perfect. Spice provides a model (Figure 1a) of the coupled inductors using the k pa rameter, which is the coefficient of coupling between the windings. The model takes into account self and mutual inductances. With nonideal transformers, the problem is to determine k . Figure 1b shows a proposed equivalent circuit of a nonideal transformer, in which the conduction losses in the windings and the core losses are assumed to be negligible. L_{S} is the equivalent leakage inductance of the transformer, L_{p} is its magnetization inductance, and T is an ideal transformer $(\mathrm{k}=1)$ with transformation ratio equal to n. To obtain equivalence between the two circuits in Figure 1, we consider the equations describing these circuits. For the circuit in Figure 1a, the expressions are

$$
\begin{aligned}
& V_{1}=j \omega L_{1} I_{1}+j \omega M I_{2} \\
& V_{2}=j \omega M I_{1}+j \omega L_{2} I_{2} .
\end{aligned}
$$

Model a nonideal transformer in Spice \qquad
Clock-recovery scheme suits low-SNR systems \qquad 162
Op amp increases potentiometer's resolution \qquad 166
VHDL customizes serializer/ deserializer. \qquad 166
Sometimes, one capacitor is better than two \qquad 170
Inverter offers design flexibility 172

For the circuit in Figure 1b, the equations are

$$
\begin{aligned}
& V_{1}=j \omega\left(L_{S}+L_{P}\right) I_{1}+j \omega L_{P} \frac{I_{2}}{n} ; \\
& V_{2}=j \omega \frac{L_{P}}{n} I_{1}+j \omega \frac{L_{P}}{n^{2}} I_{2} .
\end{aligned}
$$

Comparing the two systems and considering $\mathrm{M}=\mathrm{k}\left(\mathrm{L}_{1} \mathrm{~L}_{2}\right)^{1 / 2}$, we obtain

$$
\begin{gathered}
\mathrm{L}_{1}=\mathrm{L}_{\mathrm{S}}+\mathrm{L}_{\mathrm{P}} \\
\mathrm{~L}_{2}=\frac{\mathrm{L}_{\mathrm{P}}}{\mathrm{n}^{2}}
\end{gathered}
$$

Figure 1

(a)
(b)

Spice models simulate an ideal transformer (a) and a nonideal one (b).

Figure 2

A Spice simulation yields the transfer function of the nonideal transformer described in the text.

${ }^{\text {desige }}$ ideas

$$
\begin{aligned}
\mathrm{L}_{\mathrm{S}} & =\mathrm{L}_{\mathrm{P}}\left(\frac{1}{\mathrm{k}^{2}} 21\right) ; \\
\mathrm{n} & =\mathrm{k}\left(\sqrt{\frac{\mathrm{~L}_{1}}{\mathrm{~L}_{2}}}\right) .
\end{aligned}
$$

Then, if you know the L_{p} and L_{s} values, you also know the coupling factor, $\mathrm{k} . \mathrm{L}_{1}$ is the inductance measured at the operating frequency between terminals In_{1} and In_{2} with no load connected between Out ${ }_{1}$ and Out. Similarly, L_{2} is the inductance measured at the operating frequency between terminals Out ${ }_{1}$ and Out_{2} with no load connected between In_{1} and $\operatorname{In}_{2} . \mathrm{L}_{\mathrm{S}}$ is the inductance measured at the operating frequency between terminals In_{1} and In_{2} with Out ${ }_{1}$ and Out ${ }_{2}$ short-circuited. From these values, using the previous equations, we obtain the parameters of the equivalent circuit in Figure 1b. Listing 1 shows the PSpice subcircuit that represents the behavioral model of a nonideal transformer. You can use the subcircuit for both transient and ac analysis.

The input parameters of the subcircuit

LISTING 1-SPICE SIMULATION OF NONIDEAL TRANSFORMER

.SUBCKT transformer in1 in2 out1 out2 params: $L 1=1 u L 2=1 u$ Ls=1u

R_Rs	in1 1 1n
L_Ls	12 (Ls)
L_Lp	in2 2 \{L1-Ls\}
E_E1	3 out2 VALUE $\left\{\left(\mathrm{sqrt}(\mathrm{L} 2 /(\mathrm{L} 1-\mathrm{Ls}))^{*} \mathrm{~V}(2, \mathrm{in} 2)\right\}\right.$
V_Vsense	out130V
F_F1	40 V_Vsense 1
R_Rload	$400.1 n$
G_G1	2 in 2 VALUE $\left\{\left((10 \mathrm{G})^{*} \operatorname{sqrt(L2/(L1-Ls))}\right)^{*} \mathrm{~V}(4,0)\right\}$
.ENDS	transformer

L_Ls 12 \{Ls\}
L_Lp in2 2 \{Li-Ls\}
E_E1 3 out2 VALUE $\{($ sqrt(L2/(L1-Ls)))*V(2, in2) \}

F_F1 40 V_Vsense 1

R_Rload $400.1 n$

G_G1 2 in2 VALUE $\left\{\left((10 G)^{*} \operatorname{sqrt(L2/(L1-Ls))}\right)^{*} V(4,0)\right\}$
.ENDS transformer

As an example, consider a transformer that provides an impedance transformation of 46 to 75Ω at 72 kHz . It uses an RM8 ferrite core with inductance factor $\mathrm{A}_{\mathrm{L}}=1600 \mathrm{nH}$. The measured inductances are $\mathrm{L}_{1}=4.2$ $\mathrm{mH}, \quad \mathrm{L}_{2}=2.6 \mathrm{mH}$, and $L_{\mathrm{S}}=20 \mu \mathrm{H}$. Figure 2 shows the simulated transfer function of the transformer. You can download Listing 1 from EDN's Web site, www.ednmag.com. Click on "Search Databases" and then enter the Software Center to download the file for Design Idea \#2539. (DI \#2539).

Reference

1. Coelho, J, "A Spice model for the ideal transformer," Electronic Design, June 28, 1999.

Clock-recovery scheme suits low-SNR systems

Luis Miguel Brugarolas, SIRE, Madrid, Spain

ACLOCK-RECOVERY ARCHITECTURE can operate with NRZ digital signals, even at low SNRs. A \square clock-recovery subsystem is based on a PLL comprising a phase comparator, a loop filter, and a voltage-controlled oscillator (VCO). If you place the phase comparator after the demodulator block, a typical criterion for comparison is the zero crossings of the received signal (the edges of a TTL-compatible signal). The phase comparator must provide a voltage proportional to the phase difference between the incoming signal and the local-
are the measured values of inductances $\mathrm{L}_{1}, \mathrm{~L}_{2}$, and L_{s}. You obtain the ideal transformer, T , by means of the voltage-controlled voltage source, E_{1}, and the volt-age-controlled current source, G_{1}, connected back to back (Reference 1). The current source, G_{1}, senses the current, $I\left(V_{\text {sense }}\right)$, and provides the current $\mathrm{I}\left(\mathrm{V}_{\text {sense }}\right) / \mathrm{n}$. The transformation ratio n is a function of inductances L_{1}, L_{2}, and L_{S}.

To Vote For This Design, Enter No. 500
ly generated clock (the VCO output). But, in comparison with a synFigure 2

The phase compara-
tor uses three Dtype flip-flops

Figure 3
with asynchronous reset inputs. The comparator has two inputs: RxD and RxC , and two outputs: CKR_ERRA and CKR_ERRB. These inputs and outputs form a three-level output, both high for increasing frequency, both low for decreasing frequency, and both at different levels for no change in frequency. They form a state machine:

1. Data rising edge triggers CKR_ ERRA.
2. Once triggered, next RxC rising edge triggers CKR_ERRB and resets CKR_ERRA.
3. Next RxC falling edge (thus, a halfclock period later) resets CKR_ ERRB.
Figure 2 shows the operation of the phase comparator. The transfer function is not linear (Figure 3). It corresponds to the expression $V_{\text {OUT }}=t /(1+T / 2)$, where t is the time from RxD's rising edge to RxC's rising edge, and T is the period of RxC . The nonlinear transfer function is not a limitation, because the system operates around the point at which $\mathrm{t}=\mathrm{T} / 2$. Moreover, the presence of noise effec-

The phase comparator's output is nonlinear; however, the nonlinearity is inconsequential to the clock-recovery function.
tively reduces the comparator's gain and smoothes its operation. Thus, the PLL's design must accommodate variations in the comparator's transfer function. Figure 4 shows a simplified final PLL implementation. The pro-grammable-logic device uses buffering to attenuate the digital switching noise of the device. The op amp's noninverting reference input comes from the filtered symmetrical clock signal; thus, the reference level is exactly centered between the low and high logic-level voltages. The system is thus voltage-independent. (DIHe2bea) For This Design, Circle No. 501
thesizer-based phase comparator,
 show that the comparator works successfully in a $2-\mathrm{Mbps} \mathrm{V}_{\mathrm{SAT}}$ demodulator with SNR of 6 dB and lower. The comparator can easily acquire and track the signal.

The last waveform represents the absolute value of the difference between CKR_ERRA and CKR_ERRB.
the comparison must take place only when information exists; that is, at datalevel transitions. The recovery system should disable the phase comparator in the absence of data-level transitions to minimize comparator noise. Figure 1 shows a phase comparator you can implement in a CPLD or an FPGA. Tests

Figure 4

The complete clock-recovery circuit uses a small handful of components.

Op amp increases potentiometer's resolution

Chuck Wojslaw, Xicor Inc, Milpitas, CA, and P Gareth Lloyd, Elab Ltd, Stoke-on-Trent, UK

AKEY Parameter of digitally controlled potentiometers (DCPs) is the number of taps
 (n) programmable positions of the wiper. This parameter establishes the resolution in programmable-voltage and -current applications. A number of circuit techniques exist for improving the resolution using one or more DCPs with a given number of taps. The circuit in Figure 1 has no theoretical limit on increasing the resolution in programmable-voltage applications. The IC_{3} amplifier circuit is an inverting summer with weighted inputresistor values. The input voltages to the summer are the programmable output voltages of the DCPs. To reduce the effects of loading, IC_{1} and IC_{2} buffer the signals from the potentiometer wipers. For an n-tap potentiometer, the input resistors of the summing amplifier are R and $n R$, providing a programmable output voltage of $0 \mathrm{~V}>\mathrm{V}_{\text {OUT }}>-\mathrm{V}_{\text {REF }}(1+1 / \mathrm{n})$, with a resolution of $\mathrm{V}_{\text {out }}$ (smallest $)=-V_{\text {REF }} /[n(n-1)]$.

For the dual 64-tap Xicor X9418 DCP and the circuit values shown, the output voltage, $\mathrm{V}_{\text {out }}$, has n^{2}, or 4096, programmable values. The full-scale value is 2.5391 V , and the smallest programmed

The sky's the limit on resolution in this programmable-voltage circuit.
voltage is 0.62 mV . You can program the coarse DCP_{1} from 0 to 2.5 V with a resolution of 39 mV , and you can program the fine DCP_{2} from 0 to 39 mV with a resolution of 0.62 mV . This circuit provides the same resolution as a 12 -bit D/A converter. Measured data fell within 2 LSBs of calculated values. Adding more potentiometers, buffers, and input resistors provides theoretically unlimited resolution. If you add a third section, the
resolution increases to one part in 262,144 (18 bits). You can implement a similar scheme using a noninverting summer circuit. You can use the circuit as a substitute for expensive D / A converters in any application that requires a precise, high-resolution programmable voltage. (DI \#2537).

To Vote For This Design, Circle No. 502

VHDL customizes serializer/deserializer

Antonio Di Rocco, Siemens ICN, L'Aquila, Italy

Many applications require a multiple-signal exchange among \qquad cards through a backplane. Several solutions are available to serialize/deserialize data-from the classic UART to newer low-voltage differential-signaling components. It is sometimes important to have hardware flexibility in

Using VHDL, you can customize a PLD to perform serialization and deserialization.
transferring signals; for example, you can use a PLD to implement a UART-like function to perform a parallel-serial-parallel conversion (Figure 1). Figure 2 shows the frame structure. The idle " 1 " bits exactly fill the time between the start and stop bits. Assuming $f_{\text {BIT }}=1 / \mathrm{T}_{\text {BIT }}$ as the speed of the serial link, the sampling frequency, f_{SH}, for each parallel-input channel is $\mathrm{f}_{\mathrm{SH}}=\mathrm{f}_{\mathrm{BIT}}[(\mathrm{N}+3) / 2]$.

Figure 2
With an internal state machine working \quad The system in Figure 1 produces this frame structure. with a system clock (clk), each eightclock period corresponds to one bit period, $\mathrm{T}_{\text {BIT }}$. The Figure 3 relationship between sampling frequency $f_{\text {SH }}$ and the PLD clock is $\mathrm{f}_{\mathrm{SH}}=\left[\mathrm{f}_{\mathrm{CLK}}(\mathrm{N}+3)\right] / 4$.

The deserializer does not perform a clock-recovery function but works with the nominal clock frequency of the transmitter side. Jitter tolerance on the serial line is related to the number of parallel-input channels. During the time between the start bit and the stop bit, the system tolerates a delay time of $3 / 8 \mathrm{~T}_{\text {BIT }}$. Often, system features are related to the maximum speed the serial link allows. To improve the quality of transmission, you can insert a more complex CRC function. The timing simulation shows a serialization of $\mathrm{N}=32$ signals using a sampling frequency
$\mathrm{f}_{\mathrm{SH}}=17.8 \mathrm{kHz}$, which corresponds to a PLD clock $\mathrm{f}_{\text {CLK }}=10 \mathrm{MHz}$ with a speed of 1.25 Mbps on the serial link (Figure 3). Note that the serializer's start bit occurs just as the master reset (mr_rx) is deasserted. On the receiver side, the deserializer has its master reset (mr_rx) deasserted while it receives a frame; thus, it starts to sample a wrong frame. Between the two first start_frame_rx pulses, no
valid_data pulse exists. The frame-acceptance pulse appears at the end of the second received frame. You can easily customize the VHDL code. It uses the ser2par.vhd and par2ser.vhd component source files. Another VHDL listing has the package source file, in which the constant N designates the number of parallel channels. Finally, a "bench" routine, bench.vhd, runs simulations. You can
download the VHDL listings from EDN's Web site, www.ednmag.com. Click on "Search Databases" and then enter the Software Center to download the file for Design Idea \#2542. (DI \#2542).

Sometimes, one capacitor is better than two

Robert LeBoeuf, National Semiconductor, Salem, NH

Many A/D converters use an internal resistor ladder as a twopoint differential voltage reference in the conversion. This method demands that these two nodes remain steady. The higher the resolution, the stronger the demand for quiet voltages. Figure 1 depicts a simplified schematic of the LM985XX reference ladder. Figure 1a shows the traditional decoupling scheme; Figure 1b shows a proposed scheme. Typically, designers use two capacitors to decouple each reference node-one low-value capacitor and one of higher value because the effective series inductance (ESL) of the smaller capacitor is much lower than that of the larger one. Contrary to tradition, you can eliminate these larger capacitors and replace them with one differential capacitor if you choose the values wisely. Because the difference in the reference voltages, $\Delta \mathrm{V}_{\mathrm{REP}}$, is important in conversion, this is the delta that is of interest.

Figure $\mathbf{1 b}$ shows two common-mode decoupling capacitors, C_{1} and C_{2}, and the differential capacitor, C_{3}. The current sources, I_{1} and I_{2}, represent the average currents pushing or pulling on the lad-
der. These currents are generally proportional to the input voltage, $\mathrm{V}_{\text {IN }}$, and the sampling frequency, f. If the input voltage is periodic or at least quasiperiodic, then you can choose the decoupling capacitors on the basis of the maximum ripple voltage allowed to appear differentially on the nodes. This ripple specification is based on the permissible output error. The poles and zero of the transfer function are, respectively,

$$
\begin{gathered}
\text { pole }_{1}=\frac{-1}{2} \bullet \\
\frac{\left(\mathrm{C}_{2} \bullet \mathrm{R}_{\mathrm{P} 3} \bullet \mathrm{R}_{\mathrm{P} 1}+\mathrm{C}_{3} \bullet \mathrm{R}_{\mathrm{P} 2} \bullet \mathrm{R}_{\mathrm{P} 1}+\mathrm{C}_{1} \bullet \mathrm{R}_{\mathrm{P} 2} \bullet \mathrm{R}_{\mathrm{P} 3}\right)}{\left[\left(\mathrm{C}_{2} \bullet \mathrm{C}_{3}+\mathrm{C}_{1} \bullet \mathrm{C}_{3}+\mathrm{C}_{1} \bullet \mathrm{C}_{2}\right) \bullet \mathrm{R}_{\mathrm{P} 2} \bullet \mathrm{R}_{\mathrm{P} 3} \bullet \mathrm{R}_{\mathrm{P} 1}\right]} \bullet \\
\text { pole }_{2}=\frac{1}{2} \bullet \\
\frac{\left(\mathrm{C}_{2} \bullet \mathrm{R}_{\mathrm{P} 3} \bullet \mathrm{R}_{\mathrm{P} 1}+\mathrm{C}_{3} \bullet \mathrm{R}_{\mathrm{P} 2} \bullet \mathrm{R}_{\mathrm{P} 1}+\mathrm{C}_{1} \bullet \mathrm{R}_{\mathrm{P} 2} \bullet \mathrm{R}_{\mathrm{P} 3}\right)}{\left[\left(\mathrm{C}_{2} \bullet \mathrm{C}_{3}+\mathrm{C}_{1} \bullet \mathrm{C}_{3}+\mathrm{C}_{1} \bullet \mathrm{C}_{2}\right) \bullet \mathrm{R}_{\mathrm{P} 2} \bullet \mathrm{R}_{\mathrm{P} 3} \bullet \mathrm{R}_{\mathrm{P} 1}\right]} \bullet \\
(\delta-2) ; \\
(\delta \ll 1)
\end{gathered}
$$

$\mathrm{ZERO}=\frac{\mathrm{R}_{2}+\mathrm{R}_{1}}{\mathrm{R}_{2} \bullet \mathrm{R}_{1}\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)}$, and $\mathrm{R}_{\mathrm{PK}}=\frac{\mathrm{R}_{\mathrm{n}} \bullet \mathrm{R}_{\mathrm{m}}}{\mathrm{R}_{\mathrm{n}}+\mathrm{Rm}_{\mathrm{m}}}$,
pole in the first equation is the dominant pole. As long as the zero is sufficiently far from pole ${ }_{1}$, then this pole (hence, C_{3}) determines the roll-off. If C_{1} and C_{2} are small enough, the zero finds itself well away from pole. . Using the values in Figure $\mathbf{1 b}$, the poles and zero becomepole $_{1}=-28.50 \mathrm{~Hz}$; pole ${ }_{2}=-3.948 \times 104$ Hz ; and zero $=2.48 \times 105 \mathrm{~Hz}$.

Typically, the current sources have a fundamental frequency equal to the frequency of the analog clamp. The most pessimistic assumption is that the input signal contains all white pixels. This scenario causes the maximum swing in the current sources and the smallest duty cycle. Using this assumption and a current amplitude of 0.6 mA , the capacitor values shown in Figure 1b would produce - $\Delta \mathrm{V}_{\text {REF }}=1.989 \mathrm{mV}$. Instead, if you used a pair of $12-\mu \mathrm{F}$ decoupling capacitors, as in Figure 1a, the circuit would produce $\Delta \mathrm{V}_{\mathrm{REF}}=3.975 \mathrm{mV}$. (DI \#2543)

To Vote For This Design, Enter No. 504
where k, n, and m are cyclic permutations of 1,2 , and 3 . You can easily see that the

Figure 1

More is not always better; the circuit in bprovides better decoupling than the one in a.

design ideas

Inverter offers design flexibility

Nihal Kukaratna, Arthur C Clarke Institute, Katubedda Moratuwa, Sri Lanka

YOU MAY occasionally need a substitute for a commercial dc/ac inverter. A typical application is in an uninterruptible power supply (UPS). The circuit in Figure 1 is a flexible, low-com-ponent-count inverter with closed-loop voltage regulation. The advantages of the circuit are that it works from a 12 V car battery (or from higher battery voltages with minor modifications), it offers closed-loop voltage regulation, and phase locking with a commercial power supply is possible.

The circuit is designed around a MOS-
gate driver family, such as International Rectifier's (www.irf.com) IR215X family $\left(\mathrm{IC}_{5}\right)$. This IC drives the gates of power MOSFETs Q_{3} and Q_{4} through NAND gates $\left(\mathrm{IC}_{6}\right)$. A 555 -timer-based $100-\mathrm{Hz}$ oscillator $\left(\mathrm{IC}_{2}\right)$ feeds the MOS-gate driver's frequency-generation block through a divide-by-two circuit $\left(\mathrm{IC}_{4}\right)$. The MOS-gate drivers' low and high outputs drive the power MOSFETs' gates through IC_{6}. The combination of the MOS-gate driver and the IC_{6} NAND gates maintains the necessary deadband to prevent simultaneous conduction of
the power-MOSFET pair. A voltage-feedback sample, compared with the 1.2 V reference source in a MAX951, IC_{7}, provides a closed-loop feedback to vary the value of the constant-current source comprising Q_{7} and the optoisolator, IC_{8}. This variable constant-current source varies the monostable output of IC_{3}, which feeds the IC_{6} NAND gates. The feedback system thus maintains the proper pulse width in the gate drivers.

You can easily modify the (squarewave) circuit for a sinusoidal output by
(text continued on pg 174)

Figure 1

Roll your own dc/ac inverter, using a MOS-gate driver IC.

Figure 2

The circuit in Figure 1 maintains reasonably tight regulation for a wide range of loads.

${ }^{\text {desesin }}$ ideas

adding a few components between IC_{3} and IC_{6} (Reference 1). For higher outputs, you need change only the battery voltage and the power MOSFETs. The circuit in Figure 1 is a $200-\mathrm{VA}$ unit. Figure 2 shows the out-put-regulation curve for different battery-voltage inputs. Figure 3 shows the efficiency-versus-load curve. The inverter circuit has 81 to 93% efficiency for loads of 15 to 180W. Using a tape-wound, powdered-iron-core transformer as T_{1}, you can package the unit in a $100-\mathrm{in} .{ }^{3}$ volume for a $230 \mathrm{~V}, 50-\mathrm{Hz}$ emergency power source. (DI \#2538).

Efficiency peaks at nearly $\mathbf{9 3} \%$ for moderate loads.

References

1. Kularatna, N, and P Silva, "New Approach to Sine-Wave Inverters for UPS and Emergency Power Supplies Using Low-Cost MOS Gate Drivers," Proceed-
ings of Power Systems World Conference (PCIM 98), pg 332.
2. N Kularatna and M de Silva, "DSPBased Sine-Wave Inverters for UPS and Emergency Power Supplies with MOS

Gate Drivers," Proceedings of Power Systems World Conference (PCIM 99), pg 296.

To Vote For This Design, Circle No. 505

${ }^{\text {desegrideas }}$

EDN selects 1999 Design Ideas grand-prize winner

$E D N$ is pleased to announce the $\$ 1000$ grand-prize winner for Design Ideas published in 1999. Maxwell Strange of Fulton, MD, a consultant who specializes in analog-circuit design, takes the honor for "Single-button lock provides high security," which was originally published in EDN's March 4, 1999, issue and which we reprint on the next page for anyone who missed it the first time. This marks the second time Strange has taken the top prize in EDN's Design Idea program; he won in 1973. As always, the choice was difficult, given the high quality of 1999's Design Ideas.
$E D N$ chose the winning Design Idea for the cleverness of the theory behind the circuit and the usefulness of the foolproof lock circuit. The circuit uses a single pushbutton; you enter a code via short and long pushes on the button. The lock uses low-cost, readily available components.

Maxwell was elated to hear of his selection as grand-prize winner. The sin-gle-button lock is only one of many systems he's designed for use in his home. Another design controls the outdoor lights in his backyard. The system uses one line that carries digitally sequenced
signals to turn lights on and off. Strange is a long-time electronics hobbyist and has built many amplifiers and other components for home-built stereo systems.

Another passion is photography; his Vermont and Massachusetts landscapes have been part of many local exhibits. He also collects phonograph records, including $78-\mathrm{rpm}$ platters and even Edison cylinders. Another hobby is genealogy; using a computer, he's accurately traced his ancestry through eight generations and with a little less assurance of accuracy back to the time of the Vikings (circa 700 AD).

Abstract

EDN's Design Idea Grand Prize Winner is selected from among the 26 issue winners that readers have selected during the year. We list the issue winners below and congratulate all on their creativity and ingenuity.

DESIGN IDEAS ISSUE WINNERS 1999

1/7/99

$\mu \mathrm{C}$ reprograms audio DAC via serial interface, by Lukasz Sliwczynski

1/21/99
Light powers isolation amplifier, by Stephen Woodward

2/4/99

RS-232C circuit has galvanic isolation, by Ioan Ciascai

2/18/99

Monostable makes low-cost F/V converter, by Mark Brinegar

3/4/99

Single-button lock provides high security, by Maxwell Strange

3/18/99

LED driver displays standing-wave ratio, by Richard Panosh

4/1/99

Tiny IC debounces pushbutton switch, by Len Sherman

4/15/99

NCO technique helps $\mu \mathrm{C}$ produce clean analog signals, by Steve Ploss

4/29/99

Simple circuit safely deep-discharges NiCd battery, by Jim Hagerman

5/13/99

Simple fix adds door-chime repeater, by Dennis Eichenberg

5/27/1999

Charge indicator gauges lead-acid batteries, by Fran Hoffart

6/10/1999

Precision reference bans precision resistors, by Budge Ing

6/24/1999

Ultrasonic range finder uses few components, by Daniel R Herrington

7/8/1999

Simple scheme detects shorts, by Luis Miguel Brugarolas

7/22/1999

Simple technique speeds Microstrip breadboarding, by Steve Hageman

8/5/1999

Single $\mu \mathrm{C}$ pin makes half-duplex RS-232C, by Marin Ossman

8/19/1999

Circuit emulates mechanical metronome, by Jim Kocsis

9/2/99

DDS device provides amplitude modulation, by Mary McCarthy

9/16/99

5 V logic pulser is battery-powered, by W Stephen Woodward

9/30/99

SSB modulator covers HF band, by Israel Schleicher

10/14/99

Dual supply suits portable systems, by Budge Ing

10/28/99

$\mu \mathrm{C}$ forms FM oscillator, by Abel Raynus

11/11/99

Ring your bell; light your light, by Dennis Eichenberg

11/24/99

RF transmitter uses AMI encoding, by Paul Sofianos

12/9/99

Motor controller operates without tachometer feedback, by Bruce Trump

12/23/99

Simple tester checks Christmas-tree lights, by William Dias

Single-button lock provides high security

Maxwell Strange, Fulton, MD

FIGURE 1 is the block diagram of an easily programmed, single-button combination lock. You operate the lock by using a series of short and long pulses from a momentary switch that masquerades as a doorbell button. The circuit uses inexpensive CMOS logic. The retriggerable timer, T2, locks out entries made after the T1 code-entry window, thereby greatly enhancing security. The circuit in Figure 2 operates as follows: The Schmitt-trigger quad NAND gate, IC1, debounces the code-entry switch and, with the aid of simple analog circuitry, produces separate outputs for activation times of less than and more than
0.3 sec . These outputs connect to the select gate, IC5. The initial entry also sets timer T1 to enable the decoded decade counter, IC3. Each entry clocks IC3.

As IC_{3} steps through its counts, certain of its output positions represent "short" and connect to IC_{4} 's inputs; unconnected lines represent "long" positions. This coding arrangement sets the combination. Short pulse positions change the address of IC_{5} to select the short input pulse; otherwise, IC_{5} selects the long pulse input. The short and long inputs, if present in the programmed sequence, produce an output from $\mathrm{IC}_{5} . \mathrm{IC}_{6}$ counts the outputs and produces an unlock
command only if it counts all pulses. The power-on-reset circuit ensures that no compromise of security arises under any conditions after a power outage. The timers are crucial to the high security of the system. You must enter the code within the $8-\sec \mathrm{T}_{1}$ window. If you make a mistake, you must wait at least 10 sec for T_{2} to time out before you make another attempt. If entries occur continuously and less than 10 sec apart, as an intruder might try, T_{2} continuously inhibits counter IC 6 .
The lock proves to be reliable over several years of use. The circuit in Figure 2 uses an eight-character combination,

Figure 1

[^0]
${ }^{\text {desegen ideas }}$

which you can quickly enter. A short pulse is a quick jab to the button; a long pulse is only slightly longer.

Figure 3
A shorter sequence would also be secure; you can implement a shorter code by simply taking the unlock pulse from a lower count on IC_{6}. IC_{6} 's output returns low after 10 sec when T_{2} resets. If desired, you can generate a lock command, which need not be secure, by adding the simple circuit in Figure 3. (DI \#2327).
"SHORT" PULSES

You can generate a lock command with this additional circuit by rapidly entering four or more short pulses.

Figure 2

You program your combination by hard-wiring the $\mathrm{IC}_{3}-I C_{4}$ output-to-input connections, LLSSLSSL, where L and S are long and short inputs, respectively , in this example.

[^0]: A handful of timers and counters configures a highly secure, single-button combination lock.

