
www.ednmag.com February 1, 2001 | edn 107

SOME COMMON SOFTWARE-TESTING PROBLEMS ARE NOT

SEVERE, AND OTHERS ARE MORE COSTLY TO CORRECT. REAL-

LIFE SCENARIOS PROVIDE HELPFUL GUIDELINES THAT CAN

PREVENT THESE PROBLEMS IN THE FIRST PLACE.

If you make a list of some of the most important
traps in testing, you will realize that in many cas-
es the problems are nontechnical. More often

than not, they are consequences of the test process
itself, including the overall composition of the test
team and whether the company follows well-inte-
grated processes for formal requirements handling
and change management.

An informal survey of the relative cost of testing
software compared with the overall cost of develop-
ing software gives a range of estimates, from 10% in
smaller organizations to 70% in some larger and ma-
ture organizations. The results indicate the huge dis-
crepancy in the level of importance that different or-
ganizations give to testing. Some of these problems
are more common to younger organizations; oth-
ers are pitfalls that anyone can encounter.

The following case stories and suggested remedies
can help you overcome real-life software-testing
problems.

PROBLEM 1: THE CONFUSED TEST TEAM

A project manager fears that his team will not
complete the test activities by an aggressive deadline.
You make a house call, and as you interview the test
team, you find that the members have serious doubts
about whether the chosen methods are appropriate
and, in fact, whether they work at all. Your first feel-
ing is that the team is upset over things other than
work and is not focusing on how to perform its tasks.
The project is on an aggressive delivery schedule,
and, therefore, many of the available trained engi-
neering resources are working 24 hours a day on the
design team. In actuality, a lack of technical leader-
ship leaves the test team flabbergasted and unable
to complete the test work on time.

Test activity falling behind schedule and low
morale often indicate that the test team does not

have enough resources or is unqualified to perform
the task at hand. This deficiency may be due to lim-
ited resources, a lack of training of the individual
team members, or a leadership problem, or it could
suggest that appropriate testing means are unavail-
able to the team.

This problem, although grave, is usually easy to
fix. The difficult part is detecting the problem, be-
cause an unqualified team leader may hide or play
down his or her shortcomings. A separate, working
quality-assurance team should frequently review
overall project progress.

Also, because it is often as difficult to test a sys-
tem as it is to build one, do not make the mistake of
putting all the best engineers in software develop-
ment. Although they may invent brilliant software
solutions, if an equally brilliant test team is not de-
tecting problems, the solutions won’t necessarily fly.
This scenario is particularly true when you are build-
ing highly complex software within strict time lim-
itations. In those instances, it is vital that the test
team and engineers are equally qualified to test com-
plex software requirements under similar time con-
straints.

After determining whether you have a leadership,
resource, or training problem, or a combination of
problems, you can take straightforward measures to
remedy the situation. Remember that detecting and
correcting problems at an early stage is crucial. The
longer the problem continues, the more difficult it
is to handle. In general, you need to balance the
available design resources with the available testing
resources.

PROBLEM 2: THE TEST-MAINTENANCE FAILURE

After 16 months of creating test specifications
from a requirements specification, the requirements
organization publishes a new version of the re-

The top five software-testing
problems and how to avoid them

designfeature By Lars Mats, Telelogic Technologies Malmö AB

designfeature Software-testing problems

108 edn | February 1, 2001 www.ednmag.com

quirements specification. At this point,
only very limited traceability exists from
the written tests to the corresponding re-
quirements specification. Consequently,
locating the tests that you need to update
according to the new requirements spec-
ifications requires another several
months.

Requirements-specification changes
lead to abnormally long turnaround
times. At its worst, testing cannot cope
with requirements changes. Either the
traceability of requirements to test cases
is inappropriate, or the test method in
use does not localize the effects of
changes to requirements or other arti-
facts that the test specifications depend
upon.

Design the tests with maintainability
in mind, just like you do when you design
the system. Successful uses of this ap-
proach include grouping test cases by re-
quirements, implementing traceability to
and from requirements, and using ab-
stractions in the chosen test description
language. The added benefit is an ability
to calculate requirements and test cover-
age based on this traceability.

Even better, using test-case-generation
techniques to convert specifications into
test suites makes test specification less de-
pendent on changes to the specification.
If you do use this method, store not only
the test cases but also, and more impor-
tantly, the criterion that you use to gen-
erate the test cases from specification.

Automatically generating test cases
from a formal requirements specification
typically significantly reduces the turn-
around time.

PROBLEM 3: MANUAL TESTING

A test team is spending most of its time
running test cases but is executing the
tests slowly. It takes as much as a day just
to test one new feature of a system, and
often the tests fail due to system time-
outs. Executing full regression tests has
been so expensive that the team avoids
doing so whenever possible. Needless to
say, the test execution is manual.

When applying manual testing, the
team is frequently unsure about the re-
peatability of failing test cases. The turn-
around time for releasing a new revision
of software after it has been sufficiently
tested is too long and seems to be ever in-

creasing. The test team is busy doing
manual testing instead of producing new
test specifications, or updating old ones
to match a new or changed requirement.
Consequently, test documentation is lag-
ging behind.

Manually testing a complex system
with real-time requirements is, at best,
unreliable, and at worst, impossible. For-
tunately, significant research and world
standardization has occurred in the last
10 years that makes possible reliable au-
tomated testing of this type of system.
The ISO (International Standards Orga-

nization) has arrived at a standard (9646)
on formalized and automated testing of
communicating and real-time software,
called the TTCN (Tree and Tabular Com-
bined Notation).

Make sure from the start that you can
test your design using automated meth-
ods. It must have accessible interfaces and
an architecture that permits possible
overhead from test-related components.
Draw benefits from the standard; tell
your clients that you have tested your
product according to the ISO 9646 stan-
dard. For some applications, primarily in
the telecommunications domain, the
benefits of standardized test suites pro-
vide an excellent starting point for fur-
ther testing.

PROBLEM 4: THE UNCERTAINTY PRINCIPLE

Uncertainty introduced by the testing
method is virtually unavoidable. The fol-
lowing C code example is a classic, al-
though oversimplified, illustration of the
problem:

if (x != 0)
y = x;
else
assert(0);
x+=2;

The above code behaves differently if
compiled in debug mode than it behaves

if you compile it in release mode. Because
it is in C, the “assert” macro expands to
nothing, and the x+=2 statement takes
the place of the assertion after the “else”
statement. Other, often more difficult,
examples include optimizers being too
aggressive when test code in a system oth-
erwise affects its size, speed, or behavior,
and when system or component simula-
tors produce incorrect results. A problem
that occurs during testing is not repeat-
able when running a non-test session,
and a feature that worked just fine dur-
ing testing fails in real life.

Under test, the system behaves differ-
ently than in its release version. This sit-
uation typically occurs when the test en-
vironment affects the behavior of the test
subject. Examples of factors introducing
this behavior are conditionally compiled
testing and debugging code, as well as
special interfaces for testing.

Minimize the differences within the
system under test and the software in its
final form. In many cases, you can erad-
icate the problem, although black-box
testing through the interfaces that the
software under test normally provides of-
ten minimizes the need for specialized
testing or debugging versions of the soft-
ware. Another approach to solving this
problem is to deliver the system with the
debug code still in it.

PROBLEM 5: SELECTING THE RIGHT TESTS

You work with a group that tests soft-
ware for maintaining a communications
network. The software you are testing
comprises statistics-gathering nodes, an
analysis module, and a user interface for
connecting to other components. The
system is distributed, and the user inter-
face runs on a PC. The test group has
started constructing test cases using an
automated tool to test the system
through the user interface.

After about four months of work, you
present the first results—a set of test
scripts that invoke the UI tool from Win-
dows and open and close a few dialog
boxes. The tests are built to search the
screen for various icons, check the layout
of the dialogs, and check for specific
strings in the menus. After running all of
these tests, hardly one line of code in the
analysis module was tested. According to
the architects of the system, 90% of the

FOR SOME APPLICATIONS THE

BENEFITS OF STANDARDIZED

TEST SUITES PROVIDE AN

EXCELLENT STARTING POINT

FOR FURTHER TESTING.

110 edn | February 1, 2001 www.ednmag.com

system complexity is in the analysis mod-
ule. In this case, it is clear that the test
method and test-case selection should be
different.

The testing may not cover some of the
important aspects of the application or
system, for instance, by selecting only the
expected interactions when testing a
fault-tolerant application or testing only
some subset of the required functions.
Most of the time, it is more important to
concentrate on determining the techni-
cal correctness of a system. You need to
prioritize all requirements and the func-
tions that are likely to contain critical
problems. Most of today’s applications
are too complex to test in every possible
way, through all possible paths and states.
Prioritizing the paths and scenarios that
you test first is a valuable, timesaving les-
son for a test team, particularly when re-
sources are limited.

BE PREPARED

Testing activities can fail in many
ways, however, you can prevent most

problems with the following practices:
● form a well-qualified test team

with the appropriate means for
performing the tests at hand,

● make testing an integral part of soft-
ware development,

● employ change-management pro-
cesses,

● ensure requirement traceability to
and from tests,

● automate test specification and ex-
ecution, and

● design for testability.

Given the complexity of current and
anticipated software and communica-
tions systems, you should expect software
testing to become even more complicat-
ed. Consequently, even more potent tools
and methodologies will emerge over
time. Manual testing is becoming a less
viable alternative, and integration with
the overall design processes and tools will
prove necessary to keep pace in testing
these complex current and future sys-
tems.k

Author’s biography
Lars Mats is a design manager at Telelogic
Technologies (Malmö, Sweden). He has
worked as a developer, trainer, and con-
sultant on tools and methodologies for ma-
jor telecommunications companies in Eu-
rope, the United States, and Australia. He
holds an MS from Uppsala University
(Sweden).

designfeature Software-testing problems

MOST OF TODAY’S APPLICA-

TIONS ARE TOO COMPLEX TO

TEST IN EVERY POSSIBLE

WAY; PRIORITIZING THE

PATHS AND SCENARIOS YOU

TEST FIRST IS VALUABLE.

