Filter design uses image parameters

Richard Kurzrok, RMK Consultants, Queens Village, NY

REFERENCE 1 GIVES LOW-COST imageparameter design techniques for LC lowpass filters. Filter design using a low number of circuit elements results in reduced costs for both Figure 1 parts procurement and manufacturing. The technique applies to highpass filters. You derive a composite highpass filter by using m -derived terminating half-sections with one or more constant-k interior full sections. Classic image-parameter design used m-derived half-sections with $\mathrm{m}=0.6$ for best passband impedance matching (in other words, high input and output return losses). The design uses a value of $\mathrm{m}=0.5$ for the terminating half-sections. This value provides sharper close-in selectivity while maintaining passband return losses that are satisfactory for most applications. Figure 1 shows the normalized schematic for the composite highpass fil- \qquad Figure 2

Using image parameters results in a low number of circuit elements in a filter. ter. It uses midseries, m -derived, terminating half-sections with $\mathrm{m}=0.5$, plus two interior constant-k full sections. The $3-\mathrm{dB}$ cutoff frequency, f_{0}, is 31.2 MHz , and source and load impedances, Z_{0}, are 50Ω. Reference levels of filter inductance
Filter design uses image parameters.. 11Circuit efficiently drivesinductive loads112
Use a PC to record four-channel waveforms 114
Pulse generator has low top-side aberrations 118
Circuit provides ADSL frequency reference. 120
ActiveX control brings bit manipulation to Windows 122
Circuit breaker handles
voltages to 32 V 124

${ }^{\text {desegin }}$ ideas

and capacitance are as follows:

$$
\begin{aligned}
& \mathrm{L}_{0}=\frac{\mathrm{Z}_{0}}{2 \pi \mathrm{f}_{0}}=0.255 \mu \mathrm{H} \\
& \mathrm{C}_{0}=\frac{10^{6}}{2 \pi \mathrm{f}_{0} \mathrm{Z}_{0}}=102 \mathrm{pF}
\end{aligned}
$$

You obtain the actual inductance and capacitance values for the highpass filter by denormalization; in other words, by multiplying the normalized inductances and capacitances in Figure 1 by L_{0} and C_{0}, respectively. Figure 2 shows the actual component values for a dissipationless highpass filter. Table 1 gives the parts list for the filter. Table 2 gives the measured amplitude response for the composite highpass filter. The results indicate

TABLE 2-MEASURED AMPLITUDE RESPONSE

Frequency (MHz)	Insertion loss (dB)
29	$\mathbf{2 3 . 7}$
30	12.8
31	3.7
31.5	1.8
32	1
33	0.6
35	0.5
40	0.5
45	0.4
50	0.2
55	0.2
60	0.2
70	0.4
100	0.5
130	0.6

inductor unloaded Qs of approximately 100. As the passband frequency approaches 100 MHz , some modest shape degradation occurs. You can reduce the degradation by using microstrip construction with surface-mount components. You can trim the filter's cutoff frequency by spreading or squeezing the turns of the toroidal inductors. (DI \#2533)

Reference

1. "Low Cost Lowpass Filter Design Using Image Parameters," Applied Microwave \& Wireless, February 1999, pg 72, plus correction May 1999, pg 12.

To Vote For This Design,
Enter No. 362 at
WWW.EDNMAG.COM/INFOACCESS.ASP

Circuit efficiently drives inductive loads

Carlisle Dolland, Honeywell Engines and Systems, Torrance, CA

|n the driver circuit in Figure 1, the system controller provides the $\mathrm{V}_{\text {COMMAND }}$ signal. $\mathrm{V}_{\text {COMMAND }}$ equals the desired load current multiplied by R_{8}. When the controller applies this voltage to R_{1}, the output of IC_{1} goes high, applying voltage to the gates of Q_{1} and Q_{2}. These transistors turn on, allowing load current to flow to ground through Q_{1} and R_{8}. The current in the load ramps up, and a voltage proportional to the load current, sensed by R_{8}, feeds back to the inverting input of the comparator IC ${ }_{1}$. When this voltage exceeds the voltage at the noninverting input, the output of IC_{1} goes to ground. Q_{1} and Q_{2} then switch off. The load current now circulates around the loop comprising D_{1} and L_{1}. During this time, the slope of the load current becomes negative because of the dissipation in D_{1} and the load resistance. The duration of this phase of the circuit's operation is a function of the hysteresis (set by $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{4}) and the decay of the voltage across C_{2} (essentially a function of R_{9}). C_{2} and R_{9}

Inductive loads are tricky to drive. This circuit provides efficient drive to relays and solenoids.
determine the ripple current in the load. The circuit cannot use a power MOSFET for Q_{2}, because of the intrinsic drain-tosource diode. You must use a device without the intrinsic diode, such as a

3N71. (DI \#2535)
To Vote For This Design, Enter No. 363 at WWW.EDNMAG.COM/INFOACCESS.ASP

Use a PC to record four-channel waveforms

Dean Chen, Dycam Inc, Chatsworth, CA

THIS DESIGN IDEA is a sequel to a previous one, "Use a printer port to record digital waveforms," EDN, June 18, 1998, pg 136. Both

Figure 1
PRINTER-STATUS REGISTER (379H)
 ideas are similar: Use the PC's printer port to sample waveforms, and use the PC's memory to store data. The technique presented here expands the capability to four channels. The advantage is that you can see the relationships of the waveforms in the four channels. Figure 1 depicts the sampling circuit. It uses print-er-port pins ACK, BUSY, PE, and SLCT to record signals. The 74LS04 is a buffer between the sampled signals and the printer port. Listing 1 is the sampling program, written in assembly language. Because there are four channels, every sample needs 4 bits (one nibble) to record. One byte can store two samples: odd and even samples. To accurately record signals, the sampling program needs exclusive access to the CPU.

Execution of the program must take

Use your PC's printer port to record four-channel waveforms.

place in pure MS-DOS mode, and not in a Windows multitask-

Figure 2
ing environment. Second, it does not allow interrupts to occur during sampling. You must thus mask interrupts during the sampling procedure. Moreover, you need to equalize the odd and even sampling periods. Because the even sampling period is shorter then the odd one, the routine adds three nonoperation (NOP) instructions in the even sampling period. When the sampled data attains approximately 60 kbytes, the program restores the interrupt-mask register and generates a file named samsig.dat. Listing 2 is a QBasic program for displaying the recorded waveforms. The program reads and then displays the samsig.dat file. Figure 2 provides an example, a recording of the command and data signals from an Analog Devices AD7896 A/D converter. You can increase the sampling period by

Four channels of data from an AD7896 and the timing relationships thereof are visible.
inserting some NOP instructions in the sampling routine. You can download listings 1 and 2 from EDN's Web site, www.ednmag.com. Click on "Search Databases" and then enter the Software

Center to download the file for Design Idea \#2536. (DI \#2536)

To Vote For This Design, Enter No. 364 at

WWW.EDNMAG.COM/INFOACCESS.ASP

LISTING 2-DISPLAY PROGRAM FOR SAMPLED WAVEFORMS

```
KEY 20, CHRS (0) + CHR$ (72):
KEY 21, CHRS (0) + CHRS (80):
KEY 15, CHRS (0) + CHRS (73):
KEY 16, CHR$(0) + CHRS (81)
KEY 22, CHRS (0) + CHRS (75):
KEY 23, CHRS (0) + CHRS (77)
KEY 17, CHR$(0) + CHRS (1):
```

ON KEY (20) GOSUB UpLine ON KEY(21) GOSUB DownLine ON KEY(15) GOSUB UpPage ON KEY(16) GOSUB DownPage ON KEY(22) GOSUB Left ON KEY (23) GOSUB Right ON KEY(17) GOSUB Finish

```
SCREEN 12
DIM chr A. STRING * 1
DIM prv(3) AS INTEGER
DIM ptr AS LONG
OPEN "samsig.dat" FOR BINARY AS \#1
GET \#1, 1, chr: lo\% = ASC (chr) MOD 16
FOR k\% \(=0\) TO 3
\(\operatorname{prv}(\mathrm{k} \%)=10 \% \mathrm{MOD} 2: 10 \%=10 \% \backslash 2\)
NEXT k\%
\(d 8=12: d d \%=16: f 1 \%=0: p t r=0\)
KEY (17) ON
WHILE \(f 1 \%=0\)
KEY (15) ON: KEY(16) ON: KEY(20) ON
KEY(21) ON: KEY(22) ON: KEY(23) ON
LOCATE 1, 36: PRINT ptr
FOR i\% \(=0\) TO 255: FOR j\% \(=0\) TO 128: NEXT \(j\) \%
NEXT i\%
KEY (15) STOP: KEY(16) STOP: KEY (20) STOP
KEY(21) STOP: KEY(22) STOP: KEY(23) STOP
FOR \(18=0\) TO 4
\(y^{8}=i 8 * 96+32\)
FOR j\% \(=1\) TO 320
GET \#1, ptr + j\% + iq * 320, chr
10\% = ASC (chr) MOD 16: hi\% = ASC(chr) \(\backslash 16\)
\(x\) 웅 \(=2\) * j\%
FOR k\% \(=0\) TO 3
IF prv(k8) <> LO\% MOD 2 THEN
```



``` ELSE
IF ( \(10 \%\) MOD 2) THEN
PSET ( \(\mathrm{x} \%, \mathrm{y} \%+\mathrm{k} \%\) * dd \(\%\) )
```



```
END IF
END IF
\(\operatorname{prv}(\mathrm{k} \%)=10 \% \mathrm{MOD} 2: 10 \%=10 \% \mathrm{D}\)
NEXT k\%
\(\mathbf{x \%}=x \%+1\)
FOR \(\mathrm{kq}=0\) TO 3
IF prv ( \(k\) \% ) <> hif MOD 2 THEN
```



``` ELSE
```

IF (hi\% MOD 2) THEN
PSET ($\mathrm{x} \%$, $\mathrm{Y} \%+\mathrm{k} \%$ * dd ㅇ)
ELSE PSET (x q,$y^{q}+k \%$ * $d d q+d q$)
END IF
END IF

```
            NEXT k%
        NEXT jof
    NEXT i%
WEND
    KEY(15) OFF: KEY(16) OFF: KEY(20) OFE
    KEY(21) OFF: KEEY(22) OFF: KEY(23) OFF
```

CLOSE \#1
END
Upline:
IF ptr < 61120 THEN
CLS 1: ptr $=$ ptr +320
END IF
RETURN
Left:
IF ptr < 61440 THEN
CLS 1: ptr $=$ ptr +1
END IF
RETURN
UpPage:
IF ptr < 59840 THEN
CLS 1: ptr $=$ ptr +1600
END IF
RETURN
DownLine:
IF ptr >= 320 THEN
CLS 1: ptr = ptr - 320
END IF
RETURN
Right:
IF ptr >= 1 THEN
CLS 1: ptr $=$ ptr - 1
END IF
RETURN
DownPage:
IF ptr >= 1600 THEN
CLS 1: ptr = ptr - 1600
END IF
RETURN
Finish:
fl\% = 1
RETURN

design=
 ideas

Pulse generator has low top-side aberrations

Jim Williams, Linear Technology Corp, Milpitas, CA

MPULSE-RESPONSE and rise-time testing often require a fast-rise-time source with a high degree of pulse purity. These parameters are difficult to achieve simultaneously, particularly at subnanosecond speeds. The circuit in Figure 1, derived from oscilloscope calibrators (Reference 1), meets the speed and purity criteria. It delivers an 850-psec
output with less than 1% pulse-top aberrations. Comparator IC_{1} delivers a 1 MHz square wave to current-mode switch $Q_{2}-Q_{3}$. Note that IC_{1} obtains power between ground and -5 V to meet the transistors' biasing requirements. Q_{1} provides drive to Q_{2} and Q_{3}. When IC_{1} biases Q_{2}, Q_{3} turns off. Q_{3} 's collector rises rapidly to a potential determined by Q_{1} 's
collector current, D_{1}, and the output resistors combined with the 50Ω termination resistor. When IC_{1} goes low, Q_{2} turns off, Q_{3} turns on, and the output settles to $0 \mathrm{~V} . \mathrm{D}_{2}$ prevents Q_{3} from saturating.

The circuit's output transition is extremely fast and singularly clean. Figure 2, viewed on a $1-\mathrm{GHz}$ real-time-bandwidth oscilloscope, shows $850-$ psec rise

Figure 1

Need a fast, clean pulse? This simple circuit provides $\mathbf{5 0 0}-\mathrm{mV}, 850-\mathrm{nsec}$ pulses with a high degree of purity.

time with exceptionally pure pretransition and post-transition characteristics. Figure 3 details the pulse-top settling. The photo shows the pulse-top region immediately following the positive 500mV transition. Settling occurs within 400 psec of the edge's completion with all activity within $\pm 4 \mathrm{mV}$. The $1-\mathrm{mV}, 1-\mathrm{GHz}$ ringing undoubtedly stems from bread-board-construction limitations; you can
probably eliminate it by using striplinelayout techniques. The level of performance of this circuit requires some trimming. The oscilloscope you use should have at least 1-GHz bandwidth. You adjust trimmers TR_{2} and TR_{3} for the best pulse presentation. TR_{1} sets the output amplitude at 500 mV across the 50Ω termination. The trims are somewhat interactive, although not unduly so, and
converge quickly to give the results described. (DI \#2530)

Reference

1. 485 Oscilloscope Service and Instruction Manual, "Calibrator," pg 3 to 15, Tektronix Inc, 1973.

To Vote For This Design, Enter No. 365 at
WWW.EDNMAG.COM/INFOACCESS.ASP

Circuit provides ADSL frequency reference

Bert Erickson, Fayetteville, NY

The discrete-multitone (DMT) frequencies that asymmetrical-digi-tal-subscriber lines (ADSL) use are integral multiples of a common frequency , and the symbol period is the inverse of this frequency. Integration over the symbol period allows the sine and cosine orthogonal waveform products to vanish for all multiples of the common frequency except for those having the same frequency. As the ADSL standards (TI.413) specify, the 256 channels are separated by $69 / 16 \mathrm{kHz}$. You can generate the midchannel frequencies with a PLL, but the reference frequency differs from that of crystals for computers and clocks. However, by using the circuit in Figure 1, you can generate the frequency by using a $3.58-\mathrm{MHz}$ crystal to control the horizontal scanning rate in television sets. A typical $3.58-\mathrm{MHz}$ crystal has a tolerance of $\pm 50 \mathrm{ppm}$ and a load capacitance of 18 pF . This tolerance provides a frequency of 3.579366 to 3.579724 MHz . If you multiply this common DMT frequency by 830 , the result is $830 \times 69 / 16 \mathrm{kHz}$, or 3.579375 MHz , which is 9 Hz above the crystal's lower tolerance limit. Assuming that you can select the C_{S} and C_{T} capacitors at either side of the crystal to tune the frequency near the lower tolerance limit, you can also select them for the desired frequency.

In other words, reduce the oscil-
lator frequency with bistable flip-flops and combine the outputs in a NAND gate to divide by 830 . For the $3.58-\mathrm{MHz}$ crystal, design values for C_{S} and C_{T} were 23.6 and 75.7 pF , respectively. We chose 22 pF for C_{S} and 68 pF for C_{T}. A trimmer capacitor in parallel with C_{T} reduces the frequency. When C_{T} increased from 22 to 90 pF , the frequency decreased by 448 Hz and handily bridged the $3.579545-$ and 3.579375-MHz frequencies. Tests showed that the lower frequency was more than 100 Hz below 3.579357 MHz , but the ex-
act number depends on the calibration of the counter. Because 830 is a 10 -bit binary number, the circuit divides by 415 first to permit combining with an eight-input NAND gate. A strobe applied to a flipflop then creates a square wave for the ref-erence-frequency output. (DI \#2531)

To Vote For This Design, Enter No. 366 at
WWW.EDNMAG.COM/INFOACCESS.ASP

ActiveX control brings bit manipulation to Windows

Steve Hageman, Agilent Technologies, Santa Rosa, Ca

Nothing compares with the C language for working with bits. C provides a rich set of signed and unsigned number formats, along with many intrinsic bit-manipulation operators. However, most of the popular rapid-ap-plication-development Windows languages lack C's ability to easily work with bits. Visual Basic is such a language. Although it's hard to find a faster language to develop a small to midsized application in Windows, Visual Basic starts to show its weakness when it comes time to talk to hardware. Hardware programming is usually bit-oriented. That is, it's necessary to turn bits on and off or shift out serial streams to get the hardware to operate correctly. The ActiveX control serves just these types of bit-manipulation needs (Figure 1). The control includes functions for changing binary strings to numbers, a hex-output function, the ability to
set and clear bits in a word, and the everneeded shift-left and -right functions. As an example, many of the three-wire serial devices need to have a setup word shifted to them. Suppose you need to shift the setup word 01111101 first to an A/D converter to initiate a conversion on some channel. You can use the functions in the ActiveX control to easily effect the shift operation, as follows:

$$
\begin{aligned}
& \text { Setup_word = Bits ("01111101") } \\
& \text { `Returns } 125 \\
& \text { For } \mathrm{i}=0 \text { to } 7 \\
& \text { Val }=\text { ShiftRight_8(setup_word, } 0) \\
& \text { `write val to the A/D here } \\
& \text { next i }
\end{aligned}
$$

In the above example, val has the values $1,0,1,1,1,1,1,0$ during each iteration of the loop. The routine can then clock these bits to the A/D converter as
required by the hardware. If the operation requires MSB first, you can use the ShiftLeft function. The SetBit and ClearBit functions are useful when using a port as clock and data lines, because you can set individual bits as needed instead of doing entire port writes. Any modern programming language that can use ActiveX controls, such as Agilent VEE, Visual Basic, Delphi, and others, can use the functions given here. You can download the ActiveX control from EDN's Web site, www.ednmag.com. Click on "Search Databases" and then enter the Software Center to download the file for Design Idea \#2534. The routine includes all the functions listed in Figure 1, plus a few more, with application examples. (DI \#2534)

To Vote For This Design, Enter No. 367 at
WWW.EDNMAG.COM/INFOACCESS.ASP

Figure 1

Function GetBit(ByVal x As Long, ByVal n As Integer) As Integer
Returns the value of bit n in input value x. Returns 1 or 0 if bit
is set or not. $x=1$ to 16 bit, $n=0=$ LSB.
Example: GetBit $(16,5)$ returns 1.

Function Bits(ByVal inval As String) As Long
Given a representation of a binary string, returns the
value. inval may be any length from 1 to 16 bits
Example: Bits("101") returns 5.

Function BitsStr(ByVal inval As Long, ByVal sizeof As Integer) As String Given a number, retums with a representation of a binary string. sizeof is the width of the return field (1 to 16 bits).
Example: BitsStr $(82,8)$ returns " 01010010 "

Function HexStr(ByVal inval As Long, ByVal sizeof As Integer) Given a number, returns with a representation of a hex string.
sizeof is the width of the return field (1 to 16 bits).
Example: HexStr $(179,8)$ returns "B3"

Function ClearBit(ByVal x As Long, ByVal n As Integer) As Long
Clears bit position n in input x. Returns new x value.
x may be 1 to 16 bits, $n=0=$ LSB
Example: ClearBit(16,4) retums 0 .

Function SetBit(ByVal x As Long, ByVal n As Integer) As Long
Sets bit n in input value x. Returns new x. x may be any
width 1 to 16 bits, $\mathrm{n}=0=$ LSB.
Example: SetBit $(0,4)$ returns 16

Function ShiftRight 8(ByRef x As Integer, ByVal y As Integer) As Integer Shifts the 8 bit value x right by 1 place. Bit shifted in is y.
Returns bit shifted out.
Example: ShiftRight_8(129,1) Returns 1 and the new value for x (was 129) is 192.

Function ShiftRight_16(ByRef x As Long, ByVal y As Integer) As Integer Shifts the 16 bit value x right by 1 place. Bit shifted in is y. Returns bit shifted out.
Example: ShiftRight_16(1,1) Returns 1 and the new value for x (was 1) is 32768 .

Function ShiftLeft_8(ByRef x As Integer, ByVal y As Integer) As integer Shifts the 8 bit value x left by 1 place. Bit shifted in is y.
Returns bit shifted out.
Example: ShiftLeft_8(1,0) returns 0 and the new value for x (was 1) is 2 .

Function ShiftLeft_16(ByRef x As Long, ByVal y As Integer) As Integer Shifts the 16 bit value x left by 1 place. Bit shifted in is y. Returns bit shifted out.
Example: ShiftLeft_16(32768,1) returns 1 and the new value for x (was 32768) is 1

Function RotateRight_8(ByVal \times As Integer) As integer
Rotates the 8 bit value x right by 1 place. Returns new value. Example: RotateRight_8(1) returns 128.

Function RotateRight_16(ByVal \times As Long) As Long
Rotates the 16 bit value x right by 1 place. Returns new value.
Example: RotateRight_16(1) returns 32768.

Function RotateLeft 8(ByVal x As Integer) As Integer
Rotates the 8 bit value x left by 1 place. Retums new value.
Example: RotateLeft_8(64) returns 128
Function RotateLeft_16(ByVal x As Long) As Long
Rotates the 16 bit value x left by 1 place. Returns new value.
Example: RotateLeft_16(32769) returns 3.

End.....

Circuit breaker handles voltages to 32V

Greg Sutterlin and Craig Gestler, Maxim Integrated Products, Sunnyvale, CA

The simplicity of low-side current monitoring can mask the advantages of a high-side approach. You can monitor load currents in a power supply, a motor driver, or another power circuit on either the high or the low side (ground). However, don't let the ease of low-side monitoring cause you to overlook its dangers or the advantages of a high-side approach. Various fault conditions can bypass the low-side monitor, thereby subjecting the load to dangerous and undetected stresses. On the other hand, a high-side monitor connected directly to the power source can detect any downstream failure and trigger the appropriate corrective action. Traditionally, such monitors required a precision op amp, a boost power supply to accommodate the op amp's limited common-mode range, and a handful of precision resistors. Now, the MAX4172 IC can sense high-side currents in the presence of common-mode voltages as high as 32 V (Figure 1). IC_{1} provides a ground-referenced current-source output proportional to the high-side current of interest. This output current, equal to the voltage
across an external sense resistor divided by 100 , produces a voltage output across a load resistor.
IC_{1} and a few external parts form a low-cost circuit breaker. $\mathrm{R}_{\text {SENSE }}$ senses load currents, and Q_{1} controls the currents. The design accepts inputs of 10 to 32 V ; you can easily modify it to operate from voltages as low as 6.5 V . The initial application of $V_{I N}$ and $V_{C C}$ places the breaker in its trip state. Pressing S_{1} resets the breaker and connects power to the load, thereby activating Q_{1}, Q_{3}, and $Q_{4 B}$. Q_{3} powers IC_{1}, and $\mathrm{Q}_{4 \mathrm{~B}}$ establishes the overcurrent threshold, $\mathrm{V}_{\text {THRESH }}=\mathrm{V}_{\mathrm{CC}}-$ $\mathrm{V}_{\mathrm{BE}(4 \mathrm{~B})}$. Because V_{CC} (2.7 to 5.5 V typical) equals 5 V and the base-emitter voltage of $\mathrm{Q}_{4 \mathrm{~B}}$ is approximately $0.7 \mathrm{~V}, \mathrm{~V}_{\text {THRESH }}$ is typically 4.4 V . The circuit trips at a nominal load current of $1 A$. The values for $R_{\text {SENSE }}$, $\mathrm{R}_{\text {THRESH, }}$, and $\mathrm{R}_{\text {OUT }}$ are functions of the system's accuracy and power-dissipation requirements. First, select $\mathrm{R}_{\text {SENSE }}=50 \mathrm{~m} \Omega$ and $\mathrm{R}_{\text {THRESH }}=10 \mathrm{k} \Omega$. Then, calculate $\mathrm{R}_{\text {OUT }}=\mathrm{V}_{\text {CC }} / \mathrm{I}_{\text {LOAD }} \mathrm{R}_{\text {SENSE }} \mathrm{G}_{\mathrm{m}}$, where $\mathrm{I}_{\text {LOAD }}$ is the trip point (1 A) and G_{m} (IC_{1} 's typical transconductance) equals $0.01 \mathrm{~A} / \mathrm{v}$. Thus, $\mathrm{R}_{\text {OUT }}=10 \mathrm{k} \Omega$.

Applying power to Q_{3} and $Q_{4 B}$ causes $\mathrm{Q}_{4 \mathrm{~B}}$ to conduct, which establishes $\mathrm{V}_{\text {THRESH }}$ and activates Q_{3} to power IC C_{1}. A fraction of the load current through $\mathrm{R}_{\text {SENSE }}$ mirrors to the IC_{1} output and appears as a voltage, $\mathrm{V}_{\text {OUT }}$, across $\mathrm{R}_{\text {OUT }}$. $\mathrm{Q}_{4 \mathrm{~B}}$ turns off when $V_{\text {OUT }}$ increases above $\left(\mathrm{V}_{\text {Thresh }}+\mathrm{V}_{\text {be(4BA) }}\right)$, turning off Q_{3} and causing a drop in $\mathrm{V}^{+}\left(\mathrm{IC}_{1}\right.$, pin 8). When V^{+}reaches 2.67 V (typical), $\overline{\mathrm{PG}}$ goes high, thereby tripping the breaker by turning off $Q_{1} \cdot Q_{2}$ adds feedback to ensure a clean turn-off at the trip level. Current draw in the tripped state is minuscule and equals the V_{CC} load current, 0.5 mA typical. Press S_{1} to reset the breaker. The design is intended for low-cost applications in which the absolute accuracy of the trip current is not critical. The accuracy, which depends on variations in V_{CC} and the base-emitter voltages of $Q_{4 A}$ and $Q_{4 B}$ and on the error current through R_{4}, is approximately $\pm 15 \%$ at a trip current of 1A. (DI \#2532)

To Vote For This Design,

 Enter No. 368 atWWW.EDNMAG.COM/INFOACCESS.ASP

Figure 1

[^0]
[^0]: A current-sense amplifier and a few transistors form a low-cost circuit breaker.

