
58 edn | May 25, 2000 www.ednmag.com

coverstory By Markus Levy, Technical Editor

At a glance60

For more information62

Real-world embedded-system de-

sign requires real-world decisions;

it’s all about trade-offs. For many em-

bedded-system designs involving proces-

sors, the goal isn’t to pick the fastest

processor but to pick the processor and

EExxpplloorriinngg
ttrraaddee--ooffffss

I/O subsystem that can get the job done. Of course,
there’s nothing like experience to help you make
those decisions. On the other hand, many proces-
sor vendors provide evaluation boards that let you
test the theory and verify your decisions.

For this article, I stretched the capabilities of a
handful of evaluation boards to figure out what de-
sign trade-offs are all about. However, one of the dif-
ficulties of a project like this is that many of the eval-
uation boards or processors provide only a limited
set of features that you can evaluate. The main in-
gredients for this project included the IDT79-
S465+IDT79S574 board with a 250-MHz IDT-
79RC64575, the Mitsubishi M30620TB-RPD-E and
MSA0600 kit with a 16-MHz M16C/62A, the NEC
Midas RTE-V832-PC with a 143-MHz V832, the
NEC DDB-VRC5074 Revision 4.0 with a 250-MHz
VR5000, and the STMicroelectronics STi5500-
DEMO with a 50-MHz ST20C2.

I worked with Integrated Device Technology’s

Embedded-system design:

EMBEDDED-SYSTEM DESIGN IS ABOUT TRADE-OFFS. EDN

EXPLORED THE LABS OF FIVE LEADING SEMICONDUCTOR

VENDORS TO EXAMINE A VARIETY OF PROCESSOR AND

SYSTEM-LEVEL TRADE-OFFS. SEE WHAT WE DISCOVERED.

Illustration by M
ike O’Leary

coverstory Embedded-system design

60 edn | May 25, 2000 www.ednmag.com

(IDT’s) Upendra Kulkarni, Mitsubishi
Electric’s Ken Sheets, NEC Electronics’
Dennis Han and Bin Takahashi, STMi-
croelectronics’ Sam Jenkins, and Toshi-
ba America Electronics Glenn Haley. We
ran a variety of the EDN Embedded Mi-
croprocessor Benchmark Consortium
(EEMBC) benchmarks through their
processor boards, changing jumpers,
turning off caches, and using different
code-compilation options. I have nor-
malized all the results that appear in this
article to make it easier for you to assess
the performance differences. The
EEMBC Certification Labs (www.
embedded-benchmarks.com) has certi-
fied these benchmarks, and they are
available on the EEMBC Web site at
www.eembc.org/benchmark. This Web
site also contains data sheets describing
each benchmark.

AUTOMOTIVE/INDUSTRIAL BENCHMARKS

Mitsubishi’s Sheets and I used several
EEMBC automotive/industrial bench-
marks to experiment with Mitsubishi’s
M16C/62A running on the PC4701 em-
ulator with the M30620TB-RPD-E pod
with zero wait-state synchronous DRAM
(SDRAM). As its name implies, the
M16C/62A is a 16-bit CISC microcon-
troller. The general instruction format of
the M16C allows you to transfer data be-
tween any two registers within the CPU
or a 1-Mbyte address space. Other perti-
nent features of the M16C include a user-
selectable 8- or 16-bit-wide
data bus and bit-ma-
nipulation instruc-
tions. The compiler is the
Mitsubishi NC30-Version
3.20 Release 1.

For the M16C, it was
straightforward to try com-
pilation options, including
the use of the far-memory
model, optimizing for code
size and without optimiza-
tions. We also imposed one
wait state on the proces-
sor’s memory access by set-
ting the processor-configu-
ration register, Processor
Mode Register 1, in the ini-
tialization file. One useful
option that we didn’t per-
form was demonstrating
the performance difference
between an 8- and a 16-bit

memory bus. This task would have re-
quired us to put the M16C/62 in micro-
processor mode to use external memo-
ry, change hardware settings on the
emulator pod, and change the EEMBC
code.

I normalized the data for the M16C/62
to the fastest execution for each bench-
mark. So, for example, the fastest run for
the bit-manipulation benchmark is a 1;
any of the other results for the bit-ma-
nipulation benchmark is some fraction
of 1. Compiling for optimal code size had
an insignificant effect on performance.
However, this compiling also minimally
affects code size. For example, on the in-
verse-discrete-cosine-transform bench-
mark, the saving in code size is approxi-
mately 1%.

Compiling with the far-memory mod-
el significantly affects performance. The

far-memory model shows the effect of
using the memory space greater than 64
kbytes; this technique requires the use of
32-bit pointers, which adds the execution
overhead of manipulating 32-bit values
using 16-bit registers. For example, if the
address requires more than a 16-bit
pointer (as it would in a far-memory
model), the CPU must perform separate
operations on the lower and upper 2
bytes. However, if the CPU reads or
writes to data higher than 64 kbytes, but
the address pointer doesn’t change, no
decrease in performance occurs. The far-
memory model hits the FIR filter harder
than for the other three benchmarks test-
ed, decreasing performance by more than
60%. This decrease is the result of a large
amount of data processing (both reads
and writes) for the FIR filter and the need
for frequent pointer manipulation. How-
ever, this information indicates that you
should evaluate the use of data memory
beyond 64 kbytes on a case-by-case ba-
sis, because the far-memory model does
not as significantly affect the other
benchmark scores.

Turning off compiler optimizations
also yielded interesting results (Figure 1).
Except for the bit-manipulation bench-
mark, performance dropped less than
7%. I have insufficient data to explain
this finding, but several potential theo-
ries exist. First, the compiler/processor
combination could inherently work well
together; the compiler automatically im-

AT A GLANCE

ee The EDN Embedded Microprocessor
Benchmark Consortium benchmarks are
useful tools for analyzing processor, system,
and compiler performance.

ee Memory speed makes a significant dif-
ference in overall system performance.

ee A processor that includes a write-back
cache mode yields big performance gains.

0

0.2

0.4

0.6

0.8

1

1.2

ONE WAIT
STATE

NO OPTIONS LONG
 POINTER

CODE
SIZE

SPEED

NORMALIZED
PERFORMANCE

BIT MANIPULATION

INVERSE DCT

TABLE LOOK-UP

FIR FILTER

CONFIGURATION OPTIONS

Results from Mitsubishi’s M16C/62A microcontroller shows a variety of options with EEMBC’s automotive/industri-
al benchmarks.

F igure 1

coverstory Embedded-system design

62 edn | May 25, 2000 www.ednmag.com

plements many optimizations. Alterna-
tively, because we derived these
results using the EEMBC out-of-
the-box rules, the lack of intrinsics or
other compiler hints impedes the com-
piler’s optimizing capability. If these im-
pediments are what occurred, the
M16C/62 should demonstrate significant
performance improvements when Mit-
subishi engineers implement EEMBC’s
optimized format. On the other hand,
processor performance dropped 21%
when we turned off optimizations for the
bit-manipulation benchmark. Mit-
subishi claims that this decrease is due
to the processor’s and compiler’s abilities
to handle bit-masking and -shifting op-
erations.

JPEG COMPRESSION AND PACKET FLOW

In the next set of tests, I examined a va-
riety of processor configurations for
EEMBC’s JPEG-compression and
networking-packet-flow bench-
marks. The JPEG-compression bench-
mark divides an image into 838-pixel
blocks and calculates the discrete cosine
transform (DCT) for each block.A quan-
tizer then rounds off the DCT coeffi-
cients according to the quantization ma-
trix. The compression technique uses a
variable-length code on these coefficients
and writes the compressed data stream to
memory. The packet-flow benchmark
operates on 2 Mbytes of data. It receives
and processes data packets. Both bench-
marks handle large amounts of nonre-
peating data; this feature minimizes the
benefits of a data cache.

Jenkins and I started off with STMi-
croelectronics’ ST20C2 running at 50
MHz. This low-end, 32-bit RISC proces-
sor has 2-kbyte instruction and data

FOR MORE INFORMATION...
For more information on products such as those discussed in this article, enter the appropriate numbers at www.ednmag.com/infoaccess.asp. When
you contact any of the following manufacturers directly, please let them know you read about their products in EDN.

EEMBC
www.eembc.org
Enter No. 301

Green Hills Software
www.ghs.com
Enter No. 302

Integrated Device
Technology
www.idt.com
Enter No. 303

Mitsubishi Electric Corp
www.mitsubishichips.com
Enter No. 304

NEC Electronics Inc
www.necel.com
Enter No. 305

STMicroelectronics
www.st.com
Enter No. 306

Toshiba America Electron-
ics Components Inc
www.toshiba.com/taec
Enter No. 307 SUPER CIRCLE NUMBER

For more information on the
products available from all
of the vendors listed in this
box, enter No. 308 at www.
ednmag.com/infoaccess.asp.

0

0.2

0.4

0.6

0.8

1

1.2

NORMAL NO
CACHES

NO DATA
CACHE

NO INSTRUCTION
CACHE

CJPEG

PACKET FLOW
NORMALIZED

PERFORMANCE

Results from STMicro’s ST20 running the JPEG-compression and networking-packet-flow bench-
marks use different cache options.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NEC V832

ST20

SPEED SIZE SPEED/CACHE OFF

Comparing NEC’s V832 results with STMicro’s ST20 using different compilation and cache options
with the JPEG-compression benchmark demonstrates that the faster the processor, the more bene-
ficial the caches.

F igure 2

F igure 3

coverstory Embedded-system design

64 edn | May 25, 2000 www.ednmag.com

caches and a 16-bit external-memory in-
terface. For this benchmark configura-
tion, the memory bus is 50 MHz with an
access rate of 4-3-3-3.We used STMicro’s
ST20 ANSI C Compiler Version 1.8 to
compile the EEMBC benchmarks. Turn-
ing off the instruction cache caused per-
formance to drop 50 to 70% depending
on the benchmark, whereas the absence
of a data cache caused only a 21% drop
in performance (Figure 2). (Incidental-
ly, I normalized the CJPEG and packet-
flow scores independently from one an-
other.)

Another interesting perspective on this
analysis, using NEC’s V832, shows that
performance drops off more dramatical-
ly on a faster processor with larger caches.
With both processors’ scores normalized
independently, the V832 performance
dropped 92% when we turned off the
caches (Figure 3). The V832 is a 143-
MHz, 32-bit RISC processor with 4-
kbyte instruction and data caches. (Taka-
hasi and I used Green Hills Software’s
NEC V800 Version 1.8.9 compiler to
compile this EEMBC benchmark.) With
caches not enabled, this 143-MHz
processor basically runs at the external
bus speed. For the V832, we also com-
piled the CJPEG code optimized for size
and saw an almost-12-kbyte drop in code
size—from 36,118 bytes to 24,842
bytes—and an 8% drop in performance.
The V832 board, the Midas RTE-V832-

PC, allowed us to easily
switch the external bus
width between 16 and 32
bits. We ran the CJPEG
and packet-flow bench-
marks with these two con-
figurations (Figure 4).
(We normalized the fastest
performance for each
benchmark to 1.) The re-
sultant drop in perform-
ance for both benchmarks
was 12 to 14%; depending
on the needs of
your application,
the reduced memory cost
may be worth the per-
formance sacrifice.

FREQUENCY VERSUS MEMORY

Kulkarni and I did a similar test using
IDT’s 79RC64575 processor with the
company’s IDT79S465+IDT79S574
motherboard/daughterboard combina-
tion. The 79RC64575 is a MIPS-based,
64-bit RISC processor. The implementa-
tion we used ran at 250 MHz with a 50-
MHz memory bus and contained 32-
kbyte instruction and data caches. The
compiler was IDT’s homegrown version
of GNU. The data for the packet-flow
benchmark indicates that performance
of this processor dropped 20% when we
halved the 64-bit external-bus width.
Similarly, performance dropped 94%

when we shut off the
caches. (Incidentally, for
the three MIPS proces-
sors that we used in this
project, we didn’t turn
off the caches. Instead,
we modified the link
files so that the ROM
monitor loaded the
code and data into non-
cacheable regions.)

IDT’s processor
board comes with both
SDRAM and SRAM
with access rates of 7-1-
1-1 and 3-1-1-1 for
reads, respectively. By
modifying the link file,
we located the bench-
mark code and data in
either SDRAM or
SRAM. A jumper on the
board also allowed us to

change the processor frequency, although
the memory-bus speed remained con-
stant (Figure 5). Note that performance
scales almost linearly for both the
SDRAM and the SRAM implementa-
tions. But memory speed becomes more
critical at higher frequencies, as the 21%
performance delta at 250 MHz indicates.
Compare this figure with the 9% per-
formance delta at 150 MHz. Recall that
this 20% drop in performance is equiva-
lent to the drop associated with running
with a 32-bit memory bus; this figure
gives you an idea of your design-trade-
off options.

NETWORKING BENCHMARKS’ RESULTS

Toshiba’s Haley and I tried all of
EEMBC’s networking benchmarks on
the company’s BMU3927JMR board
with the MIPS-based, 32-bit TX3927
processor. The TX3927 implementation
we used ran at 133 MHz, contained a 4-
kbyte instruction cache and a 2-kbyte
data cache, and used a 66-MHz external
bus with a 5-1-1-1 access configuration.
The compiler was the Green Hills Mul-
ti2000 Version 2.0 (Figure 6). In addition
to the packet-flow benchmark, this test-
ing included the route-look-up and
open-shortest-path-first (OSPF) bench-
marks. The most interesting finding was
that the OSPF performance increased
when we optimized the benchmark for
code size. One logical explanation is that
the compiler, to save code size, achieved
tighter loops within the code. The route-
look-up benchmark benefited most from
compiler-speed optimizations, dropping

N
OR

M
AL

IZ
ED

 P
ER

FO
RM

AN
CE

NORMAL
 EXECUTION

BUS SIZE
16 BITS

PACKET FLOW

CJPEG

0.75

0.8

0.85

0.9

0.95

1

1.05

Bus width plays a big role in performance, as NEC’s V832, run-
ning the packet-flow and JPEG-compression benchmarks,
shows.

SRAM 3-1-1-1, AND
WRITE IS 2-1-1-1
DRAM 7-1-1-1, AND
WRITE IS 2-1-3-1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

250 200 150

(MHz)

Memory type, access latency, and processor frequency play big
roles in performance, as IDT’s IDT79RC64575 running the packet-
flow benchmark shows.

F igure 4

F igure 5

coverstory Embedded-system design

66 edn | May 25, 2000 www.ednmag.com

18 and 35%, respectively, when we opti-
mized for size and turned optimizations
off. Similar to the V832 and other MIPS
processors, the TX3927 performance
dropped greater than 90% when we did
not use the caches.

Speaking of caches, NEC’s Han and I
checked out the cache protocols for
NEC’s VR5000. We measured the per-
formance differences from using the
processor’s write-back and write-
through protocols. The VR5000 setup we
used was similar to IDT’s 79RC64575. It
ran at 250 MHz and contained 32-kbyte
instruction and data caches, but the sys-
tem had a 100-MHz memory bus. Simi-
lar to Toshiba’s implementation, this im-
plementation used Green Hills’ Mul-
ti2000 Version 2.0 compiler. When we
used the write-through mode for the
packet-flow and JPEG-compression
benchmarks, processor performance
dropped 42 and 69%, respectively. JPEG
performance suffered more because of
the greater number of sequential writes.
Also, the JPEG algorithm deals with 16-
bit data, which is more ineffi-
cient on this 64-bit processor.
(Benchmark optimizations
would help with this issue.) Sim-
ilar results for EEMBC’s DCT
benchmark showed that per-
formance dropped almost 60%
when using the write-through
mode. In write-through mode,
cache writes pass through to
memory, raising bandwidth re-

quirements. On the other hand, the
write-back mode reduces the number of
memory transactions from the core but
requires more processor logic to imple-
ment. This use of the write-back mode
is the reason that many processors do not
implement a write-back mode, but it cre-
ates a big performance penalty.

THINGS TO TRY ON A RAINY DAY

Although many of the results we ob-
tained in this project seem obvious, it is
beneficial to have quantitative data to
rely on. Furthermore, the standardiza-
tion of the EEMBC benchmarks ensured
that all processors were running the same
tests. In a perfect world, we could have
run these benchmarks with many more
processor, compiler, and system configu-
rations. But many configurations were
impossible, given the available tools. For
example, it would have been useful to
change a processor’s cache size to deter-
mine the “knee” in the curve where per-
formance drops off. But in real hardware,
changing the cache size requires that you

lock down regions of the cache
with invalid data, creating a vir-
tually smaller cache. It would
also have been helpful to vary
the number of wait states or the
external bus widths for all the
processors we used. Using a sim-
ulator instead of real hardware
would have made many more
experiments possible, but I think
I’ll save those for a rainy day.k

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

NORMALIZED
PERFORMANCE

SPEED SIZE NO
OPTIONS

OPEN SHORTEST
PATH FIRST

PACKET FLOW

ROUTE LOOK-UP

F igure 6

Toshiba’s TX3927 demonstrates that the effect of compiler optimizations depends on the algorithm.

You can reach
Technical Editor
Markus Levy at
1-530-672-9113,

fax 1-530-672-9103,
e-mail markus@

embedded-
benchmarks.com.

Enter No. 4 at www.ednmag.com/infoaccess.asp

