design ideas

Edited by Bill Travis and Anne Watson Swager

Delay line aids in one-shot simulations

Christophe Basso, On Semiconductor, Toulouse, France

Many designers use small pulse generators to delay signals, open timing windows, drive sample/hold circuits, and other functions. Though the hardware implementation of these generators does not pose any problems, the lack of dedicated circuitry sometimes puzzles the Spice simulation of the system. A common approach to this problem is to implement a time constant involving a resistor, a capacitor, and a comparator. Unfortunately, each time you need a time constant, you must recalculate the resistor value, the capacitor value, or both. Despite the fact that inline equations can do this job for you, delay lines can often offer a smarter solution. Figure 1 shows the implementation of a

Figure 1 A one-shot multivibrator (shown with Spice
nomenclature) makes a simple short-pulse generator.
Delay line aidsin one-shot simulations129
Sine-wave generator outputs precise periods 132
High-voltage current-feedbackamplifier is speedy.136
AC-power monitoruses remote sensing138
small pulse generator. The operating principle of the circuit lies in applying two " 1 " levels to the AND-gate input before the delay line switches high. Figure

2 shows the signals associated with the circuit in Figure 1. Listing 1 shows netlists for Intusoft's IsSpice4 and Cadence's PSpice.

Figure 2
This plot shows timing details for Figure 1 's Spice model.

Figure 3 This PWM application is a sample/hold circuit in Spice-simulation nomenclature.

${ }^{\text {desegin }}$ ideas

Figure 3 shows a typical application circuit for the one-shot multivibrators. You can use IsSpice4 or PSpice to simulate this sample/hold circuit. Figure 4 shows the waveforms associated with the circuit in Figure 3. A PWM signal (top waveform) generates a kind of arbitrary staircase signal. The multiplier, X4, sinusoidally modulates the PWM signal. The circuit cascades two small pulse generators (SMALLPULSE). One creates a delay signal to sample at a given time (X1, 70 nsec); the other calibrates the width ($\mathrm{X} 3,20 \mathrm{nsec}$) of the sampling signal (second waveform). The third waveform in Figure 4 shows the sinusoidally modulated signal; the fourth waveform is the sampled signal. You can download the IsSpice4 and PSpice listings for three oneshot types from EDN's Web site, www. ednmag.com. Click on "Search Databases" and then enter the Software Center to download the file for Design Idea \#2680.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn

Figure 4 These timing signals illustrate the operation of Figure 3's circuit. mag/vote.asp.

LISTING 1-NETLIST FOR MONOSTABLE SHORT-PULSE GENERATOR

IsSpice4
.SUBCKT SMALLPULSE In Out \{DELAY=3u\}
X 5 In 2 UTD PARAMS: TD=DELAY
$X 6 \ln 3$ Out AND2
X823INV
.ENDS
*INCLUDE MNFLOPS.LIB

****** MODELS ****
.SUBCKT UTD 12 \{TD=???\}
*
RIN 101 E15
E130101
T13020 Z0=1 TD=\{TD\}
R1 201
.ENDS

.SUBCKT INV 12
B1 $40 \mathrm{~V}=\mathrm{V}(1)>800 \mathrm{M}$? $0: 5 \mathrm{~V}$
RD 42100
CD 20 10P
.ENDS INV

.SUBCKT AND2 123
B1 $40 \mathrm{~V}=(\mathrm{V}(1)>800 \mathrm{M}) \&(\mathrm{~V}(2)>800 \mathrm{M}) ? 5 \mathrm{~V}: 100 \mathrm{~m}$
RD 43100
CD 30 10P
.ENDS AND2

```
PSpice
SUBCKT SMALlPULSE In Out PARAMS: DELAY=3u
X5 In 2 DL PARAMS: TD=\{DELAY\}
X6 In 3 Out AND2
X823 INV
.ENDS
*******
****** MODELS ****
.SUBCKT DL 12 PARAMS: TD=50\%n
RIN \(101 E 15\)
E130101
\(1302070=1 T D=\{T D\}\)
R1201
ENDS DL
*******
**** 1 INPUT INVERTER ****
.SUBCKT INV 12
EB1 40 VALUE \(=\{\operatorname{IF}(\mathrm{V}(1)>800 \mathrm{M}, 0,5 \mathrm{~V})\}\)
RD 42100
CD 20 10P
.ENDS INV
*******
**** 2 INPUT AND CIRCUIT ****
.SUBCKT AND2 123
EB1 40 VALUE \(=\{\operatorname{IF}((\mathrm{V}(1)>800 \mathrm{M}) \&(\mathrm{~V}(2)>800 \mathrm{M}), 5 \mathrm{~V}, 0)\}\)
RD 43100
CD 30 10P
ENDS AND2
*******
```


Sine-wave generator outputs precise periods

JM Terrade, Clermont-Ferrand, France

Rectangular pulse generators, even at high frequencies, are easy to design. However, the design becomes more difficult if you need a signal that contains a precise number of periods with a sinusoidal shape. Although it is easy to produce a good sine wave, the difficulty is producing a signal with a pre-

cise number of periods. The signal has to start and stop exactly at 0 V . The scheme in Figure 1 can produce one to 15 periods of a $20-\mathrm{MHz}$ sinu-

A signal generator, down counter, and comparator can produce an output signal that contains a precise number of sinewave periods.

Figure 2

${ }^{I C}$ contains the generator and comparator. The sync signal at point F drives the counter, IC_{2}. The setting of S_{1} determines the end of count and thus the number of periods, \mathbf{N}, at the output.

design ideas

soidal wave. The scheme has two main characteristics: The positive edge of a 5 V signal triggers the input,

Figure 3 and the output is one to 15 periods of a $20-\mathrm{MHz}$ signal, adjustable to within $\pm 10 \%$.

Initially, the trigger input is inactive, the generator is disabled, and the counter is loaded with the number N. When the trigger input becomes active, the counter waits, and the end-count output enables the generator. A sine wave appears at the output. At the end of each period of the sine wave, the comparator produces a sync signal that drives the counter's clock input. When N periods of the output wave have occurred, the endcount signal disables the generator.

In the actual circuit, a MAX038, IC_{1}, is the generator (Figure 2). This IC contains the sine-wave generator and the comparator. The sync signal is available at Pin 14. The counter has to be fast enough to stop the generator before the next output period starts. The 74AC191, IC_{2}, is a 4-bit up/down counter with preset inputs. NAND gates $\mathrm{IC}_{3 \mathrm{~A}}$ and $\mathrm{IC}_{3 \mathrm{~B}}$ disable the counter after the end-count goes active. A one-shot circuit, $\mathrm{IC}_{5 \mathrm{~A}}$, ensures that the input trigger pulse is long enough to allow 15 pulses. A MOS switch, IC_{4}, short-circuits the oscillator capacitor, C_{1}, to stop IC 's generator. If the circuit simply grounds C_{1} to stop the generator, the output voltage is not zero. To obtain a zero output voltage, the circuit connects input Pin 5 of IC_{1} to a negative 0.5 V -dc voltage generator comprising an LF356N and associated components.

Because the signal at Pin 5 of IC ${ }_{1}$ goes positive and negative, IC_{4} 's switch requires a $\pm 5 \mathrm{~V}$ supply. The level for the command signal also has to swing positive and negative. MOS transistor Q_{1} provides the level-shifting from 0 to $5 \mathrm{~V} \log$ ic levels to $\pm 5 \mathrm{~V}$, or 4016 , logic levels. NAND gates $\mathrm{IC}_{3 \mathrm{C}}$ and $\mathrm{IC}_{3 \mathrm{D}}$ allow a fast drive for Q_{1}.

The circuit's operation consists of three timing periods: load N with trigger input inactive, down-count with trigger input high, and disabled (Figure 3). When the trigger input is inactive, oneshot $\mathrm{IC}_{5 \mathrm{~A}}$ is inactive. The level at Point B in the circuit is low, and counter IC_{2} is

A timing diagram that corresponds to three periods shows the precise sine-wave output at \mathbf{S}.
TABLE 1-WAVEFORM-SHAPE SETTINGS

$\mathbf{A}_{\mathbf{0}}$	\mathbf{A}_{1}	Waveform
\mathbf{X}	$\mathbf{1}$	Sine
$\mathbf{0}$	$\mathbf{0}$	Square
$\mathbf{1}$	$\mathbf{0}$	Triangle

resistance. The switches apply the voltage at G to Pin 5 of IC_{1}, which stops the internal oscillator. The levels at the signal output and at the sync output, F, depend on the voltage at Pin 5. The voltage at F needs to be 5 V , and the voltage at Signal Out needs to be as close to 0 V as possible. You need to carefully adjust R_{3} to match these conditions. The output voltage is just over 0 V when G is close to -0.5 V .

When the trigger input goes high, oneshot $\mathrm{IC}_{5 A}$ starts running. The voltage at B also goes high for $10 \mu \mathrm{sec}$. This delay must be longer than 16 periods of the output signal. The voltage at D now goes low and enables the counter. As before, $\mathrm{IC}_{3 \mathrm{C}}$ and $\mathrm{IC}_{3 \mathrm{D}}$ invert the level at D , and the 5 V drive turns off Q_{1}. $\mathrm{A}-5 \mathrm{~V}$ level is present at E , and IC_{4} switches are off. The internal oscillator of IC_{1} is now running, and a signal is present at the output, S . Each time the output signal is positive, the sync output at F is also positive. At the

design ideas

end of each period, a positive-going edge appears at F . Each positive edge at F makes counter IC_{2} count down by one.

When the circuit has produced N periods at S, the voltage at C goes high, which indicates end of count. The voltage at D goes high and disables the counter. $\mathrm{IC}_{3 \mathrm{C}}$ and $\mathrm{IC}_{3 \mathrm{D}}$ invert the voltage at D , and the resulting 0 V drive turns on
Q_{1}. A 5 V level is present at E , and IC_{4} switches are on. The internal oscillator of IC_{1} stops, and the output signal at F returns to zero. Before returning to the original state, the signal at B should return to zero, which happens after the end of the delay that one-shot $\mathrm{IC}_{5 \mathrm{~A}}$ produces.

All is now ready for another train of pulses. Using S_{1}, you can program the cir-
cuit for one to 15 pulses. The circuit can produce other signal shapes, depending on how you connect A_{0} and A_{1} of IC_{1} (Table 1). You can also replace S_{1} with a $\mu \mathrm{C}$ to produce any pattern of pulses.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

High-voltage current-feedback amplifier is speedy

Joseph Ting, Institute of Atomic and Molecular Sciences of the Academia Sinica, Taipei, Taiwan

The circuit in Figure 1 powers a microparticle and nanoparticle ion trap through a 1-to-5-
turns-ratio, high-voltage transformer. It also works successfully as a driver for a piezo-tube scanner and in a near-field scanning optical microscope. The circuit is robust and works with supplies ranging from ± 50 to $\pm 230 \mathrm{~V}$. The measured parameters at $\pm 230 \mathrm{~V}$ supply voltage are gain of $26-\mathrm{dB}$ from dc to $-3-\mathrm{dB}$ point at 7 MHz ; output swing of $\pm 200 \mathrm{~V}$, rise and fall times of 70 nsec for an output step of 350 V , slew rate of $4100 \mathrm{~V} / \mu \mathrm{sec}$, and supply current of 56 mA .

The red LEDs, D_{1} and D_{2}, in Figure 1 provide a 1.8 V drop; the LEDs are more rugged than precision IC voltage references. The current supply for IC_{1} comes from R_{1} and the source comprising $\mathrm{D}_{1}, \mathrm{R}_{2}$, R_{3}, and $Q_{1} . R_{3}$'s trimmed value is such that Q_{2} 's quiescent current is approximately 15 mA . You can determine this current by measuring the voltage drop across R_{4}. The same adjustment also controls the output-voltage offset. IC_{2} is a unity-gain, high-current driver for Q_{2}. D_{3} prevents IC_{2} 's input from going more negative than its negative supply. $\mathrm{Q}_{3}, \mathrm{D}_{4}$, C_{1}, and R_{5} provide the negative bias for $\mathrm{IC}_{2} . \mathrm{Q}_{4}$ is an output-current limiting switch. Q_{4} starts to turn on at $\mathrm{I}_{\text {OUT }}=290$ mA . You can replace the bipolar transistors C3955 (npn, Q_{2} and Q_{6}) and A138 (pnp, Q_{3} and Q_{7}) by equivalents as long as they have the following minimum specs: $\mathrm{V}_{\text {CEO }} \geq 250 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}} \geq 100 \mathrm{~mA}$, and $\mathrm{f}_{\mathrm{T}} \geq 100 \mathrm{MHz}$.

You should mount all the power tran-

Figure 1
sistors in individual finned heat sinks with an overhead 3-in. fan for cooling. The pc-board layout is not critical and needs no ground plane. However, you must use single-point grounding to minimize ringing. For the component values shown, the circuit is very stable and needs no compensation capacitors. Figure 2 shows a large-signal response for a $\pm 9 \mathrm{~V}, 1-\mathrm{MHz}$ square-wave input. This circuit has a fixed gain of 20. For higher gains, you can increase the values of R_{6} and R_{7}. Figure 2

100 nSEC/DIV

For lower values, it is better to insert an attenuator at the input, because smaller values of R_{6} and

The circuit has a clean square-wave response with minimal overshoot and no ringing.
R_{7} may result in excessive dissipation. Do not change the value of R_{8}, because it is optimized for speed. Be cautious when measuring and using this circuit, because it harbors lethal voltages. The National Science Council of Taiwan sponsored this project.

Is this the best Design Idea in this issue? Vote at www.edn mag.com/ednmag/vote.asp.

AC-power monitor uses remote sensing

Sanjay R Chendvankar, Tata Institute of Fundamental Research, Colaba, Mumbai, India

The detection circuit in the Design Idea "Circuit monitors ac-power loss" (EDN, Nov 24, 1999, pg 172) requires a physical connection with the mains to sense the power loss. The circuit in Figure 1 senses the power loss through the radiated power-line signal. The bat-tery-operated circuit has a quiescent-current drain of approximately $2 \mu \mathrm{~A}$. The antenna, which is either a telescopic antenna or simply an approximately 2 -ftlong wire, intercepts the radiated power-line signal. The CMOS in-
 verters, $\mathrm{IC}_{1 \mathrm{~A}}$ and $\mathrm{IC}_{1 B}$, amplify this weak signal and convert it into a digital signal. D_{1} and C_{1} generate a steady dc voltage at the input of $\mathrm{IC}_{1 \mathrm{C}} . \mathrm{D}_{1}$ prevents discharge of C_{1} through the output of $\mathrm{IC}_{1 B}$ when the square wave at this output periodically goes to a low level. Inverters $\mathrm{IC}_{1 \mathrm{D}}$, $\mathrm{IC}_{1 \mathrm{E}}$, and $\mathrm{IC}_{1 \mathrm{~F}}$ connected in parallel enhance the current-sink capacity for sinking the piezo-buzzer current. When the ac mains is present, the output of $\mathrm{IC}_{1 \mathrm{C}}$ is

A low level at the outputs of $\mathrm{IC}_{1 \mathrm{D}^{\prime}} \mathrm{IC}_{\mathrm{IE}^{\prime}}$ and $\mathrm{IC}_{\mathbf{1 F}}$ activates the piezo-buzzer and warns of ac-line failure.
low; hence, the levels of $\mathrm{IC}_{1 \mathrm{D}}, \mathrm{IC}_{1 \mathrm{E}}$, and $\mathrm{IC}_{1 \mathrm{~F}}$ are high, and the buzzer is off. When the ac power fails, the output of $\mathrm{IC}_{1 B}$ goes low; C_{1} discharges through R_{1}; and $\mathrm{IC}_{1 \mathrm{D}}$, $\mathrm{IC}_{1 \mathrm{E}}$, and $\mathrm{IC}_{1 \mathrm{~F}}$ go low. This level activates the piezo-buzzer and warns of ac-line failure. Switching off the battery power
deactivates the buzzer. You can turn S_{1} on after ac power resumes.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

