design ideas

Equal-element filter improves passband performance

Richard M Kurzrok, RMK Consultants, Queens Village, NY

DESIGNERS ORIGINALLY conceived equal-element filters as allpole microwave bandpass filters that provide minimum center-frequency insertion losses for specific values of resonator-unloaded Q (Reference 1). All resonators of the equal-element bandpass filter operate at the same loaded Q. For LC filters, the equal-element filter has another advantage. In the lowpass prototype, all inductors have the same value, and all capacitors have the same value. This minimum number of circuit elements provides design simplicity and reduces filter cost.

However, the equal-element filter's response shape has one severe shortcoming. Passband amplitude ripples, due to reflection, are unacceptable for some applications. In minimum-phase-shift filter circuits, group-delay ripples that preclude equalization accompany the amplitude ripples. At microwave frequencies, modifying the central resonator of
Equal-element filter improvespassband performance.123
Test batteries without avoltmeter, part 2126
SCR phase control yields solid-state switch 128
Circuit facilitates video fading 130
Time-delay relay uses proximity control.. 132
Circuit forms shaping ampand amplitude detector.134

Figure 1

The equal-element lowpass filter can feature unacceptable passband ripple for some applications (a). A modified filter realizes substantial improvement in passband performance with some reduction in stopband selectivity (b).
a five-pole bandpass filter leads to improved performance (Reference 2).

Figure 1a shows the schematic of a nine-pole, equal-element, lowpass-filter prototype. Figure 1b shows a comparable schematic of a modified lowpass-filter prototype. By altering the filter input and output capacitors, the modified filter realizes substantial improvement in passband performance with some reduction in stopband selectivity. In the modified equal-element design, all filter inductors are still equal in value, and you need only two capacitor values in a convenient 2 -to- 1 ratio. Table 1 shows comparative theoretical amplitude responses for the nine-pole, equal-element lowpass
filter and a nine-pole, modified, equal-element, lowpass filter with inductor-unloaded Qs of 100.

The reference frequency, at normalized frequency $x=1.0$, is not the $3-\mathrm{dB}$ cutoff frequency for the filters in Figure 1. The $3-\mathrm{dB}$ cutoff frequency occurs close to $x=1.9$. This feature differs from Butterworth and Chebyshev filters, for which x can equal 1.0 at $3-\mathrm{dB}$ cutoff frequencies. You use this normalization for equal-element and modified equal-element designs to calculate the values of the circuit elements.

A nine-pole, modified, equal-element lowpass filter was designed at a reference frequency F_{R} of 4.681 MHz , for which

design
 ideas

Test batteries without a voltmeter, part 2

Harry Gibbens Jr, PowerStream Technology, Orem, UT

FROM A HIGH-volumeproduction
point of view \quad Figure 1 of the Design Idea "Test batteries without a voltmeter" (EDN, Nov 9, 2000, pg 167), it is a time-consuming and laborious task to tweak the large number of potentiometers on each of the comparator input references. An alternative to this onerous adjustment chore is to replace all potentiometers with 1%-tolerance fixed resistors (Figure 1). Before calculating each voltage-reference resistance value, you should use a reasonable selected total resistance value, $\mathrm{R}_{\text {тот }}$, ranging from $100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$. You can usually obtain each of the resistancedivider values from off-theshelf fixed resistors. After calculating all the resistancedivider values (with $\mathrm{R}_{\text {тот }}=$ $100 \mathrm{k} \Omega$), if the closest reasonable stock values are unavailable, just increase the value of $\mathrm{R}_{\text {тот }}$. For the example in Figure 1, you calculate the values using a spreadsheet to obtain quick results. This example uses $\mathrm{R}_{\mathrm{TOT}}=182 \mathrm{k} \Omega$. All the calculations use Kirchoff's law:

$$
\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{TOT}}\left(\frac{\mathrm{R}_{\mathrm{X}}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right)
$$

Rearranging the terms in the formula, you determine the resistance value, R_{x} :

$$
\mathrm{R}_{\mathrm{X}}=\mathrm{R}_{\mathrm{TOT}}\left(\frac{\mathrm{~V}_{\mathrm{X}}}{\mathrm{~V}_{\mathrm{TOT}}}\right),
$$

where V_{x} is each comparator's reference voltage, $\mathrm{V}_{\text {REFX }} ; \mathrm{V}_{\text {TOT }}=\mathrm{V}_{\mathrm{CC}} ;$ and $\mathrm{R}_{\text {TOT }}$ is the

1, using the rearranged formula. An example follows:

$$
\begin{aligned}
\mathrm{R}_{\text {FORM } 1} & =182 \mathrm{k} \Omega\left(\frac{1.55 \mathrm{~V}}{6 \mathrm{~V}}\right) \\
& =182 \mathrm{k} \Omega(0.2583) \\
& =47.01 \mathrm{k} \Omega .
\end{aligned}
$$

Next, calculate the first resistance value, R_{0}, by using the formula

$$
\begin{aligned}
\mathrm{R}_{\mathrm{X}} & =\mathrm{R}_{\mathrm{TOT}}-\mathrm{R}_{\mathrm{TOT}}\left(\frac{\mathrm{~V}_{\mathrm{X}}}{\mathrm{~V}_{\mathrm{TOT}}}\right)=\mathrm{R}_{\mathrm{TOT}}-\mathrm{R}_{\text {FORMX }} \\
\mathrm{R}_{0} & =182 \mathrm{k} \Omega-182 \mathrm{k} \Omega\left(\frac{1.55 \mathrm{~V}}{6 \mathrm{~V}}\right) \\
& =182 \mathrm{k} \Omega-182 \mathrm{k} \Omega(0.2583) \\
& =182 \mathrm{k} \Omega-47.01 \mathrm{k} \Omega \\
& =134.99 \mathrm{k} \Omega .
\end{aligned}
$$

Calculate the rest of the resistor values, R_{1} through R_{7}, by using the formula

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{X}+1}=\mathrm{R}_{\mathrm{TOT}}\left(\frac{\mathrm{~V}_{\mathrm{X}}}{\mathrm{~V}_{\mathrm{TOT}}}\right)-\mathrm{R}_{\mathrm{TOT}}\left(\frac{\mathrm{~V}_{\mathrm{X}+1}}{\mathrm{~V}_{\mathrm{TOT}}}\right)= \\
& \mathrm{R}_{\mathrm{FORMX}}-\mathrm{R}_{\mathrm{FORMX}+1} .
\end{aligned}
$$

For example, for R_{1} :

$$
\begin{aligned}
\mathrm{R}_{1} & =100 \mathrm{k} \Omega\left(\frac{1.55 \mathrm{~V}}{6 \mathrm{~V}}\right)-100 \mathrm{k} \Omega\left(\frac{1.5 \mathrm{~V}}{6 \mathrm{~V}}\right) \\
& =1.51 \mathrm{k} \Omega .
\end{aligned}
$$

Finally, use the rearranged formula to

TABLE 1-CALCULATED VALUES FOR BATTERY TESTER

Reference voltage	Voltage (V)		Formulated \mathbf{R} k Ω	RX	Calculated \mathbf{R} k Ω	Fixed R $\mathrm{k} \Omega$
$\mathrm{V}_{\text {тот }}$	6			$\mathrm{R}_{\text {тот }}$	182	
$\mathrm{V}_{\text {REFI }}$	1.55	0.26	47.01	R_{0}	134.99	134.5
$\mathrm{V}_{\text {REF2 }}$	1.5	0.25	45.5	R_{1}	1.51	1.5
$\mathrm{V}_{\text {REF3 }}$	1.45	0.24	43.99	R_{2}	1.51	1.5
$\mathrm{V}_{\text {REF4 }}$	1.4	0.23	42.46	R_{3}	1.53	1.54
$\mathrm{V}_{\text {REFS }}$	1.35	0.23	40.95	R_{4}	1.51	1.5
$\mathrm{V}_{\text {REF6 }}$	1.3	0.22	39.44	R_{5}	1.51	1.5
$\mathrm{V}_{\text {ReF7 }}$	1.25	0.21	37.91	R_{6}	1.53	1.54
$\mathrm{V}_{\text {REF8 }}$	1.2	0.2	36.4	R_{7}	1.51	1.5
				R_{8}	36.4	36.4

find the last resistance value, R_{8}.

$$
\begin{aligned}
\mathrm{R}_{8} & =182 \mathrm{k} \Omega\left(\frac{1.2 \mathrm{~V}}{6 \mathrm{~V}}\right)=\mathrm{R}_{\text {FORM } 8} \\
& =36.4 \mathrm{k} \Omega
\end{aligned}
$$

In Table 1, you match the rounded-off
calculated resistance value (Calculated R) to the nearest available fixed-resistor value (Fixed R) as shown in the last two columns. Note that R_{0} consists of two se-ries-connected resistors. You can download the table of 1%-tolerance resistor values from EDN's Web site, www.edn
mag.com. Click on "Search Databases" and then enter the Software Center to download the .gif file for Design Idea \#2654.
Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

SCR phase control yields solid-state switch

James Keith, York, PA

SCRs (silicon-CONTROLLED rectifiers), or thyristors, have higher current and voltage ratings, lower conduction losses, and more robustness than triacs. For these reasons, SCRs are better suited to high-power applications. For example, you can use two SCRs to configure a 100 or $200 \mathrm{~A}, 460 \mathrm{~V}$ control circuit. Table 1 lists some of the advantages of SCRs over triacs. The main challenge is driving the SCRs: You now have two gates, rather than one, to drive. Furthermore, the gates are referenced to opposite polarities with a significant voltage difference. The circuit in Figure 1 solves the problem with two

Figure 1 $115 \mathrm{~V}-\square$

This SCR phase-control circuit uses one potentiometer and no pulse transformers.

PUTs (programmable unijunction transistors), one connected to each SCR. Performance is good because the circuit does not "fold back" as inexpensive triac phase controls (dimmers) do. The PUT fires when the tim-ing-capacitor voltage exceeds the PUT reference voltage by one diode drop and dumps the capacitor's charge into the SCR gate.

You adjust the phase delay by varying the charge rate of the capacitor via the potentiometer. You can enhance the balance by matching both the zener-diode voltages and the values of the charging capacitance. You
can obtain 230 V operation by using 1.5to $2-\mu \mathrm{F}$ timing capacitors. You can achieve 460 V -ac operation by using 1200 V SCRs; $3-\mu \mathrm{F}$ timing capacitors; and

TABLE 1-SCR-VERSUS-TRIAC COMPARISON

Device	SCR	Triac
Current rating	>>50A	<40A
Conduction voltage drop	P ~1V	$\sim 1.5 \mathrm{~V}$
Junction temperature	$125^{\circ} \mathrm{C}$	$115{ }^{\circ} \mathrm{C}$
Thermal resistance	Low	Medium
Maxium voltage	1400V	600V
Surge current	High	Limited
Robustness	High	Low
Package D	Doubler or "hockey puck"	1/4-in. stud
Isolation	Isolated	Nonisolated
Number required	Two	One

a $100-\mathrm{k} \Omega, 25 \mathrm{~W}$ potentiometer. Using the circuit as a solid-state switch is practical; simply replace the voltage-adjust block in the broken lines in Figure 1 with a photomod. A photomod is a unique type of photocoupler that has an LED or incan-descent-light source and a cadmium-sulphide photocell. Unique properties of these photocells are their high dark resistance and high voltage ratings.
Is this the best Design Idea in this issue? Vote at www. ednmag.com/ednmag/vote. asp.

Circuit facilitates video fading

JM Terrade, Clermont-Ferrand, France

WHEN YOU'RE COPYING videotapes, it's sometimes desirable to suppress some passages. Using the pause control of the recorder does not yield satisfactory results. Another method produces better results (Figure 1). The video source connects to the video-in plug, and the recorder connects to the video-out plug. Turning potentiometer P_{1} adjusts the image brightness from normal video to a black image. With the P_{2} potentiometer ganged to P_{1}, the sound also varies accordingly. The objectives in building this circuit are to use inexpensive, readily available components and to obtain batteryless operation. The video signal follows two paths (Figure 2). In the first path, the signal undergoes amplification by a factor of two and connects to one end of a poten-
tiometer. In the second path, the synchronization pulse, separated from the input signal, connects to the other end of the potentiometer. The wiper of the potentiometer connects to the second video
amplifier, which provides the video output.

When you adjust P_{1} 's wiper from one end to the other, the video image disappears and fades to a black screen. Because P_{1} and P_{2} are ganged, the sound follows the image brightness. The circuit could have used triple integrated video amplifiers, such as an AD813, and a video sync separator, such as an LM1881. However, these ICs are expensive (approximately $\$ 25$) compared with the six standard transistors shown in Figure 2. R_{1} sets the input impedance at $75 \Omega . \mathrm{Q}_{1}, \mathrm{Q}_{2}$, and associated components form a video amplifier with an approximate gain of two. R_{2}, R_{3}, and D_{1} set the dc voltage, and C_{1} blocks any dc voltage from the source. The amplified video signal connects

Figure 2

A handful of transistors and associated components yields a professional-quality video fader.
to P_{1} through R_{4} and the C_{1} dc-blocking capacitor. R_{5}, Q_{3}, Q_{4}, and associated components form a sync separator. The sync pulse connects to the bottom of P_{1} through R_{6} and P_{3}, an adjustable voltage divider. The wiper of P_{1} connects to the second video amplifier comprising Q_{5}, Q_{6}, and associated components. You can adjust the amplification with $\mathrm{P}_{4} . \mathrm{R}_{7}$ sets the output impedance at 75Ω.
P_{2}, ganged to P_{1}, is a simple voltage divider, using C_{2} to block dc voltages. The sound input uses the left channel, and the
output goes to both the left and right channels. With a video source connected to video in, a dc voltage of 9 to 12 V appears at Pin 8 of the video plug. IC_{1} and the C_{2} through C_{6} capacitors derive power from this pin and provide a stable 5 V for the circuit. D_{2} is a high-brightness LED that indicates that a video source is present. $\mathrm{R}_{7}, \mathrm{C}_{7}, \mathrm{R}_{8}$, and C_{8} provide decoupled supplies for the amplifiers. Video cables are often of poor quality. For that reason, the circuit in Figure 2 provides for amplification of the video signal. Also,
compensation of the first amplifier provides amplification of color burst with a concomitant improvement of video quality. To adjust the circuit, first turn P_{1} fully clockwise and then adjust P_{4} for a good video image. Then, turn P_{1} fully counterclockwise and adjust P_{3} to obtain a stable black image.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

Time-delay relay uses proximity control

Dennis Eichenberg, Parma Heights, OH

You can build a circuit that allows a passerby to briefly operate model trains in a display window (Figure 1). The design uses a proximity detector rather than a pushbutton switch to eliminate the need to mount and wire any equipment outdoors. The circuit worked well in this application and other applications. The heart of the circuit is the quad CMOS NAND gate, IC_{1}. A human hand near the sensor induces $60-\mathrm{Hz}$ pow-er-line noise into $\mathrm{IC}_{1 \mathrm{~A}}$, and this IC triggers $\mathrm{IC}_{2} . \mathrm{IC}_{2}$ is configured as a monostable multivibrator, with a period equal
to $1 \cdot 1\left(R_{3}+R_{4}\right)\left(C_{3}\right)$. The period is adjustable from approximately 0.5 to 50 sec . The sensitivity of the circuit depends on the size of the sensor. A 10-in.-sq piece of screen mounted inside the display window works well for this application, because it permits complete visibility through the sensor. The circuit triggers several inches away from the window in this application.

You can manually or automatically operate the circuit through the single-pole, double-throw, center-off switch, S_{1}. In automatic operation, receptacle J_{1} is ac-
tive when IC_{2} drives relay K_{1} on. Lamp LP_{1} indicates when the load is active. Lamp LP_{2} indicates when the circuit is in automatic mode. J_{1} is active whenever S_{1} is in the on position, as LP_{1} indicates. V_{CC} for the circuit comes from transformer T_{1}, rectifier D_{1}, and filter capacitors C_{1} and C_{2}. The load rating for the circuit depends on the selection of fuse F_{1}, switch S_{1}, relay K_{1}, and receptacle J_{1}.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

Figure 1

A proximity sensor turns a load on when a human hand comes near the sensor screen.

Circuit forms shaping amp and amplitude detector

Elio Rossi, ITESRE-CNR, Bologna, Italy

The use of solid-state detectors connected to charge amplifiers requires appropriate Figure 2 conditioning of the output signals, because of the signals' long decay time. Moreover, you must "stretch" the peaks of the shaped pulses for a period sufficient for A/D conversion. For a single detector, you can use a relatively expensive module. For a large detector array, you need to develop an ASIC. For a moderate number of detectors, you can use an inexpensive circuit that handles an array of 19 drift diodes connected to a scintillating crystal of cesium-iodide (Figure 1). The two ICs, an OP37 and an AD823, provide the correct gain and the semigaussian conditioning of the input pulses. The conditioning involves a differentiating input with pole-zero adjust in the gain-of-35 first stage, a lowpass Sallen-

At the AD823 output in Figure 1, the signal peaks in 6 msec. A peak detector then "stretches" the signal.

Figure 1

A few linear ICs form the basis of a shaping amplifier and peak-amplitude detector.

Key filter in the unity-gain second stage, and a gain-adjustable third stage. Figure 2 shows a peaking time of \qquad Figure 3
$6 \mu \mathrm{sec}$ with a gain of 50 to $100 \mathrm{~V} / \mathrm{V}$. The circuit can use either a positive or a negative input signal.

The third IC, a PKD01, acts as a "stretcher" circuit with a built-in trigger discriminator. To measure the performance of the circuit, the design uses four external one-shot multivibrators, a precision pulse generator, and a multichannel analyzer in sample mode. The discriminator output triggers the sequence of the one-shots, which in turn open the in reset and close the in rise-time-protection, gated amplifiers, A and B (figures 1 and 3). This action allows the hold capacitor to reach the peak of the integrated (via the $10-\mathrm{k} \Omega, 330-\mathrm{pF}$ network) input pulse, so that an A / D converter can begin its conversion. The circuit must maintain the stretched signal via the reset pulse until the end of conversion. Input integration is necessary to generate a delay between the aperture of the reset

In the second waveform down, the peak detector provides a sample/hold function and preserves the peak value of the signal.
command and the peak of the input pulses to maintain the linearity of the low-level signal. Also, the approximately $0.7 \mathrm{~V} / \mu \mathrm{sec}$ slew rate of the stretched output requires at least $8 \mu \mathrm{sec}$ in the peak-
ing time of the input signal to obtain a stretched signal output greater than 5 V .
Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

