design ideas

Transistor latch improves on/off circuitry

Eugene Palatnik, SIMS-BCI, Waukesha, WI

FIGURE 1 Shows an example of on/off circuitry commonly used in battery-operated devices. The p-channel MOSFET, Q_{1}, serves as a power switch. When you push the On button, $\mathrm{S}_{1}, \mathrm{Q}_{1}$'s gate goes low. Q_{1} turns on and supplies battery voltage to the $\mathrm{dc} / \mathrm{dc}$ converter. Depending on the battery voltage in the device, the dc/dc converter might convert the voltage either up or down. In either case, it supplies V_{CC} to the $\mu \mathrm{C}$. The $\mu \mathrm{C}$ goes through its power-up software sequence and programs one of its general-purpose I/O pins, setting it to logic one. This operation, in turn, causes saturation of the npn transistor, Q_{2}, which "confirms" the power-up state. Later, when the $\mu \mathrm{C}$ decides to power itself off, the $\mu \mathrm{C}$ simply sets its I/O output to logic zero, and Q_{1} returns to its off state. The circuit is simple and reliable but has a significant disadvantage. It usually takes a fraction of a second for the $\mathrm{dc} / \mathrm{dc}$ converter to reach its stable output

Figure 1

This on/off circuitry is effective but can suffer from turn-on ambiguity.
msec. After the release of Reset, the $\mu \mathrm{C}$ must go through its "housekeeping" start-up code before it has a chance to set its I/O pin to logic one. This delay in some portable systems may be user-unfriendly, because if you don't depress the On button long enough, the system will not power up. The circuit in Figure 2 eliminates this uncertainty.

The circuit includes a simple two-tran-
sistor latch, which the On button switches to the on state. As in Figure 1, the pchannel MOSFET, Q_{1}, serves as a power switch. When you push the On button, S_{1}, it causes saturation of the npn transistor, Q_{4}, via the base-current-limiting resistor, R_{5}. The collector current of Q_{4} flows through R_{1} and the base-emitter junction of pnp transistor Q_{3}, thereby saturating $\mathrm{Q}_{3} . \mathrm{Q}_{3}$ redirects some current into the
voltage. Then, the $\mu \mathrm{C}$'s Reset pulse usually lasts 50 to 200
Transistor latch improves
on/off circuitry 157
High-side driver feeds
IGBTs and MOSFETs. 158
Economical circuit drives white LEDs........ 160
Real-time-clock chip makes low-power oscillator. 162
Everything you wanted to know about wideband, low-frequency transformers162
μ C makes effective frequency counter 164
Software provides interrupt system for 8051168

A two-transistor latch provides positive turn-on when you push the button.
base-emitter junction of Q_{4} and finishes the latching process. At this point, both Q_{3} and Q_{4} are saturated, and the voltage on the gate of Q_{1} is a function of the voltage drop across the base-emitter junction of Q_{3} and the saturation voltage of Q_{4}. This voltage is approximately 0.9 V . The $\mu \mathrm{C}$ need not confirm the on state of the latch. When the $\mu \mathrm{C}$ powers up and finishes its housekeeping start-up code, it programs the I/O pin to logic zero.

Later, when the $\mu \mathrm{C}$ decides to power itself off, it programs the I/O pin to log-
ic one and stops. Q_{2} turns off Q_{4}, resetting the latch to its initial off state. R_{4} lowers the equivalent input impedance of Q_{3}. This function improves EMI and ESD noise immunity and prevents the circuit from turning itself on in the presence of strong electromagnetic fields. Capacitor C_{1} in combination with R_{5} protects Q_{4} and Q_{2} from direct ESD into the pushbutton. Some portable devices use un-dervoltage-lockout circuitry. This circuitry usually uses a voltage comparator with a built-in voltage reference. If the
battery voltage drops below the threshold, the output of the comparator (usually an open-drain type) switches low. If your portable system uses this type of circuitry, you can connect the open-drain output of the comparator in parallel with Q_{2}, thus preventing the latch from turning on if the battery voltage is too low.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

High-side driver feeds IGBTs and MOSFETs

Carlisle Dolland, Honeywell Engines and Systems, Torrance, CA

THE LOW- TO MODERATE-POWER system in Figure 1 provides the interface between a pulse-width modulator
and a high-side IGBT (insulated-gate-bipolar-transistor) or MOSFET switch. You can use it to interface TTL or CMOS

Figure 1

You can use this low-cost circuit to drive high-side FETs or IGBTs.

Figure 2

Two FETs in parallel provide more power than the circuit in Figure 1.
circuitry to an H-bridge if you buffer it by a FET driver, such as an ICL7667 or an MIC4423. When OA is positive, D_{1} conducts, charging the capacitance of the FET through R_{1}. The value of R_{1} and the output impedance associated with the drive signal determine the turn-on time of the FET. After the capacitance is charged, the voltage across R_{1} is essentially 0 V , and Q_{1} is off. During the PWM dead time, the gate capacitance discharges through Q_{1} and $R_{2} . R_{2}$ and the $h_{f e}$ of Q_{1} determine the turn-off time of the FET. This circuit achieves turn-on and -off times of less than 150 nsec.
In systems that require higher power, you can use a dual-FET circuit (Figure 2). R_{1} and R_{2} and the output impedance of the PWM or FET driver determine the turn-on time. R_{1} and R_{2} and the h_{fe} values for Q_{1} and Q_{2} determine the turn-off time. The Schottky diodes, D_{3} and D_{4}, prevent current flow through the collec-tor-base junctions of Q_{1} and Q_{2} when the drive signal is negative. You can obtain switching speeds higher than 50 nsec at turn-on and 100 nsec at turn-off with this circuit, depending on the output impedance of the transformer drive signal.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

Economical circuit drives white LEDs

Eddy Wells, Texas Instruments

Newly available white LEDs are replacing CCFLs (cold-cathode fluorescent lamps) in handheld applications using a backlit LCD. These applications include PDAs (personal digital assistants), digital cameras, and cellular telephones, to name a few. Advantages of white LEDs over CCFLs include longer life, higher efficiency, and significantly lower operating voltages. Regulating the current in the LED (typically 10 to 30 mA) controls the brightness; the forward voltage in each LED is approximately 3 V . The circuit in
Figure 1 provides a means of efficiently controlling LED current in a series-connected string. The TL5001 PWM-controller IC is an older, industry-standard, inexpensive driver. The boost topology of the circuit allows operation from a single or

White LEDs provide ideal backlighting for small LCDs. dual lithium-ion cell. The ratings of $\mathrm{Q}_{3}, S D_{1}$, and the maximum allowed duty cycle of the IC (programmed with pin DTC) determine the maximum output voltage of the

Figure 2

The circuit in Figure 1 provides more than 80% conversion efficiency.
the IC controls the feedback signal at this pin to 1 V . You can control the LEDs' intensity by summing in a control voltage via R_{4}. Figure 2 shows the efficiency of a four-LED string. You could obtain approximately 2% higher efficiency by adding a gain-of- $5 \mathrm{op}-\mathrm{amp}$ stage between R_{7} and R_{3}, resulting in a lower voltage drop across R_{7}. Of course, this slight efficiency improvement adds to the system
cost. For higher power applications, such as notebook computers, you can attach additional LED strings to $\mathrm{V}_{\text {out }}$. To maintain uniform intensity in each string, you should add a dummy resistor of the same value as R_{7} to each string.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

Real-time-clock chip makes low-power oscillator

Yongping Xia, Teldata Inc, Los Angeles, CA

Many systems use watch-crystalbased, $32.768-\mathrm{kHz}$ oscillators. In battery-powered designs, the 32-
kHz oscillator may consume a fairly high percentage of the total power budget. Reduced power consumption equates to

Figure 1

$V_{D D}(V)$	CURRENT $(\mu \mathrm{A})$
1.5	0.9
2	1.1
2.5	1.3
3	1.6
3.5	2.1
4	2.6
4.5	3.2
5	3.9
5.5	4.7
6	5.6

This ultra-low-power oscillator uses only the oscillator portion of a real-time-clock chip.
longer battery life, smaller batteries, and smaller products. Ricoh (www.ricoh. com) manufactures more than 10 types of real-time-clock chips, including the RS5C372B (Figure 1). This device is an eight-pin IC with a built-in oscillator, programmable periodic interrupts, and an $\mathrm{I}^{2} \mathrm{C}$ interface to a $\mu \mathrm{C}$. The only function the device in Figure 1 uses is the 32kHz oscillator. Using only the IC and the crystal, the circuit consumes low current over its 1.5 to 6 V power-supply range, as the table in Figure 1 shows. The CMOSbased output delivers a waveform with an amplitude of 0 V to V_{DD}.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

Everything you wanted to know about wideband, low-frequency transformers

Richard Kurzrok, Queens Village, NY

WIDEBAND, LOW-FREQUENCY transformers are useful components in various passive circuits, such as the return-loss bridge (Reference 1, Figure 2). Figure 1a shows a conventional transformer. If you connect the transformer windings differently, you can configure a transmission-line transformer (Reference 2, Figure 1b). These transformers use a magnetic core of modest size, and unit cost is reasonable. The basic transformer uses a Fair Rite (www.fair-rite.com) toroid (type 597700601), which has a nominal outer diameter of 0.825 in., a nominal inner diameter of 0.525 in ., and a nominal thickness of 0.25 in . The toroid uses number 77 material and has an inductance factor (AL) of 1175 . To obtain useful performance at audio frequencies, the trans-

Figure 1

You can use a wideband transformer in conventional mode (a) or in a transmission-line configuration (b).
former uses a 129-turn bifilar winding of number 26 magnet wire. To avoid the use of expensive commercial bifilar wire, you can twist together monofilar red and green windings using a hand drill before winding it on the toroid.

Table 1 gives the measured performance with 50Ω source and load impedances of the conventional transformer in Figure 1a. Figure 1b shows the schematic diagram of a one-to-one transmissionline transformer. Table 2 gives the measured performance with 50Ω source and load impedances. This transformer provides bandwidth enhancement with useful behavior down to dc. You can use the conventional transformer in Figure 1a in a passive return-loss bridge (Figure 2) or for stand-alone dc isolation. Table 3 gives the measured performance of the 50Ω

${ }^{\text {desegen ideas }}$

return-loss bridge. At 1 MHz , the returnloss bridge exhibits a forward insertion loss of 12 dB and an open-circuit-to-short-circuit ratio of 0.5 dB . You can use the conventional transformer to isolate a grounded signal from a balanced test piece. We built the circuits for the wideband transformers and return-loss bridge using single-clad vector board and enclosed them in die-cast aluminum boxes with BNC connectors.

References

1. Wetherhold, E, "Design and Construction of a $9-\mathrm{kHz}$ Highpass Filter and Assembly of a Return Loss Bridge for Filter and PLISN," Interference Technology Engineers' Manual, pg 220, 1993.
2. Sevick, J"Transmission Line Transformers," American Radio Relay League, 1990.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

| TABLE 1-PERFORMANCE OF A CONVENTIONAL TRANSFORMER |
| :--- | :---: | :---: | :---: |

| TABLE 2-PERFORMANCE OF A TRANSMISSION-LINE TRANSFORMER | | | |
| :--- | :---: | :---: | :---: | :---: |
| Frequency (MHz) | Insertion loss (dB) | Frequency (kHz) | Insertion loss (dB) |
| 10 | 1.7 | 100 | 0.15 |
| 7 | 1.2 | 50 | 0.15 |
| 4 | 0.9 | 20 | 0.1 |
| 2 | 0.6 | 10 | 0.1 |
| 1.5 | 0.5 | 5 | 0.1 |
| 1 | 0.4 | 1 | 0.1 |
| 0.5 | 0.3 | 0.1 | <0.1 |
| 0.2 | 0.2 | 0.01 | <0.1 |

Figure 2

A return-loss bridge is one application for wideband, low-frequency transformers.

TABLE 3 -DIRECTIVITY OF THE	
RETURN-LOSS BRIDGE	
Frequency (kHz)	Directivity (dB)
1000	22
500	27
200	33.5
50	38
20	41.5
10	44.5
5	>46
2	>46
1	>46
0.5	>46

μC makes effective frequency counter

Fazal Pathan, Physical Research Laboratory, Ahmedabad, India

FIGURE 1 shows an efficient and costeffective frequency counter using an Atmel 89C2051 $\mu \mathrm{C}$ (Reference 1). The design can use any $\mu \mathrm{C}$ of the 8051 family. The circuit counts frequency and sends the count to a PC via the serial port. The signal connects to pin 3.4 of the $\mu \mathrm{C}$. The TTL-compatible output of the $\mu \mathrm{C}$ drives the 1488 , which converts the output to RS-232 voltage levels. The output
of the 1488 connects to the RxD pin on the serial port of the PC. In this design, only unidirectional communication exists between the $\mu \mathrm{C}$ and the PC. But you can use the TxD line to control another device. The assembly routine in Listing 1 shows initialization of the timer, counter, and interrupts. The main program sets up T0 to count external pulses and T1 to count time in the autoreload mode 2
(Reference 2). The main program monitors the main-program flag, frqflg, until the flag is set. Then, the main program sends the counted frequency to the PC's port using mode 1 . First, it sends the special character "L" to recognize the following 3 bytes as valid data. Then it sends the value of register R2, which is the most significant byte of the counter value. This value increments every time the counter
overflows. Then, the main program sends the values of registers TH0 and TL0 to the PC's port.

After sending the data, the program
again jumps to the main routine, in which it clears the timer and counter and reinitializes them, and then starts counting again. The $\mu \mathrm{C}$ counts the value in

Figure 1

$$
\begin{gathered}
\text { RS-232 }
\end{gathered}
$$

An 8051-family $\mu \mathrm{C}$ makes an efficient and cost-effective frequency counter.
hexadecimal format; the PC can then convert it to decimal format. In this example, we used a $12-\mathrm{MHz}$ crystal and a baud rate of 2400 bps . However, you can use higher clock frequencies and baud rates, because the $\mu \mathrm{C}$ can operate to 24 MHz . We use the system in Figure 1 for photon counting in astronomical instrumentation. We give thanks to the Department of Space, Government of India, for material support and BG Anandarao, PhD, for encouragement. You can download Listing 1 from EDN's Web site, www.ednmag.com. Click on "Search Databases" and then enter the Software Center to download the file for Design Idea \#2616.

References

1. Data Sheet for 89C2051, www. atmel.com.
2. Ayala, Kenneth J, 8051 Microcontroller: Architecture, Programming and Applications (ISBN 0-314-77278-2), West Publishing Co, St Paul, MN.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

LISTING 1-FREQUENCY-COUNTER ROUTINE FOR 89C2051

; Program counts the pulses and transmits through p3.1 pin only without handshaking signal.

Equ Fraflg, ofh Equ Baudnum, 0f3h	;use a bit flag to signal main program ;number loaded in TH1 for 2403.8 baud
Freq:	
Org 0000h	
Mov Sp, \#30h	;set stack above register/bit area
Sjup over	; jump over T1 interrupt address
Org 000bh	
Inc $\mathbf{r} 2$	
Reti	
. Org 001bh	;T1 overflow flag interrupt to here
Setb psw. 3	; swich to register bank1
tne ro	; count ro up until overflow at 00h
Cjne ro, \#00h, Checktime	; check to see if time is up
Inc rl	;or inc R1 when R0 rolls over
Cheoktime:	
Cjne r1, \#27h, Goback	; check R1 for terminal count
Cjne ro, \#10h, Goback	;check R0 for terminal count
Clr tro	istop T0
clr tri	;stop T1 time before TO stopped $=$
Setb Frqfig	isignal main program that to $=$ freq.
Goback :	
Cly pow. 3	;return to bank 0 registers
Reti	;return to main program
Over:	
Mov tcon, \#ooh	;all timers stopped - flags reset
Set paw. 3	iselect register bank 1 and reset RO, R1
Mov $50, \# 00 \mathrm{~h}$	
Mov r1, \#00h	
Cly psw. 3	;return to bank 0
Mov trmod, \#25h	;T1 a mode 2 timer, TO mode 1 counter
Mov tll, \#9ch	;start TLl at 9ch
Mov th1, \#9ch	; TH1 $=156 \mathrm{~d}$, overflows in 100 clocks
Mov tlo, \#00h	;zero т0
Mov tho, \#00h	

Cly Fraflg Mov teon, \#50h
Mov ie, \#88h
Simulate
Jbe Frqillg, Getfrg Sjum Simulate
Getfrq:
Anl peon, \#7fh
An1 tmod, \#30h
Onl tmad, 220 h
Orl tmod, \#20h
Mov th1, \#Baudnum
Setb tri
Mov scon, \#40h
Mov sbuf, \#' ${ }^{\text {T }}$
Wait:
Jbe ti, Next
Sjmp Wait
Next:
Wait1:
Mov sbuf, $\mathbf{r 2}$
Jos ti, Next1 Sjmp Wait1
Nexti:
Wait2:
Jbe ti, Next2
Next2:
Mov sbuf, tlo
Wait3:
Sbe ti, Over Sjmp Wait3
End
reset the freq. measured flag start timer Tl and counter to enable global and T1 overflow interrupts
have main program test "frqflg" ;loop here until freq.is measured
sot SMOD bit to 0 for Baud * 32 rate alter timer T1 configuration only set timer T1 as an G bit autoload ; run T1
;set UART to model
;transmit content of the tho
;wait for T1set before next transmission ;else poll flag again
;now transmit tio ;and wait until the ti flag is set

Software provides interrupt system for 8051

Deng Yong, Shanghai Jiaotong University, China

By USING A "pseudo-RETI" instruction, the program in Listing 1 provides a three-priority-level interrupt system for the $8051 \mu \mathrm{C}$. Among the three interrupt sources in the routine, External Request 0 (INTO) has the highest priority, and Internal Time/Counter 0 (ITO) has the lowest priority. In the ITO interrupt-service routine before the
"pseudo-RETI" instruction, the address of the first instruction after the "pseudoRETI" instruction goes back into the stack. The internal nonaddressable flipflop of the ITO clears to acknowledge a higher interrupt after execution of the "pseudo-RETI" instruction, while the ITO interrupt-service routine executes continuously until the arrival of the RETI
instruction. You can download Listing 1 from EDN's Web site, www.ednmag.com. Click on "Search Databases" and then enter the Software Center to download the file for Design Idea \#2589.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

LISTING 1-THREE-PRIORITY-LEVEL INTERRUPT SYSTEM FOR THE 8051

ORG		0000H	
	LJMP	START	
	ORG	0003H	
	LJMP	into	
	ORG	000BH	
	LJMP	IT0	
	ORG	0013H	
	LJMP	INT1	
START: MOV SP,\#60H			
	MOV	IP,\#01H	;INT0 has high priority
	MOV	TMOD,\#01H	
	Mov	TH0,\#00H	
MOV TLO, $\# 00 \mathrm{H}$			
	SETB	EA	;enable INT0,INT1,IT0
Setb exo			
SETB EX1			
SETB ET0			
SETB TRO			
	..		
INT0:	:INT0 interrupt service

INT1:
RETI LJMP START ORG 0003H LJMP INT0 ORG 000BH ORG 0013 H LJMP INTI
START: MOV SP, $\# 60 \mathrm{H}$ MOV IP, $\# 01 \mathrm{H}$ MOV THO $\# 00 \mathrm{H}$ MOV TLO, $\# 00 \mathrm{H}$ SETB EA
;enable INT0,INT1,IT0 SETB EX1 SETB ETO SETB TRO

INT0: ..;INT0 interrupt service program

Look-up table facilitates bit flipping

Brad Bierschenk, High End Systems, Austin, TX

|n Certain instances in embedded software, it becomes necessary to flip the order of bits in a byte, so that $B 7: B 0$ becomes $B 0: B 7$. For example, this feature could be useful with a synchronous serial port that does not allow programmed selection of bit order (MSB first or LSB first) for its shift register. If a device to which the processor sends data expects one bit order but the serial port can provide only the other bit order, you must use a software method to translate the data. One solution to this problem is to provide a look-up table in ROM, in which the value of each byte in the table is offset into the table, but with bit order reversed. In other words, the first byte is offset $0(00000000 \mathrm{~b})$, the second byte is offset $1(10000000 \mathrm{~b})$, the third

LISTING 1-CODE SEGMENT FOR 80XC51 ARCHITECTURE

; Load value into accumulator (hex AA)
mov A, \#10101010b
; Load lookup table address into index mov DPTR,\#InvertTable
; Load "flipped" value into accumulator
movc A,@A+DPTR
; Accumulator should now hold hex 55
byte is offset $2(01000000 \mathrm{~b})$, and so on.
The program merely needs to load the value to be translated into a register that can serve as an offset, index the look-up table, and load the corresponding value from the index + offset location. This design uses the Philips $80 \times \mathrm{xC} 51$ architecture as an example. Listing 1 shows a code segment for the $\mu \mathrm{C}$. You can use the $\mu \mathrm{C}$'s 16-bit DPTR (data pointer) plus an 8-bit
offset in its accumulator to load the accumulator with a byte value. This solution to bit flipping is dynamically more efficient than rotating a byte location through carry bits or other possible solutions. However, it's not the most statically efficient solution, because it requires 256 bytes of ROM for the look-up table. You can download Listing 1 and the look-up table from EDN's Web site, www.ednmag.com. Click on "Search Databases" and then enter the Software Center to download the file for Design Idea \#2621.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

