Edited by Bill Travis and Anne Watson Swager

Transistor latch improves on/off circuitry

Eugene Palatnik, SIMS-BCI, Waukesha, WI

■ IGURE 1 SHOWS AN example of on/off circuitry commonly used in battery-operated devices. The p-channel MOSFET, Q₁, serves as a power switch. When you push the On button, S_1 , Q_1 's gate goes low. Q_1 turns on and supplies battery voltage to the dc/dc converter. Depending on the battery voltage in the device, the dc/dc converter might convert the voltage either up or down. In either case, it supplies V_{cc} to the μ C. The μ C goes through its power-up software sequence and programs one of its general-purpose I/O pins, setting it to logic one. This operation, in turn, causes saturation of the npn transistor, Q₂, which "confirms" the power-up state. Later, when the µC decides to power itself off, the µC simply sets its I/O output to logic zero, and Q₁ returns to its off state. The circuit is simple and reliable but has a significant disadvantage. It usually takes a fraction of a second for the dc/dc converter to reach its stable output voltage. Then, the µC's Reset

ideas

This on/off circuitry is effective but can suffer from turn-on ambiguity.

msec. After the release of Reset, the μ C must go through its "housekeeping" start-up code before it has a chance to set its I/O pin to logic one. This delay in some portable systems may be user-un-friendly, because if you don't depress the On button long enough, the system will not power up. The circuit in **Figure 2** eliminates this uncertainty.

sistor latch, which the On button switches to the on state. As in **Figure 1**, the pchannel MOSFET, Q_1 , serves as a power switch. When you push the On button, S_1 , it causes saturation of the npn transistor, Q_4 , via the base-current-limiting resistor, R_5 . The collector current of Q_4 flows through R_1 and the base-emitter junction of pnp transistor Q_3 , thereby saturating Q_3 . Q_3 redirects some current into the

The circuit includes a simple two-tran-

Figure 2

Transistor latch improves on/off circuitry	. 157
High-side driver feeds IGBTs and MOSFETs	. 158
Economical circuit drives white LEDs	. 160
Real-time-clock chip makes low-power oscillator	. 162
Everything you wanted to know about wideband, low-frequency transformers	. 162
μ C makes effective frequency counter	.164
Software provides interrupt system for 8051	. 168
Look-up table facilitates bit flipping	.168

pulse usually lasts 50 to 200

A two-transistor latch provides positive turn-on when you push the button.

base-emitter junction of Q_4 and finishes the latching process. At this point, both Q_3 and Q_4 are saturated, and the voltage on the gate of Q_1 is a function of the voltage drop across the base-emitter junction of Q_3 and the saturation voltage of Q_4 . This voltage is approximately 0.9V. The μ C need not confirm the on state of the latch. When the μ C powers up and finishes its housekeeping start-up code, it programs the I/O pin to logic zero.

Later, when the μ C decides to power itself off, it programs the I/O pin to log-

ic one and stops. Q_2 turns off Q_4 , resetting the latch to its initial off state. R_4 lowers the equivalent input impedance of Q_3 . This function improves EMI and ESD noise immunity and prevents the circuit from turning itself on in the presence of strong electromagnetic fields. Capacitor C_1 in combination with R_5 protects Q_4 and Q_2 from direct ESD into the pushbutton. Some portable devices use undervoltage-lockout circuitry. This circuitry usually uses a voltage comparator with a built-in voltage reference. If the

battery voltage drops below the threshold, the output of the comparator (usually an open-drain type) switches low. If your portable system uses this type of circuitry, you can connect the open-drain output of the comparator in parallel with Q_2 , thus preventing the latch from turning on if the battery voltage is too low.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

High-side driver feeds IGBTs and MOSFETs

Carlisle Dolland, Honeywell Engines and Systems, Torrance, CA

HE LOW- TO MODERATE-POWER system in **Figure 1** provides the interface between a pulse-width modulator and a high-side IGBT (insulated-gatebipolar-transistor) or MOSFET switch. You can use it to interface TTL or CMOS

circuitry to an H-bridge if you buffer it by a FET driver, such as an ICL7667 or an MIC4423. When OA is positive, D₁ conducts, charging the capacitance of the FET through R₁. The value of R₁ and the output impedance associated with the drive signal determine the turn-on time of the FET. After the capacitance is charged, the voltage across R₁ is essentially 0V, and Q₁ is off. During the PWM dead time, the gate capacitance discharges through Q₁ and R₂. R₂ and the h_{fe} of Q₁ determine the turn-off time of the FET. This circuit achieves turn-on and -off times of less than 150 nsec.

In systems that require higher power, you can use a dual-FET circuit (**Figure** 2). R_1 and R_2 and the output impedance of the PWM or FET driver determine the turn-on time. R_1 and R_2 and the h_{fe} values for Q_1 and Q_2 determine the turn-off time. The Schottky diodes, D_3 and D_4 , prevent current flow through the collector-base junctions of Q_1 and Q_2 when the drive signal is negative. You can obtain switching speeds higher than 50 nsec at turn-on and 100 nsec at turn-off with this circuit, depending on the output impedance of the transformer drive signal.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

Economical circuit drives white LEDs

Eddy Wells, Texas Instruments

EWLY AVAILABLE white LEDs are replacing CCFLs (cold-cathode fluorescent lamps) in handheld applications using a backlit LCD. These applications include PDAs (personal digital assistants), digital cameras, and cellular telephones, to name a few. Advantages of white LEDs over CCFLs include longer life, higher efficiency, and significantly lower operating voltages. Regulating the current in the LED (typically 10 to 30 mA) controls the brightness; the forward voltage in each LED is approximately 3V. The circuit in Figure 1 provides a means of efficiently controlling LED current in a series-connected string. The TL5001 PWM-controller IC is an older, industry-standard, inexpensive driver. The boost topology of the circuit allows operation from a single or dual lithium-ion cell. The rat-

ings of Q_3 , SD_1 , and the maximum allowed duty cycle of the IC (programmed

with pin DTC) determine the maximum output voltage of the circuit. V_{CC} comes from a separate 5V supply.

Trade-offs in the selection of inductor L₁ include size, dc resistance, and inductance value. An 82-µH inductor (with 200-m Ω dc resistance) results in continuous inductor current at higher LED currents, but the current becomes discontinuous at lower levels. The RT pin programs the oscillation frequency at approximately 200 kHz. Because the TL-5001 has a relatively weak (20-mA) opencollector output driver and is intended to drive a buck-topology circuit, the circuit uses a low-cost inverter stage comprising Q_1 and Q_2 to efficiently drive Q_3 . R_6 provides controlled turn-on and fast turnoff for Q₃. The reverse-breakdown voltage of SD, must be greater than the C_2 -filtered V_{OUT} .

 R_7 senses current in the white-LED string; the error amplifier at the FB pin of

The circuit in Figure 1 provides more than 80% conversion efficiency.

the IC controls the feedback signal at this pin to 1V. You can control the LEDs' intensity by summing in a control voltage via R_4 . **Figure 2** shows the efficiency of a four-LED string. You could obtain approximately 2% higher efficiency by adding a gain-of-5 op-amp stage between R_7 and R_3 , resulting in a lower voltage drop across R_7 . Of course, this slight efficiency improvement adds to the system cost. For higher power applications, such as notebook computers, you can attach additional LED strings to V_{OUT} . To maintain uniform intensity in each string, you should add a dummy resistor of the same value as R_7 to each string.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

Real-time-clock chip makes low-power oscillator

Yongping Xia, Teldata Inc, Los Angeles, CA

ANY SYSTEMS use watch-crystalbased, 32.768-kHz oscillators. In battery-powered designs, the 32kHz oscillator may consume a fairly high percentage of the total power budget. Reduced power consumption equates to

This ultra-low-power oscillator uses only the oscillator portion of a real-time-clock chip.

longer battery life, smaller batteries, and smaller products. Ricoh (www.ricoh. com) manufactures more than 10 types of real-time-clock chips, including the RS5C372B (**Figure 1**). This device is an eight-pin IC with a built-in oscillator, programmable periodic interrupts, and an I²C interface to a μ C. The only function the device in **Figure 1** uses is the 32kHz oscillator. Using only the IC and the crystal, the circuit consumes low current over its 1.5 to 6V power-supply range, as the table in **Figure 1** shows. The CMOSbased output delivers a waveform with an amplitude of 0V to V_{DD}.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

Everything you wanted to know about wideband, low-frequency transformers

Richard Kurzrok, Queens Village, NY

IDEBAND, LOW-FREQUENCY transformers are useful components in various passive circuits, such as the return-loss bridge (Reference 1, Figure 2). Figure 1a shows a conventional transformer. If you connect the transformer windings differently, you can configure a transmission-line transformer (Reference 2, Figure 1b). These transformers use a magnetic core of modest size, and unit cost is reasonable. The basic transformer uses a Fair Rite (type (www.fair-rite.com) toroid 597700601), which has a nominal outer diameter of 0.825 in., a nominal inner diameter of 0.525 in., and a nominal thickness of 0.25 in. The toroid uses number 77 material and has an inductance factor (AL) of 1175. To obtain useful performance at audio frequencies, the trans-

You can use a wideband transformer in conventional mode (a) or in a transmission-line configuration (b).

former uses a 129-turn bifilar winding of number 26 magnet wire. To avoid the use of expensive commercial bifilar wire, you can twist together monofilar red and green windings using a hand drill before winding it on the toroid.

Table 1 gives the measured performance with 50Ω source and load impedances of the conventional transformer in Figure 1a. Figure 1b shows the schematic diagram of a one-to-one transmissionline transformer. Table 2 gives the measured performance with 50Ω source and load impedances. This transformer provides bandwidth enhancement with useful behavior down to dc. You can use the conventional transformer in Figure 1a in a passive return-loss bridge (Figure 2) or for stand-alone dc isolation. Table 3 gives the measured performance of the 50Ω

return-loss bridge. At 1 MHz, the returnloss bridge exhibits a forward insertion loss of 12 dB and an open-circuit-toshort-circuit ratio of 0.5 dB. You can use the conventional transformer to isolate a grounded signal from a balanced test piece. We built the circuits for the wideband transformers and return-loss bridge using single-clad vector board and enclosed them in die-cast aluminum boxes with BNC connectors.

References

1. Wetherhold, E, "Design and Construction of a 9-kHz Highpass Filter and Assembly of a Return Loss Bridge for Filter and PLISN," *Interference Technology Engineers' Manual*, pg 220, 1993.

2. Sevick, J "Transmission Line Transformers," American Radio Relay League, 1990.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

TABLE 1–PERFORMANCE OF A CONVENTIONAL TRANSFORMER

Frequency (MHz)	Insertion loss (dB)	Frequency (kHz)	Insertion loss (dB)
10	7.2	50	<0.1
8	3.8	20	<0.1
7	2.6	10	<0.1
6	1.9	5	<0.1
4	1	2	<0.1
2	0.5	1	0.15
1	0.3	0.5	0.5
0.5	0.15	0.2	1.7
0.2	<0.1	0.15	2.6
0.1	<0.1	0.1	4.1

TABLE 2-PERFORMANCE OF A TRANSMISSION-LINE TRANSFORMER

	•••••••••••••••••••••••••••••••••••••••		
Frequency (MHz)	Insertion loss (dB)	Frequency (kHz)	Insertion loss (dB)
10	1.7	100	0.15
7	1.2	50	0.15
4	0.9	20	0.1
2	0.6	10	0.1
1.5	0.5	5	0.1
1	0.4	1	0.1
0.5	0.3	0.1	<0.1
0.2	0.2	0.01	<0.1

TABLE 3-DIRECTIVITY OF THE RETURN-LOSS BRIDGE		
Frequency (kHz)	Directivity (dB)	
1000	22	
500	27	
200	33.5	
50	38	
20	41.5	
10	44.5	
5	>46	
2	>46	
1	>46	
0.5	>46	

μC makes effective frequency counter

Fazal Pathan, Physical Research Laboratory, Ahmedabad, India

F IGURE 1 shows an efficient and costeffective frequency counter using an Atmel 89C2051 μ C (**Reference 1**). The design can use any μ C of the 8051 family. The circuit counts frequency and sends the count to a PC via the serial port. The signal connects to pin 3.4 of the μ C. The TTL-compatible output of the μ C drives the 1488, which converts the output to RS-232 voltage levels. The output

of the 1488 connects to the RxD pin on the serial port of the PC. In this design, only unidirectional communication exists between the μ C and the PC. But you can use the TxD line to control another device. The assembly routine in **Listing 1** shows initialization of the timer, counter, and interrupts. The main program sets up T0 to count external pulses and T1 to count time in the autoreload mode 2 (**Reference 2**). The main program monitors the main-program flag, frqflg, until the flag is set. Then, the main program sends the counted frequency to the PC's port using mode 1. First, it sends the special character "L" to recognize the following 3 bytes as valid data. Then it sends the value of register R2, which is the most significant byte of the counter value. This value increments every time the counter

overflows. Then, the main program sends the values of registers TH0 and TL0 to the PC's port.

After sending the data, the program

again jumps to the main routine, in which it clears the timer and counter and reinitializes them, and then starts counting again. The μ C counts the value in

An 8051-family µC makes an efficient and cost-effective frequency counter.

hexadecimal format; the PC can then convert it to decimal format. In this example, we used a 12-MHz crystal and a baud rate of 2400 bps. However, you can

use higher clock frequencies and baud rates, because the μ C can operate to 24 MHz. We use the system in **Figure 1** for photon counting in astronomical instrumentation. We give thanks to the Department of Space, Government of India, for material support and BG Anandarao, PhD, for encouragement. You can download **Listing 1** from *EDN*'s Web site, www.ednmag.com. Click on "Search Databases" and then enter the Software Center to download the file for Design Idea #2616.

References

1. Data Sheet for 89C2051, www. atmel.com.

2. Ayala, Kenneth J, 8051 Microcontroller: Architecture, Programming and Applications (ISBN 0-314-77278-2), West Publishing Co, St Paul, MN.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

; Program counts the pulses and transmits through p3.1 pin only without handshaking signal.			Clr Frqflg Mov tcon, #50h Mov ie, #88h	;reset the freq. measured flag ;start timer T1 and counter T0 ;enable global and T1 overflow interrupts	
Freq:	.Equ Frqflg,0fh .Equ Baudnum,0f3h .Org 0000h	;use a bit flag to signal main program ;number loaded in TH1 for 2403.8 baud	Simula	te: Jbc Frqflg, Getfrq Sjmp Simulate	;have main program test "frqflg" ;loop here until freq.is measured
	Mov SF, #30h Sjmp over .Org 000bh Inc r2 Reti	;set stack above register/bit area ;jump over T1 interrupt address	Getfrq	Anl pcon, #7fh Anl tmod, #30h Orl tmod, #20h Mov th1, #Baudnum	;set SMOD bit to 0 for Baud * 32 rate ;alter timer T1 configuration only ;set timer T1 as an 8 bit autoload
_	.Org 001bh Setb psw.3 Inc r0 Cjne r0, #00h,Checktime Inc r1	;T1 overflow flag interrupt to here ;swich to register bank1 ;count R0 up until overflow at 00h ;check to see if time is up ;or inc R1 when R0 rolls over	Wait:	Setb trl Mov scon, #40h Mov sbuf, #'L' Jbc ti, Next Sjmp Wait	;run Tl
Checkti	me: Cjne r1, #27h, Goback Cjne r0, #10h, Goback Clr tr0 Clr tr1 Setb Frqflg	<pre>;check R1 for terminal count ;check R0 for terminal count ;stop T0 ;stop T1 time before T0 stopped = ;signal main program that T0 =freg.</pre>	Next: Waitl: Next1:	Mov sbuf, r2 Jbc ti, Next1 Sjmp Wait1	;set UART to model
Goback :	Clr psw.3 Reti	;return to bank 0 registers ;return to main program	Wait2:	Mov sbuf, th0 Jbc ti, Next2	;transmit content of the th0 ;wait for T1set before next transmission
Over:	Reti	return to main program	Next2:	Sjmp Wait2	;wait for fiset before next transmission ;else poll flag again
	Mov tcon, #00h Set psw.3 Mov r0, #00h Mov r1, #00h	;all timers stopped - flags reset ;select register bank 1 and reset RO, R1	Wait3:	Mov sbuf, tl0 Jbc ti, Over	;now transmit tl0 ;and wait until the ti flag is set
	Clr psw.3 Mov tmod, #25h Mov tll, #9ch Mov thl, #9ch Mov th1, #0ch Mov th0, #00h	;return to bank 0 ;T1 a mode 2 timer, T0 mode 1 counter ;start Til at 9ch ;THI = 156d, overflows in 100 clocks ;zero T0		Sjmp Wait3 . End	

Software provides interrupt system for 8051

Deng Yong, Shanghai Jiaotong University, China

B Y USING A "PSEUDO-RETI" instruction, the program in Listing 1 provides a three-priority-level interrupt system for the 8051 μ C. Among the three interrupt sources in the routine, External Request 0 (INTO) has the highest priority, and Internal Time/Counter 0 (ITO) has the lowest priority. In the ITO interrupt-service routine before the

"pseudo-RETI" instruction, the address of the first instruction after the "pseudo-RETI" instruction goes back into the stack. The internal nonaddressable flipflop of the ITO clears to acknowledge a higher interrupt after execution of the "pseudo-RETI" instruction, while the ITO interrupt-service routine executes continuously until the arrival of the RETI

instruction. You can download **Listing 1** from *EDN*'s Web site, www.ednmag.com. Click on "Search Databases" and then enter the Software Center to download the file for Design Idea #2589.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.

LISTING 1-THREE-PRIORITY-LEVEL INTERRUPT SYSTEM FOR THE 8051

ORG 0000H RETI LJMP START INT1: ORG 003H RETI LJMP INT0 RETI RETI ORG 000BH IT0: CLR TR0 ;IT0 interrupt service program ORG 0013H PUSH DPL PUSH DPL ORG 0013H PUSH DPL ORG 0013H PUSH DPL ORG WOV UP,#01H ;INT0 has high priority PUSH DPL MOV TMOD,#01H RETI :"pseudo-RETI" MOV TMOD,#00H RETI :"pseudo-RETI" MOV TL0,#00H SETB EA ;enable INT0,INT1,IT0 SETB EX1 MOV TL0,#00H SETB EX1 MOV TL0,#00H SETB EX1 MOV TL0,#00H SETB EX1 POP DPL SETB FT0 POP DPL SETB FT0 POP DPL SETB TR0 RETI SETB TR0 RETI SETB TR0 RETI		
ORG 0003H RETI LJMP INT0 RETI ORG 000BH IT0: CLR TR0 :IT0 interrupt service program LJMP IT0 PUSH DPL ORG 0013H PUSH DPL LJMP INT1 MOV PTR.#GO_ON START: MOV PTR.#GO_ON PUSH DPL MOV IP,#01H :INT0 has high priority PUSH DPL MOV TMO.#/01H :INT0 has high priority RETI MOV TL0,#00H GO_ON: SETB EX0 MOV TH0.#00H SETB EX1 POP DPH SETB TR0 POP DPH SETB TR0 SETB TR0 RETI	ORG 0000H	RETI
LJMP INT0 RETI ORG 000BH IT0: CLR TR0 ;IT0 interrupt service program LJMP IT0 PUSH DPL ORG 0013H PUSH DPL LJMP INT1 MOV DPTR,#GO_ON START: MOV \$P,#60H PUSH DPL MOV IP,#01H ;INT0 has high priority PUSH DPL MOV TH0,#00H GO_ON: NOP MOV TH0,#00H SETB EX0 SETB EX1 MOV TH0,#00H SETB EX1 MOV TH0,#00H SETB FX0 SETB FX0 POP DPH SETB FX0 POP DPH SETB FX0 SETB TR0 SETB TR0 SETB TR0	LJMP START	INT1: ;INT1 interrupt service program
ORG 000BH IT0: CLR TR0 ;IT0 interrupt service program LJMP TT0 PUSH DPL ORG 0013H PUSH DPH LJMP INT1 MOV DPTR,#GO_ON START: MOV PJPH ;INT0 has high priority PUSH DPH MOV IP,#01H ;INT0 has high priority PUSH DPH MOV TH0,#00H RETI :"pseudo-RETI" MOV TL0,#00H SETB EX0 MOV TH0,#00H SETB EX1 MOV TH0,#00H SETB EX1 MOV TH0,#00H SETB EX1 MOV TH0,#00H SETB FX1 MOV TH0,#00H SETB FX1 POP DPH SETB FX0 POP DPH SETB FX0 RETI	ORG 0003H	
LJMP IT0 PUSH DPL ORG 0013H PUSH DPH LJMP INT1 MOV DPTR.#GO_ON START: MOV SP,#60H PUSH MOV INT0 has high priority PUSH DPH MOV TMOD.#01H (INT0 has high priority) PUSH DPH MOV TMO.0D.#01H GO_ON: NOP MOV TL0.#00H SETB EX0 MOV TH0.#00H SETB EX1 MOV TH0.#00H SETB EX1 MOV TH0.#00H SETB FX1 MOV T10.#00H SETB FX1 MOV T10.#00H SETB FX1 MOV T10.#00H SETB FX1 MOV T10.#00H SETB FX1 SETB SETB FX0 POP SETB FX0 FOP SETB RC0	LJMP INTO	RETI
ORG 0013H PUSH DPH LJMP INT1 MOV DPTR,#GO_ON START: MOV \$P,#60H PUSH DPL MOV IP,#01H ;INT0 has high priority PUSH DPH MOV TMOD,#01H RETI :"pseudo-RETI" MOV TL0,#00H GO_ON: NOP SETB EA ;enable INT0,INT1,IT0 SETB EX1 MOV TL0,#00H SETB ET0 MOV TL0,#00H SETB FT0 POP SETB FT0 POP SETB TR0 POP SETB RETI	ORG 000BH	IT0: CLR TR0 ;IT0 interrupt service program
LJMP INT1 MOV DPTR,#GO_ON START: MOV SP,#60H PUSH DPL MOV IP,#01H ;INT0 has high priority PUSH DPH MOV TMOD,#01H RETI :"pseudo-RETI" MOV TH0,#00H GO_ON: NOP MOV TL0,#00H SETB EA ;enable INT0,INT1,IT0 SETB EX0 MOV TH0,#00H SETB EX1 MOV T10,#00H SETB TR0 POP DPH SETB TR0 SETB TR0 SETB TR0 SETB TR0	LJMP IT0	PUSH DPL
START: MOV SP,#60H PUSH DPL MOV IP,#01H ;INT0 has high priority PUSH DPH MOV TMOD.#01H RETI :"pseudo-RETI" MOV TH0,#00H GO_ON: MOV TL0,#00H SETB EA ;enable INT0,INT1,IT0 SETB EX0 MOV TH0,#00H SETB EX1 MOV TH0,#00H SETB EX1 MOV TH0,#00H SETB TR0 POP DPH SETB TR0 RETI RETI	ORG 0013H	PUSH DPH
MOV IP,#01H :INT0 has high priority PUSH DPH MOV TMOD,#01H RETI :"pseudo-RETI" MOV THO,#00H GO_ON: NOP MOV TLO,#00H SETB EA ;enable INT0,INT1,IT0 SETB EX0 MOV TLO,#00H SETB EX1 MOV TLO,#00H SETB ET0 POP DPH SETB TR0 SETB TR0 SETB TR0		MOV DPTR,#GO_ON
MOV TMOD,#01H RETI :"pseudo-RETI" MOV TH0,#00H GO_ON: NOP MOV TL0,#00H SETB EA ;enable INT0,INT1,IT0 SETB EX0 MOV TL0,#00H SETB EX1 MOV TL0,#00H SETB ET0 POP DPH SETB TR0 SETB TR0 SETB TR0 SETB TR0		PUSH DPL
MOV TH0,#00H GO_ON: NOP MOV TL0,#00H SETB EA ;enable INT0,INT1,IT0 SETB EX0 MOV TL0,#00H SETB EX1 MOV TL0,#00H SETB EX1 POP DPH SETB TR0 POP DPL SETB TR0 RETI	MOV IP,#01H ;INT0 has high priority	
MOV TL0,#00H SETB EA ;enable INT0,INT1,IT0 SETB EX0 MOV TH0,#00H SETB EX1 MOV TL0,#00H SETB ET0 POP DPH SETB TR0 SETB TR0 SETB TR0 RETI		
SETB EA ;enable INT0,INT1,IT0 SETB EX0 MOV TH0,#00H SETB EX1 MOV TL0,#00H SETB ET0 POP DPH SETB TR0 POP DPL SETB TR0 RETI RETI		GO_ON: NOP
SETB EX0 MOV TH0,#00H SETB EX1 MOV TL0,#00H SETB ET0 POP DPH SETB TR0 POP DPL SETB TR0 RETI RETI		
SETB EX1 MOV TL0,#00H SETB ET0 POP DPH SETB TR0 POP DPL SETB TR0 RETI RETI		
SETB ET0 POP DPH SETB TR0 POP DPL SETB TR0 RETI		MOV TH0,#00H
SETB TR0 POP DPL SETB TR0 RETI		
SETB TR0 RETI		
RETI	SETB TRO	
INTO:;INTO interrupt service program		RETI
	INT0:	

Look-up table facilitates bit flipping

Brad Bierschenk, High End Systems, Austin, TX

N CERTAIN INSTANCES in embedded software, it becomes necessary to flip the order of bits in a byte, so that B7:B0 becomes B0:B7. For example, this feature could be useful with a synchronous serial port that does not allow programmed selection of bit order (MSB first or LSB first) for its shift register. If a device to which the processor sends data expects one bit order but the serial port can provide only the other bit order, you must use a software method to translate the data. One solution to this problem is to provide a look-up table in ROM, in which the value of each byte in the table is offset into the table, but with bit order reversed. In other words, the first byte is offset 0 (0000000b), the second byte is offset 1 (1000000b), the third

LISTING 1–CODE SEGMENT FOR 80XC51 ARCHITECTURE

; Load value into accumulator (hex AA) mov A, #10101010b ; Load lookup table address into index mov DPTR,#InvertTable ; Load "flipped" value into accumulator movc A,@A+DPTR ; Accumulator should now hold hex 55

byte is offset 2 (0100000b), and so on.

The program merely needs to load the value to be translated into a register that can serve as an offset, index the look-up table, and load the corresponding value from the index+offset location. This design uses the Philips 80xC51 architecture as an example. Listing 1 shows a code segment for the μ C. You can use the μ C's 16-bit DPTR (data pointer) plus an 8-bit

offset in its accumulator to load the accumulator with a byte value. This solution to bit flipping is dynamically more efficient than rotating a byte location through carry bits or other possible solutions. However, it's not the most statically efficient solution, because it requires 256 bytes of ROM for the look-up table. You can download **Listing 1** and the look-up table from *EDN*'s Web site, www.ednmag.com. Click on "Search Databases" and then enter the Software Center to download the file for Design Idea #2621.

Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp.