Room temperature prop	perties of	Si	GaAs	GaN	(Unit)
Lattice constant	$a_0 =$	5.43095	5.6533	$a_0 = 3.189$ $c_0 = 5.185$	Å
Bandgap energy	$E_g =$	1.12	1.42	3.4	eV
Intrinsic carrier concentration	$n_i =$	1×10^{10}	2×10^{6}	2×10^{-10}	cm^{-3}
Effective DOS at CB edge	$N_{\rm c} =$	2.8×10^{19}	4.7×10^{17}	2.3×10^{18}	cm^{-3}
Effective DOS at VB edge	$N_{\rm v}$ =	1.0×10^{19}	7.0×10^{18}	1.8×10^{19}	cm^{-3}
Electron mobility	$\mu_n =$	1500	8500	1500	$cm^2/(Vs)$
Hole mobility	$\mu_p =$	450	400	30	$cm^2/(Vs)$
Electron diffusion constant	$D_n =$	39	220	39	cm^2/s
Hole diffusion constant	$D_{\rm p}$ =	12	10	0.75	cm^2 / s
Minority carrier lifetime	τ =	10^{-6}	10^{-8}	10^{-9}	S
Electron effective mass	$m_{\rm e}^{*} =$	0.98 <i>m</i> _e	$0.067 \ m_{\rm e}$	$0.2 \ m_{\rm e}$	_
Heavy hole effective mass	$m_{\rm hh}*=$	0.49 <i>m</i> e	0.45 <i>m</i> e	$0.8 m_{\rm e}$	_
Relative dielectric constant	$\epsilon_r =$	11.9	13.1	8.9	_
Refractive index	$n_{\text{optical}} =$	3.3	3.4	2.5	_
Absorption coefficient near $E_{\rm g}$	$\alpha =$	10^{3}	10^4	10^{4}	cm^{-1}

Note:

- DOS = Density of states. CB = Conduction band. VB = Valence band. •
- Diffusion constants and mobilities are related by Einstein's relation: $D = \mu (k T / e)$ Minority carrier diffusion lengths are given by $L_n = (D_n \tau)^{1/2}$ and $L_p = (D_p \tau)^{1/2}$ •
- ٠
- The mobilities and diffusion constants apply to low doping concentrations ($\approx 10^{15}$ cm⁻³). ٠ As the doping concentration increases, mobilities and diffusion constants decrease.
- The minority carrier lifetime τ applies to doping concentrations of 10^{18} cm⁻³. For other doping concentrations, τ is given by $\tau = B^{-1} (n+p)^{-1}$, where $B_{\text{GaAs}} \approx 10^{-10}$ cm³/s, $B_{\text{Si}} \approx 10^{-12}$ cm³/s, and $B_{\text{GaN}} \approx 10^{-10}$ cm³/s. •

Room temperature pr	operties of	SiO ₂	and	Si ₃ N ₄
Bandgap energy	$E_{\rm g}$ =	9.0 eV		5.0 eV
Dielectric constant	$\epsilon_r =$	3.9		7.5
Refractive index	$n_{\rm optical} =$	1.46		2.05
Dielectric strength (or breakdown field)	Е =	$10^7 \mathrm{V/cm}$		$10^7 \mathrm{V/cm}$