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This paper discusses the inversion of nonlinear ill-posed problems. Such prob-

lems are solved through regularization and iteration and a major computational

problem arises because the regularization parameter is not known a priori. In this

paper we show that the regularization should be made of two parts. A global reg-

ularization parameter is required to deal with the measurement noise, and a local

regularization is needed to deal with the nonlinearity. We suggest the Generalized

Cross Validation as a method to estimate the global regularization parameter and

the Damped Gauss-Newton to impose local regularization. Our algorithm is tested

on the magnetotelluric problem.

In the second part of this paper we develop a methodology to implement our

algorithm on large-scale problems. We show that hybrid regularization methods

can successfully estimate the global regularization parameter. Our algorithm is

tested on a large gravimetric problem.
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1. Introduction

In this paper we deal with the solution of nonlinear ill-posed inverse prob-

lems. Let:

F [m] + � = b (1.1)

represent a nonlinear inverse problem. Our goal is to reconstruct the model,

m2H from the noisy data b2RN , where H denotes the Hilbert space. The trans-

formation F : H!R
N is the forward modelling and �, the measurement noise,

is assumed to be Gaussian and non-correlated. The operator F is assumed to

be twice Frechet di�erentiable. Since m2H it is common to discretize the model

with M unknowns such that M > N (see for example [22, 26, 31, 34, 37, 41]).

The transformation F becomes a discrete transformation: F : RM!R
N .
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The inverse problem is usually ill-posed which means that there is more

than one model, m, which �ts the noisy data, b. In order to solve such problems,

regularization and minimization are commonly used [12, 26, 31, 38]. Our goal is

to �nd the model m� which minimizes the Tikhonov functional:

� = jjF [m]� bjj2+ �jjW (m�mref)jj2 = �d + ��m (1.2)

where jj:jj represents the two-norm, W is a positive weighting function, mref is

a reference model and � is the regularization parameter. The quantities �m and

�d are the model norm and the mis�t respectively.

There are two main computational di�culties in the solution of 1.2. First,

the regularization parameter is unknown, and second, a nonlinear functional has

to be minimized. These impose special di�culties if the problem is large.

The choice of regularization parameter is addressed in [3, 5, 12, 26, 34, 37,
38]. The methods for the selection of regularization parameter can be roughly

divided into two groups. In [3, 12, 26, 36, 37, 42], the regularization parameter

is estimated a priori and problem 1.2 is solved using a �xed regularization pa-

rameter, �. A second approach suggested in [3, 31, 34], is to estimate the regu-

larization parameter at each iteration. This approach is used in many practical

applications [13, 28, 35, 45].

In the �rst method which uses a �xed regularization parameter, the min-

imization of 1.2 is done a few times. Each minimization is solved with a reg-

ularization parameter �est and a solution mest is obtained. If the solution is

satisfactory as judged by some criterion, then the inverse problem is considered

to have been solved. Let �� be the regularization parameter which accomplishes

this goal. The criterion suggested in [3, 5, 34, 37, 38], is the discrepancy principle

which means that:

jjF [m]� bjj2�T (1.3)

where the number T is the target mis�t. This requires knowledge of the noise,

�, but unfortunately for most �eld data the noise is not known. The GCV has

been successful in estimating Gaussian and uncorrelated additive noise in lin-

ear problems [41]. Whaba and O'Sullivan [42] also used a GCV criterion in a

nonlinear problem but their implementation fall into the category of �xing the

regularization parameter and therefore it requires that the minimization of 1.2
be carried out a number of � values.

The main di�culty with the above approach is that we need to solve a

new nonlinear problem for every new regularization parameter and therefore the

algorithm is computationally expensive. The algorithm is substantially cheaper

if we estimate � to be close to the optimal ��. In [3, 12], considerable e�ort is

made to choose such a �, however, the estimates are asymptotic in nature and

therefore 1.2 still has to be solved many times.

The second method for solving the inverse problem is to use an adaptive

regularization parameter [5, 31]. The process is divided into two stages. In stage
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one, the mis�t �d is reduced to the target mis�t, T , and in stage two this target

mis�t is kept constant while the model norm �m is reduced. Since the process

is made from two stages we call this method the Two-Stage Method. Although

the Two-Stage Method is very popular in practice, it does not have a proof of

convergence and it can be shown to diverge in some cases [19]. In order to avoid

divergence, \safety steps" have been suggested in [28], however these steps are ad

hoc in nature and employ parameters which are taken from practical experience.
The goal of this paper is to present another method to choose an adap-

tive regularization parameter. The method is stable, does not contain ad hoc

parameters, and it does not need a pre-de�ned target mis�t.

The paper is built as follows. We start with a review of the Damped Gauss-

Newton method as applied to a minimization problem with a constant regulariza-

tion parameter. We then present the major ideas of our algorithm. Our algorithm

uses the Generalized Cross validation and we review it in Section 4. Section 5 is

used to summarized the algorithm. In Section 6, we give a 1-D example taken

from magnetotelluric (MT) experiments. Section 7 deals with the application of

this technique to large scale problems. Finally, Section 8 gives an example of

inverting data from a large scale gravity problem.

2. Damped Gauss-Newton Method

If � is speci�ed then the minimization of the global objective function 1.2

is a well-posed nonlinear optimization problem. In this section we assume � is

known and review the Damped Gauss-Newton method for the minimization of

1.2 as suggested in [8, 14, 24, 25].

Since we look for an m that minimizes �, we di�erentiate 1.2 with respect

to m and set the result to zero. We obtain

@�

@m
= g(m) = �W

T
W (m�mref ) + J(m)T (F [m]� b) = 0 (2.1)

where g(m) is the gradient of 1.2 and J(m) is the sensitivity:

J(m) =
@F

@m
(2.2)

If we �ndmy that solves 2.1, then we have found the desired solution (with respect

to that �xed �). A Newton method for solving 2.1 requires the di�erentiation of

2.1 with respect to m. The main di�culty with the Newton method is that 2.1

is a nonlinear equation, which already involves the Frechet derivative of F with

respect to m. In order to avoid the calculation of the second Frechet derivative

of F to m, the forward modeling, F is linearized by:

F [m + �m] = F [m] + J(m)�m+ R(m; �m) (2.3)



4 Haber et al. / A GCV Based Method for Nonlinear Ill-Posed Problems

where R(m; �m) = O(�m2). With the assumption that R(m; �m) is small, this

linearization yields the Gauss-Newton equations

�W
T
W (m+ �m�mref) + J(m)T (F [m] + J(m)�m� b) = 0 (2.4)

Rearranging terms in this equation gives a linear system of equations for �m.

The minimization problem is solved iteratively. At the kth iteration we solve

(J(mk)
T
J(mk)+�W

T
W )�m = J(mk)

T (b�F [mk])��WT
W (mk�mref ) (2.5)

to �nd the perturbation �m. Solving 2.5 is identical to solving the least squares

problem �
J(mk)p
�W

�
�m =

�
b� F [mk ]

�
p
�W (mk �mref )

�
(2.6)

At each iteration we have an option of solving directly for a perturbation or

solving for an updated model. To formulate the latter option we write mk+1 =

mk + �m and substitute into equation 2.5 to obtain

(J(mk)
T
J(mk)+�W

T
W )mk+1 = J(mk)

T (b�F [mk]+J(mk)mk)��WT
Wmref

(2.7)

The corresponding linear system is�
J(mk)p
�W

�
mk+1 =

�
b� F [mk ] + J(mk)mkp

�Wmref

�
(2.8)

Note that equation 2.8 is equivalent to solving the linear system

J(mk)mk+1 = b� F [mk ] + J(mk)mk = rk(mk) (2.9)

using Tikhonov regularization with W as a weighting matrix and mref as a ref-

erence model. Therefore, at each iteration the new update mk+1 minimizes the

linearized Tikhonov function

�
lin = jjF [mk] + J(mk)(mk+1�mk)� bjj2+ �jjW (mk+1�mref )jj2 = �

lin
d + ��m

(2.10)

Using the above formulation, we can solve for either the perturbation �m or

for the model mk+1 and proceed to the next iteration. If we start from a point

which is close enough to the solution, the method converges. In most geophysical
problems however, we do not start very close to the solution and therefore the lin-

earization process which involves neglecting the residual R(m; �m) from equation

2.3 might not be justi�ed. The Taylor residual R(m; �m) is of O(�m2) and there-

fore when the step size is large the minimization of the linearized equation 2.10

might cause an increase in the objective function 1.2. Such a step is obviously

a bad choice because it does not take us closer to the minimum of the nonlinear

problem. This defect can easily be corrected. The Gauss-Newton step is a de-

scent direction [8], and therefore if the step size is small enough, the nonlinear

function will have a similar behaviour to the linearized problem. Based on this
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observation, Armijo [2] suggested trying a step size of !�m where 0:1 < ! < 0:5

and to repeat the process. Finally, for a small enough step, the nonlinear function

decreases and we get closer to the minimum of the nonlinear functional. Since

every step is a descent step it is reasonable to demand that at the kth iteration

�(�;mk+1) < �(�;mk) (2.11)

This iterative procedure is repeated until convergence. The result is a model

m
y(�) which minimizes 1.2.

As stated before, in most applications the regularization parameter can-

not be chosen a priori and therefore an adaptive method to �nd regularization

parameter is needed. This is done in the next section.

3. Nonlinear Inversion Combined with the Damped Gauss-Newton

Method

In this section we develop the main idea of our paper. Our goal is to simulta-

neously �nd an m and regularization parameter � such that � in 1.2 is minimized

and �d is a good estimate of the true noise. To accomplish this we notice that

at the kth iteration we must solve the linear system in 2.9. This system can be

written as

J(mk)mk+1 = b
c � F [mk ] + J(mk)mk + nonlinear terms + noise (3.1)

where bc is the exact data i.e., the data with no noise. We therefore have to deal

with two problems. The �rst is the measurement noise and the second is the non-

linear terms. While the noise has to be treated through a global regularization

(i.e. choosing a regularization parameter for the whole problem), the nonlinear

terms have to be treated by reducing the step size which is part of a local regu-

larization process (i.e. the step size regularizes one iteration). As we get closer

to the minimum, full steps are taken and no local regularization is needed [8].

These processes are distinct and therefore we want to treat them separately and

di�erently. First we deal with the measurement noise. This requires a method

which can di�erentiate between the Gaussian noise and the correlated nonlinear

terms. This method yields the value of � for the current iteration. Now with a �
in hand we can carry out a damped Gauss-Newton iteration. The damping in a

Gauss-Newton strategy takes the nonlinearity into consideration and makes sure

that the perturbation is small enough so that nonlinear terms are actually small.

In general, our algorithm can be summarized as follows:

Steps for Solving Nonlinear Inverse Problem

1. Calculate the sensitivities J(m) and the right hand side r(m).

2. Calculate a suitable regularization parameter �.

3. Use the regularization parameter to calculate mk+1.
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4. Update using step length strategy.

5. Check for convergence and go to 1.

There are three important points in this algorithm that need explanation.

One of the most important is how to pick a regularization parameter (stage 2)

but we delay this until the next section. We also need to explain how to make the

update (stage 4) and how to check for convergence (stage 5). We �rst consider
the updating.

At the k
th iteration we have �k; mk and equation (2.6) can be solved for

mk+1. Acceptance of mk+1 (or the perturbation �m = mk+1 �mk) when a �xed

� was used in the last section, required that �(�;mk+1) < �(�;mk). The main

problem in applying this criterion here is that the objective function changes from

iteration to iteration because the regularization parameter can vary. At the kth

iteration

�(�k; mk) = �kjjW (mk �mref )jj2 + jjF [mk]� bjj2

while at the (k + 1)th iteration

�(�k+1; mk+1) = �k+1jjW (mk+1 �mref )jj2 + jjF [mk+1]� bjj2

Since the global objective function � is changing at each iteration, the demand

of decreasing the value of the objective function is not reasonable. We therefore

replace it with the consistent demand:

�(�k+1; mk+1) < �(�k+1; mk) (3.2)

or more speci�cally:

�k+1jjW (mk+1�mref )jj2+jjF [mk+1]�bjj2 < �k+1jjW (mk�mref )jj2+jjF [mk]�bjj2

(3.3)

Thus every step in the algorithm is also equivalent to a one-step descent from the

model mk to mk+1 with regularization parameter �k+1. This is important if we

want our algorithm to be consistent with the objectives of the minimization.

The second important point is the convergence (stage 5). For every iteration
k we need to know whether to stop the process or to continue. Since the objective

function is changing, the question is what criterion should we take? The answer is

again given by consistency. If each iteration is a damped Gauss-Newton iteration

with di�erent parameter �k then our convergence criterion is the same as for a

damped Gauss-Newton algorithm. Let:

gk = �kW
T
W (mk �mref ) + J(mk)

T (F [mk]� b) (3.4)

be the gradient of the k
th functional. A simple way to test convergence is to

demand that jjgkjj�0. This is not easily implemented because scaling is a factor.
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Instead, we replace our convergence criteria with one that is commonly used for

least squares problems [8]:

max(
jg(i)k m

(i)

k j
�(mk)

; i = 1:::M) < tol (3.5)

An additional convergence criterion is to ensure that the model is stationary [14],

that is

jjmk+1 �mkjj
max(jjmk+1jj; jjmkjj)

< � (3.6)

We now return to the explanation of stage two of our algorithm in which we

need to choose the regularization parameter � for each iteration. We require a

method that can di�erentiate between the nonlinear terms and the noisy terms.

The nonlinear terms are well correlated and therefore, we can use methods that

were developed for linear problems with uncorrelated noise. The method which

we use in this paper is the Generalized Cross Validation. We review this method

next.

4. Estimating Gaussian Noise In a Linear Inverse Problem

The problem of estimating noise in a linear inverse problem has been treated

by [15, 22, 40, 41]. One popular method is the Generalized Cross Validation

(GCV). The GCV has a �rm theoretical foundation and numerical experiments

[1, 41], justify our choice for GCV as a tool to di�erentiate between correlated

and uncorrelated noise. We therefore review the GCV here. For ease of notation

in this section we let m = mk+1 �mref , rk = r(mk)� Jmref and J = J(mk).

The major idea of the GCV is that we do not want our computed model to

be sensitive to the elimination of one data point. This means that our solution

should predict a datum fairly well even if that datum is not used when calculating

the model. In order to do that we introduce the following notation. Let mn(�)

be the minimizer of

�n = jjJm� rjj2 � (aTnm� rn)
2 + �jjWmjj2 (4.1)

where an is the nth row of J and rn is the nth element of r. Note that �n is the

same linearized objective function as �lin in 2.10 but with the nth element in r,

and the corresponding row in J , missing.

For each regularization parameter, �, the function �n can be minimized to

yield a solution mn(�). The Cross Validation function is de�ned as the sum of

square di�erences between the predicted right hand side without the nth element

and the actual nth element:

CV (�) =
NX
n=1

(aTnmn(�)� rn)
2 =

NX
n=1

(rn(�)� rn)
2 (4.2)
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The minimum of the CV function with respect to � represents the � for which

the data predicted would change the least if we omit one data point. The CV as

it is de�ned above is not very practical to compute. Let

� = jjJm� rjj2 + �jjWmjj2 (4.3)

and let r(�) = Jm(�). Whaba [41] proved that

CV (�) =
NX
n=1

(r(�)n � rn)
2

(1� cnn)2
(4.4)

where cnn is the nn term of C(�) = J(JTJ + �W
T
W )�1JT and r(�)n is the

n
th component of r(�). The Cross Validation function was replaced by the

Generalized Cross Validation in order to keep it's minimum under orthogonal

transformation (Golub et al. [15]):

GCV (�) =
jjr(�)� rjj2

trace(I � C(�))2
(4.5)

.

While the GCV has a good theoretical background, it is often hard to cal-

culate in practice since the calculation of C is computationally expensive. A new

approach by Golub and Von Matt [18] makes the computation less intensive and

feasible for large scale overdetermined problems. We will use a similar approach
in Section 7.

5. Summary of Our Inversion Algorithm

We now summarize our methodology. It is based on three main components.

1. A method to pick a regularization parameter (GCV).

2. A criterion to accept/reject a step

3. A method to alter a step size (in the case of rejection).

In the above list, item one is based on the ability of GCV to di�erentiate

between noise and signals, while items two and three are based on the Damped

Gauss-Newton method. In general our methodology can be simply viewed as a

variation of the Damped Gauss-Newton method, which uses a new regularization

parameter � that is changing in each iteration. If the regularization parameter

approaches a speci�c value �� then our algorithm turns into a standard Damped

Gauss-Newton algorithm. Note also that our algorithm is a �xed point iteration

of the form

mk+1 = f(mk ; �(mk))

where f(mk; �(mk)) is de�ned in equation 2.8 and �k is de�ned by the GCV

methods. Therefore our algorithm should converge if we start close enough to its
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attraction point assuming that the Lipschitz constant of this �xed point iteration

is smaller than one. Our experience so far is that this has happened and that

the regularization parameter tends to converge quickly to its �nal value. The

complete algorithm is as follows:

Nonlinear Inversion Using GCV and Damped Gauss-Newton

1. Calculate the sensitivities J(m) and the right hand side r(m).

2. Evaluate a suitable regularization parameter, �, using the GCV.

3. Use the regularization parameter to calculatemk+1 and �m = mk+1�mk

4. Update using step length strategy and criterion 3.3.

5. Check for convergence and go to 1.

6. Example I: The One-dimensional Magnetotelluric Problem

The one dimensional magnetotelluric (MT) problem is a well-studied non-

linear inverse problem in electromagnetics, (see for example [27, 31, 43, 44]) and

therefore it is very suitable as a test example. We �rst provide the mathematical

description of the problem and then proceed to the numerical experiments. The

matlab code for these experiments can be obtained through anonymous ftp at

ftp : geop:ubc:ca=pub=haber=MLIB:tar.

6.1. Description of the Problem

We start with the quasi-static Maxwell's equations in the frequency domain:

r�E = �i!�0H (6.1)

r�H = �E

where E and H are the three-component electric and magnetic �eld intensities, �0
is the magnetic permeability, which is assumed to be constant, ! is the angular

frequency and � is the electrical conductivity.

Assuming that E and H are plane waves, i.e.

E = (E; 0; 0) H = (0; H; 0)

and that � = �(z), we can take the curl of the �rst equation in 6.1 and get the

governing equation

d
2
E

dz2
= i!�0�(z)E (6.2)

The boundary conditions are

E(1) = 0
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E(0) = 1

The MT data, measured at the surface of the earth are

c0(!; �(z)) = �
E(z = 0; !)

@zE(z = 0; !)
(6.3)

Our goal is to recover the conductivity pro�le �(z) from the complex measure-

ments c0 at di�erent frequencies !.

To carry out forward modelling and inversion we discretize the earth into 64

layers. The thickness of the layers increases quadratically with depth such that

zi = �
2
i and � is linearly spaced. The total thickness of the model is chosen such

thatE ' 0 at the bottom boundary. The di�erential equation 6.2 is solved in each

layer, along with the conditions thatE and its derivativeE0 are continuous at each

interface. This leads to the recursive relation for C(z; !) = �E(z; !)=E0(z; !)

which constitutes the forward modelling [43]:

C(zj�1; !) =
1

kj

tanh(kjhj) + kjC(zj ; !)

1 + kjC(zj; !)tanh(kjhj)
j = M:::1 (6.4)

where

kj = (1 + i)
p
!�0�j ;

hj is the thickness of the j
th layer and �j is the conductivity of the j

th layer. The

data is given simply by c0(!) = C(0; !).

To generate simulated �eld data, we need to specify both the conductivity

structure and also the frequencies at which the measurements are made. We

choose the conductivity model used by Whittall and Oldenburg [44]. Data are

calculated at 16 frequencies over a range from 10�3 � 103 Hz. The conductivity

model and the real and imaginary parts of the data are plotted in Figure 1.

In order to carry out the inversion we need to pick a reference model and

a weighting matrix W . We set the reference model mref so that it corresponds

to a background conductivity of 0:04 S=m. To specify W we use the middle

di�erence discretization of the operator 0:001I�r2
� , which means that the �nite

di�erence operator is discretized with respect to �.

The MT problem is characterized by data that span a few orders of mag-

nitude. In such cases the errors in the data are generally proportional to the

data magnitude, and thus the standard deviation of the data varies signi�cantly.

However, the GCV is theoretically designed for problems with uniform standard

deviation. To accomodate this, we change the data into

b̂ = Wdb

and the forward modelling of the MT problem to

F̂ [m] = WdF [m]
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whereWd is a diagonal scaling matrix with the inverse of the estimatedmagnitude

of standard deviation of each datum. In this way each datum has the same order

of standard deviation. Below, for sake of brevity in notation, we use F and b

instead of F̂ and b̂.

6.2. Numerical Experiments

The numerical experiments are built from two parts. In the �rst part we

demonstrate the ability of the GCV to di�erentiate between random noise and

the nonlinear terms. In the second part we show that our method is able to

obtain a model that minimizes the objective function and �ts the data to the

right extent.

To investigate the ability for the GCV criterion to estimate the random

noise in the nonlinear problem we carry out the following analysis that emulates

what is done at the �rst iteration in solving the nonlinear inverse problem. Let

the starting model m0 be equal to the reference model (mref = 0:04S=m). This

is substantially di�erent from the true model in Figure 1. We next calculate the

sensitivities at the model m0 and solve
�
J(m0)p
�W

�
m1 =

�
b� F [m0] + J(m0)m0p

�Wm0

�
(6.5)

for a range of � values to generate the GCV curve. The optimum � is obtained

by �nding the minimum in the GCV curve. Equation (6.5) is then solved for m1

and the estimated error for the noise, jjJ(m0)m1 � r0jj, is easily obtained. This

estimated noise can be compared with the true added Gaussian noise jj�jj that
was added to the data b. The numerical results are likely dependent upon the

magnitude and particular realization of the additive Gaussian noise. To account

for this we consider a number of di�erent experiments in which the data b is

contaminated with a di�erent percentage of Gaussian noise. For each noise level

we carried out 50 realizations. In each realization, new random errors are added

to the data and the process of estimating that noise is repeated. In Table 1 we

give the results of these experiments in terms of the mean of the estimated noise

in the 50 realizations, the mean of the real noise, and the standard deviation

of the 50 realizations. We note that the estimated noise (Column 2) is in good
agreement with the true noise (Column 3).

In the second set of tests we evaluate the complete inversion process by

inverting the data set for di�erent noise levels. Only one realization of the noise

is used at each noise level. The results of the experiment are summarized in Table

2. We see that the algorithm presented in Section 5 estimated a noise level that

was very close to the real noise level.

In Figure 2, we plot the regularization parameter �, the relative residual

jjF [m]�bjj=jjbjj and the model norm jjWmjj as a function of the iteration number.

We see that the regularization parameter quickly stabilizes to its �nal value which
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leads to a regular Gauss-Newton convergence rate. Finally, in Figure 3, we plot

the result of the inversion for the 2 and the 5% noise levels. Both inversions

are smooth representations of the blocky model and no manifestation of arti�cial

structure caused by �tting the noise is observed.
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Table 1

Example one - Numerical experiments with GCV for estimating the noisy parts of the right

hand side of the linearized equation. Column 1 shows the percentage of noise added to the data.

The estimated noise (normalized by jjr0jj) and shown in column 2, agrees well with the true

noise in column 3. E denotes the expected value and is numerically evaluated by computing the

average over 50 realizations.

Noise Level E(jjJ(m0)m1 � r0jj=jjr0jj) E(jj�jj=jjr0jj) std(jjJ(m0)m1 � r0jj=jjr0jj)

1% 8:7�10�3 9:0�10�3 5:2�10�4

2% 1:7�10�2 1:8�10�2 6:4�10�3

5% 4:2�10�2 4:4�10�2 7:2�10�3

10% 8:4�10�2 8:8�10�2 9:1�10�3

15% 1:2�10�1 1:3�10�1 5:7�10�2

20% 1:6�10�1 1:7�10�1 6:2�10�2

Table 2

Example One - Numerical experiments with the nonlinear inversion algorithm. The percentage

noise added to the data is given in column 1. The magnitude of the estimated noise, shown in

column 2, agrees well with the magnitude of the true noise in column 3.

Noise In Data jjF [m]� bjj=jjbjj jj�jj=jjbjj

1% 7:0�10�3 7:3�10�3

2% 1:9�10�2 1:7�10�2

5% 4:6�10�2 4:2�10�2

10% 7:3�10�2 7:1�10�2

15% 1:2�10�1 1:2�10�1

20% 1:6�10�1 1:5�10�1
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Figure 1. The conductivity model used for the MT experiment (bottom) and the data from that

model (top). The imaginary part of the data is denoted by � and the real part is denoted by +.
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Figure 3. Results of nonlinear MT inversion. Data are contaminated with 5% (top) and 2%
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7. Application for Large Scale Problems

So far we have discussed Tikhonov-style regularization for nonlinear prob-

lems which is based on the ability to estimate a regularization parameter and

invert the regularized Frechet derivatives. However the inversion of the regular-

ized Frechet derivatives is computationally burdensome for large scale problems

and should be avoided. Noticing that at each iteration we have to regularize the

linearized system 2.9, we turn to other possible regularization methods. One of

the most stable methods for large scale regularization is hybrid type regulariza-

tion, [16, 21, 22, 29, 30]. We now review this method.

7.1. Hybrid Regularization Methods

Hybrid regularization is a combination of two regularization methods, sub-

space regularization and Tikhonov regularization. In the �rst stage the problem

is reduced to a small and tractable subspace, and then Tikhonov regularization

is used inside that subspace. In this subsection we assume that the weighting

matrix W = I . This assumption is generic since the case of arbitrary W can

be reduced to the case W = I (see [10, 11, 12, 13, 19, 22]). A general hybrid

approach solves the problem:

minimize � = jjJm� rjj2 + �jjmjj2 (7.1)

subject to m2Sn

There are many possible ways to choose the subspace Sn [19, 22, 29, 31]. In

this work we consider the case that Sn = K(J; r; n) which is the Krylov space,

that is,

Sn = [JT r; (JTJ)JT r; :::; (JTJ)n�1JT r]

In order to obtain the subspace decomposition we use Lanczos bidiagonal-

ization procedure [16, 33]. After n iterations of the bidiagonalization process, we

have a partial decomposition:

J�Un+1BnV
T
n (7.2)

where UT
n+1Un+1 = In+1 with U(:; 1) = r=�1, V

T
n Vn = In and Bn is an (n+1)�n

matrix

Bn =

2
6666664

�1 0 ::: 0

�1 �2 ::: 0

:: :: ::: ::

:: :: ::: 0

0 ::: �n�1 �n

0 ::: 0 �n

3
7777775
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Restricting m to the Krylov subspace we can write:

Jm = Un+1BnV
T
n m = r

Let z = Vnm, and multiplying both sides of the above equation by UT
n+1 we get

Bnz = �1e1 = ~e1 (7.3)

where e1 = [1; 0:::0]T. The matrix Bn is usually ill-conditioned because some of

its singular values are numerically close to zero. In this case one cannot simply

invert the matrix, and some regularization is needed. O'Leary and Simmons [30]

suggested using the truncated singular value decomposition, [39], to solve 7.3,

however Tikhonov regularization could be used as well. The solution is given by:

m(n; �) = Vn(B
T
nBn + �I)�1BT

n ~e1 (7.4)

Note that the hybrid solution depends on the space size as well as the regular-

ization parameter. If we want to make this regularization close to the Tikhonov

regularization then we have to ensure that all of the vectors associated with sig-

ni�cant singular values have converged. This requires that the decomposition is

continued long enough so only small singular values are obtained with succesive

iterations. This can be done by noting that the bidiagonal matrixBn contains an

approximation to the singular values of the system [32]. To ensure that we cap-

ture some of the small singular values we carry out the SVD of the small sparse

matrix Bn. We continue the decomposition until the matrix Bn has n1 singular

values which are smaller than a small number �. The number � is chosen such

that it is practically zero according to working precision. In this work we chose

� = 10�6. After the decomposition has been obtained it is used in equation 7.4 to

calculate the solution. In most cases we found that the results were satisfactory

if the number of almost zero singular values is roughly 10 � 20% of the total

number of singular values of Bn .

In order to solve 7.4 we need to choose a regularization parameter �. Since

the problem has been reduced to an n-dimensional space where usually n�N ,

it is possible to use the GCV procedure in this space. The use of the GCV

on the rotated problem is justi�ed since the GCV is not sensitive to orthogo-

nal transformation [15]. Therefore we choose a regularization parameter which

minimizes:

GCV (n; �) =
jj(I �Bn(B

T
nBn + �I)�1BT

n )~e1jj
2

[trace(I �Bn(BT
nBn + �I)�1BT

n )]
2

(7.5)

The evaluation of the GCV function in this case is very cheap and the minimiza-

tion can be carried out easily.
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7.2. Using Hybrid Methods in the Nonlinear Inversion

We now have a method to regularize a large scale problem and to estimate

the noise. We therefore use this method to solve the nonlinear problem iteratively.

The problem can be formulated as follows:

minimize jjF [m]� bjj2+ �jjmjj2 (7.6)

subject to m2 K (J(m); r(m); n)

Similar algorithms have been proposed to solve well-posed problems with

no regularization [4, 6, 7, 23]. In every nonlinear step we use the combination of

Krylov space and Tikhonov regularization in order to regularize the problem and

obtain a suggested model mk+1. The new model solves the linearized problem,

but it does not necessarily reduce the nonlinear function which we try to mini-

mize. A simple solution to this problem is to use again a step length strategy.

This is done by calculating the direction �m = mk+1 �mk and using the same

method as in the damped Gauss-Newton method to calculate a step length which

ensures the reduction of the nonlinear function. The algorithm can be summa-

rized as follows:

Krylov Hybrid Subspace - Damped Gauss-Newton Method

Choose an initial model m0. Calculate the mis�t �d = jjF [m0]� bjj2.
For k = 1; 2:::

1. Calculate J(mk) and r(mk).

2. Solve: J(mk)m
p
k+1 = b� F [mk] + J(mk)mk

using the hybrid method and the GCV criterion for �k .

3. Calculate the perturbation �m = m
p
k+1 �mk, the new mis�t

�d
new = jjb� F [m

p
k+1]jj

2, and the new model norm �m
new = jjmp

k+1jj
2

4. If: �d
new + �k�m

new��d + �k�m , set mk+1 = m
p
k+1 go to 1.

5. Elseif: �d
new + �k�m

new
> �d + �k�m, set m

p
k+1 = mk + !�m go to 3.

6. If criterion 3.6 is ful�lled, terminate the process.

In the implementation of this process we chose ! = 0:5 and the stopping

criterion in 3.6 was � = 10�3.

8. Example Two - The Interface Problem

In this section we test the algorithm discussed in Section 7 on a large

inverse problem. The description of the problem is given in Section 8.1

and the numerical experiments are described in Section 8.2. The MATLAB
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code for these experiments can be obtained through anonymous ftp at ftp :

geop:ubc:ca=pub=haber=MLIB:tar.

8.1. Description of the Problem

A surface gravity survey is carried out to measure the anomalous gravita-

tional acceleration in the vertical direction. From Newton's law we know that the

gravitational acceleration at location (xi; yi; 0) on the surface of the earth due to

a mass anomaly density, ��, at position (x; y; z) inside the earth is:

�gi = �g(xi; yi; 0) = 
��(x; y; z)

(x� xi)2 + (y � yi)2 + z2
dx dy dz (8.1)

where  is the gravitational constant and dx dy dz is the volume of that mass. In
three-dimensions, the anomalousmass can be anywhere in the regionD. Integrat-

ing over that region and taking the vertical component, we obtain the expression

for the measured gravity datum:

bi = b(xi; yi; 0) = 

Z
D

��(x; y; z) z

[(x� xi)2 + (y � yi)2 + z2]
3

2

dx dy dz (8.2)

It is possible to solve for �� as a linear inverse problem however, for some

situations a di�erent formulation is more suitable. Assume now that the earth

has two layers with known densities and the density contrast between them is

��. The �rst layer has a mean depth of h(x; y) which is assumed to be known.

Changes in the gravitational �eld are due to changes in the depth of the �rst

layer relative to h, which is given by the function m(x; y). Assuming �� = 1, we

can write:

bj = 

Z Z
D

Z h+m(x;y)

h

z

[(x� xj)2 + (y � yj)2 + z2]
3

2

dx dy dz (8.3)

Integrating the expression with respect to z gives:

bj = 

Z Z
D

(
1

rhj

�
1

rmj

) dx dy (8.4)

where:

r
2
hj

= (x� xj)
2 + (y � yj)

2 + h
2

and

r
2
mj

= (x� xj)
2 + (y � yj)

2 + (h+m)2

The goal of the inverse problem presented in this example is to recover

the surface m(x; y) from the given gravity anomaly data b. In order to do this
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we would also need the Frechet derivatives of the operator. By di�erentiating

equation 8.4 with respect to m we get:

@bj

@m
= 

Z Z
D

h +m(x; y)

[(x� xj)2 + (y � yj)2 + (h+m(x; y))2]
3

2

dx dy (8.5)

In order to experiment with this type of problem we assume that 30�30
gravity data are measured on the surface. The data are equally gridded in the

interval [0; 100]�[0; 100] meters. We assume that the reference height is h(x; y) =

20 meters in equation 8.4. The model, m(x; y), has zero mean about this surface.

To evaluate the data, the integral 8.4 is calculated using the midpoint rule. The

100�100 square domain is divided into 49�49 grid points. The model and the

data are plotted in Figure 4.

8.2. Numerical Experiments

Just as in Section 6, the numerical experiments are built from two parts. In

the �rst part we demonstrate the ability of the GCV, in a restricted subspace, to

di�erentiate between random noise and the nonlinear terms. In the second part

we show that our method is able to obtain a model which minimizes the objective

function and �ts the data to the right extent.

Once again, we calculate the sensitivities with respect to the initial model.
Using these sensitivities we carry out one iteration and solve 6.5. The experiment

is repeated and each time the data, b, is contaminated with a di�erent amount

of noise. For each noise level we carried out 50 realizations. In each realization

new random errors are assigned to the data and the process of estimating that

noise is repeated. The results of some of these experiment are in Table 3.

The experiments demonstrate the ability of hybrid regularization with GCV

to di�erentiate between the correlated nonlinear terms and the random noise. In

this case we have found that the hybrid regularization with GCV is extremely

close to the true noise level.

In the second experiment we evaluate the whole process by inverting the

data after adding di�erent levels of noise. The results of the experiment are

summarized in Table 4 and we again conclude that GCV has worked well in

estimating the true noise level.

In Figure 5 we plot the regularization parameter �, the mis�t jjF [m] � bjj
and the model norm jjmjj as a function of the iteration number. We see that

the regularization parameter quickly stabilizes to its �nal value which leads to a

regular Gauss-Newton convergence rate. Finally in Figure 6 we plot the results

of the inversion for noise levels of 1; 2; 5 and 10%.



22 Haber et al. / A GCV Based Method for Nonlinear Ill-Posed Problems

Table 3

Example Two - Numerical experiments with GCV for estimating the noise of the right hand

side with hybrid regularization and GCV. Column 1 shows the percentage of noise added to the

data. The estimated noise (normalized by jjr0jj) and shown in column 2, agrees well with the

true noise in column 3. E denotes the expected value and is numerically evaluated by computing

the average over 50 realizations.

Noise Level E(jjJ(m0)m1 � r0jj=jjr0jj) E(jj�jj=jjr0jj) std(jjJ(m0)m1 � r0jj=jjr0jj)

1% 1:0�10�2 1:0�10�2 5:1�10�4

2% 1:9�10�2 1:9�10�2 7:2�10�4

5% 4:9�10�2 4:9�10�2 9:4�10�4

10% 9:8�10�2 9:7�10�2 1:1�10�3

15% 1:4�10�1 1:4�10�1 4:4�10�3

20% 1:9�10�1 1:9�10�1 5:6�10�3

Table 4

Example Two - Numerical experiments with the nonlinear inversion algorithm. The percentage

noise added to the data is given in column 1. The magnitude of the estimated noise, shown in

column 2, agrees well with the magnitude of the true noise in column 3.

Noise In Data jjF [m]� bjj=jjbjj jj�jj=jjbjj

1% 9:4�10�3 9:5�10�3

2% 2:1�10�2 2:0�10�2

5% 5:0�10�2 4:8�10�2

10% 8:4�10�2 8:4�10�2

15% 1:4�10�1 1:4�10�1

20% 1:9�10�1 1:9�10�1
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iteration in the 1% noise gravity inversion.
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Figure 6. Results of nonlinear gravity inversion for noise levels of 1; 2; 5 and 10%. The recovered

topography can be compared with the true topograhpy of the interface shown in top panel in

Figure 4.
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9. Summary and Conclusions

In this paper we developed two algorithms for solving nonlinear ill-posed

problems. Both algorithms are based on understanding the two di�erent processes

which we face when solving a nonlinear ill-posed problem. The �rst process is

noise estimation. This process is global in nature, and therefore one has to look for

a global technique to estimate the regularization parameter. Here we suggested

using two variants of the GCV to estimate the global noise. The second process

which has to be addressed is the estimation of the step length. If the step length is

too large then the linearization does not hold and the iteration might not reduce

the value of the objective function we are trying to minimize. This process is local

in its nature and therefore needs a di�erent type of regularization. We suggest

using the damped Gauss-Newton for this process. In this way we ensure that the

step which we choose is not only regularized against the non-uniqueness of the

problem, but we also make sure we descend in each nonlinear step.
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