
GEOPHYSICS, VOL. 64, NO. 6 (NOVEMBER–DECEMBER 1999); P. 1689–1697, 8 FIGS.

Inversion of controlled source audio-frequency magnetotellurics
data for a horizontally layered earth

Partha S. Routh∗ and Douglas W. Oldenburg∗

ABSTRACT

We present a technique for inverting controlled source
audio-frequency magnetotelluric (CSAMT) data to re-
cover a 1-D conductivity structure. The earth is modeled
as a set of horizontal layers with constant conductivity,
and the data are apparent resistivities and phases com-
puted from orthogonal electric and magnetic fields due
to a finite dipole source. The earth model has many layers
compared to the number of data points, and therefore the
solution is nonunique. Among the possible solutions, we
seek a model with desired character by minimizing a par-
ticular model objective function. Traditionally, CSAMT
data are inverted either by using the far-field data where
magnetotelluric (MT) equations are valid or by correct-
ing the near-field data to an equivalent plane-wave ap-
proximation. Here, we invert both apparent resistivity
and phase data from the near-field transition zone and
the far-field regions in the full CSAMT inversion with-
out any correction. Our inversion is compared with that
obtained by inverting near-field corrected data using an
MT algorithm. Both synthetic and field data examples in-
dicate that a full CSAMT inversion provides improved
information about subsurface conductivity.

INTRODUCTION

Controlled source audio-frequency magnetotellurics
(CSAMT) is a frequency-domain electromagnetic method
which uses a grounded dipole or horizontal loop as an
artificial source. Over the years, CSAMT has emerged as a
powerful exploration tool and has found its application in
mineral exploration (Zonge et al., 1986; Basokur et al., 1997),
geothermal investigation (Sandberg and Hohmann, 1982;
Bartel and Jacobson, 1987; Wannamaker, 1997a,b), hydro-
carbon exploration (Ostrander et al., 1983) and groundwater
contamination problems (Zonge et al., 1985). An excellent
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review of CSAMT and its application is given by Zonge and
Hughes (1991). The original motivation to develop CSAMT
was to improve the signal strength problem that arises in the
magnetotelluric (MT) method (Goldstein and Strangway,
1975). However the nonplane wave nature of the source
limits the interpretation of data by conventional MT methods.
Recognizing this, the traditional practice is to interpret only
the far-field data, which are obtained at a distance of four to
five skin depths (Sasaki et al., 1992), or to correct near-field
data for nonplane-wave effects and then use MT modeling to
interpret the observations (Bartel and Jacobson, 1987). The
near-field corrections are often based on homogeneous half-
space models and their validity is in question in complicated
environments. This compromises the information about the
subsurface conductivity that can be obtained from transition
zone data. Maurer (1988) and Boerner et al. (1993) pointed
out the necessity for including complete CSAMT modeling in
an inversion and have warned against correcting the data to
the plane-wave approximation.

Existing 1-D inversion techniques for CSAMT data ( e.g.,
Zonge and Hughes, 1991) attempt to estimate the conductivi-
ties and thicknesses of a few layers by finding the least-square
solution of an overdetermined system. Such algorithms con-
centrate upon reproducing the data, but the resultant model
depends upon the number of layers assumed and the initial
values of the conductivities and thicknesses. We present an
alternative approach by parameterizing the earth into large
number of horizontal layers, each of which has a constant, but
unknown, conductivity and fixed thickness. The inverse prob-
lem becomes underdetermined, and we find a specific model
by minimizing a model objective function subject to data con-
straints. The flexibility of minimizing different model objective
functions and fitting the data to different misfits, helps in ex-
ploring model space.

The paper begins with a presentation of the forward mod-
eling of CSAMT data in a 1-D earth. Next we discuss the for-
mulation of the inverse problem. We test our inversion with a
synthetic data set contaminated with noise. We then apply a
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near-field correction and invert the “corrected” data with an
MT inversion algorithm. This reinforces the comments made
by Maurer (1988) and Boerner et al. (1993). The paper con-
cludes with the inversion of a field data set and a discussion.

THE FORWARD PROBLEM

Forward modeling of CSAMT in one dimension requires the
computation of electric and magnetic fields (Ex, Ey, Hx, Hy)
over a stratified earth due to horizontal electric dipole (HED).
The generic solution of HED is well known (e.g., Wait, 1982;
Ward and Hohmann, 1988) and only basic equations need be
presented here. We adopt the work of Ward and Hohmann
(1988). For a source-free region, the electric and magnetic field
can be decomposed in terms of Schelkunoff potential A and F,
often referred as TM and TE potential. T he potential A is con-
sidered to arise from electric sources (Js) and the F potential is
due to magnetic sources (Ms). The magnetic and electric fields
can be expressed in terms of the potentials given by (Ward and
Hohmann, 1988),

H = ∇ × zAz(x, y, z, ω)− (σ + iωε)(zFz)

+ 1
iωµ
∇(∇ · zFz)

(1)
E = −∇ × zFz(x, y, z, ω)− (iωµ)(zAz)

+ 1
(σ + iωε)

∇(∇ · zAz)

where z is the unit vector in the vertical direction, σ is the elec-
trical conductivity, ε is the dielectric permittivity, µ is the mag-
netic permeability, and ω is the angular frequency. Only one
component of the vector potential is of interest because the
physical properties vary only in one direction. In each source-
free layer of constant conductivity (Figure 1), the scalar poten-
tial satisfies the following differential equation in the frequency
domain (Ward and Hohmann, 1988):

d2 Ã
j
z(kx, ky, z, ω)

dz2
− u2

j Ã
j
z = 0, (2)

d2 F̃
j
z(kx, ky, z, ω)

dz2
− u2

j F̃
j
z = 0, (3)

where u2
j = k2

x + k2
y− k2

j and k2
j =ω2µ j ε j − iωµ jσ j . The Az and

Fz potential at the surface can be expressed as

A0
z(x, y, z, ω) = −I ds

4π
∂

∂x

∫ ∞
0

(
e−u0(z+h)

+ rTM eu0(z−h)) J0(λr )
λ

dλ, (4)

F0
z (x, y, z, ω) = −iωµ0 I ds

4π
∂

∂y

∫ ∞
0

(
e−u0(z+h)

+ rTE eu0(z−h)) J0(λr )
u0λ

dλ, (5)

where J0(λr ) is the Bessel function of zeroth order, r =√
x2+ y2 is the distance from the dipole, h is the height of the

dipole above the surface and is equated to zero since the source

is at the surface, u0=
√
λ2− k2

0 , λ =
√

k2
x + k2

y, and k2
0 =ω2µ0ε0;

rTM and rTE are the TM mode and TE mode reflection coef-
ficients, respectively. The electric field (Ex) and the magnetic

field (Hy) recorded at the surface due to an x-directed HED
are expressed in terms of potentials:

Ex(z= 0, ω) = 1
iωε0

∂2 A0
z

∂x∂z
− ∂F0

z

∂y
,

(6)

Hy(z= 0, ω) = −∂A0
z

∂x
+ 1

iωµ0

∂2 F0
z

∂y∂z
.

In practice a long grounded wire is used as a transmitter.
It is typically 1–2 km long, whereas the receiver dipole length
ranges from 50 to 200 m. The magnetic fields are measured us-
ing magnetic sensors (Zonge and Hughes, 1991). The fields due
to a point dipole are integrated over the transmitting dipole to
find the value at the center of the receiving dipole. The CSAMT
data are generally converted to apparent resistivity (ρa) and
phase (8) as a function of frequency. The relationships are

ρa(z= 0, ω) = 1
ωµ

∣∣∣∣ Ex(z= 0, ω)
Hy(z= 0, ω)

∣∣∣∣2,
(7)

φa(z= 0, ω) = φEx (z= 0, ω)− φHy(z= 0, ω),

where Ex and Hy are the integrated fields due to a finite long
grounded wire.

CSAMT data for a five-layer earth model is shown in Fig-
ure 2. The transmitter is 1.5 km in length, and the receiv-
ing dipoles are parallel to the transmitter but offset by 2 km.

FIG. 1. The conductivity structure for a horizontally-layered
earth model: hj is the thickness of the j th layer, and zj and σ j
are, respectively, the depth to the bottom and conductivity of
the j th layer.
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The conductivity structure used to compute the data is shown
in Figure 2b, and apparent resistivities and phases are given
in Figures 2c–d. It is instructive to compare these responses
with MT responses. There is agreement at higher frequencies,
but disagreement is pronounced at lower frequencies when
nonplane-wave effects become important. The nature of the
nonplane-wave effect depends on various factors: frequency of
the signal, transmitter-receiver separation, length of the trans-
mitter, orientation of the transmitter and receiver dipoles, and
the overall conductivity which alters the skin depths at a partic-
ular frequency. The relative contribution of each of these fac-
tors to the nonplane-wave effect is difficult to determine since
the conductivity structure is unknown. The region around the
transmitter is generally divided into three zones. In the near-
field region where r ¿ δ (the skin depth), the magnitude of E
decays as 1/r 3 and that of H decays as 1/r 2, resulting in an
E/H which is independent of frequency but dependent on r .
This results in the linear decrease in apparent resistivity with
increasing frequency on a log-log plot, as shown in Figure 2c.
The phase response, shown in Figure 2d, tends to zero. In the
region where r ≈ δ, the decay of the H -field changes from 1/r 2

to 1/r 3; this is called the transition zone. For a layered earth,
the transition zone is characterized by a notch, which lies in the
frequency range around 100 Hz for this example. The inflec-
tion of the phase curve is also indicative of the transition zone
response shown in Figure 2d. It has been pointed out (Boerner
and West, 1989) that data acquired in the transition zone are
generally sensitive to layered structure. The far-field region is
characterized by plane-wave behavior of the source and occurs
when r À δ. In this region, the CSAMT response is same as the
MT response.

FIG. 2. (a) The transmitter and receiver configuration used to
generate the synthetic data. (b) The five-layer true conductivity
model used to generate the data. The half-space conductivity at
depth is 7.0 mS/m. (c) The CSAMT (dashed line) and MT (solid
line) apparent resistivity curve for the five-layer conductivity
model. The transition zone notch is observed around 100 Hz
on the CSAMT curve. (d) The phase response for CSAMT
(dashed line) and MT (solid line).

INVERSE PROBLEM

A primary objective in an inverse problem is to recover
a geologically interpretable model that can acceptably
reproduce a finite set of observations. The data in a 1-D
CSAMT problem are apparent resistivities and phases
at frequencies f j , j = 1, . . . , N. At each sounding loca-
tion, the data vector can be represented as d= (ρa( f1),
ρa( f2), . . . , ρa( fN), φ( f1), φ( f2), . . . , φ( fN))T . The medium is
discretized into horizontal layers of constant conductivity with
increasing layer thickness. To ensure positivity and also to
allow large variations of conductivity we choose mj = ln(σ j )
as our parameters. The model for the inverse problem is
m= (m1,m2, . . . ,mM ).

For a finite number of inaccurate observations, there are
infinite number of solutions that will reproduce the data to
within their error. We solve our inverse problem in a stan-
dard way by minimizing a model objective function subject
to adequately fitting the data. A regularized Gauss-Newton
methodology (Constable et al., 1987; Oldenburg et al., 1993)
is implemented to iteratively solve the nonlinear optimization
problem.

We choose a generic model objective function that is a com-
bination of smallest and flattest model penalty terms:

φm = αs

∫ ∞
0
ws(z)(m(z)−mref (z))2 dz

+αz

∫ ∞
0
wz(z)

(
dm(z)

dz

)2

dz, (8)

where mref is the reference model, αs and αz are the param-
eters that control the relative importance of closeness to the
reference model and the roughness, and ws(z) and wz(z) are
additional weighting functions which can be used to control the
structural information in the model. Incorporating the layered
earth representation into equation (8) allows us to formulate
the inverse problem as

minimize φm = αs‖Ws(m−mre f )‖2 + αz‖Wzm‖2

(9)
subject to φd =

∥∥Wd(dobs− dpred)
∥∥2 = φ∗d,

where Ws and Wz are finite difference model weighting matri-
ces, φ∗d is the final target misfit to be attained in the inversion
process, and Wd is 2N× 2N data weighting matrix. If the data
errors are unbiased, independent, and Gaussian, then Wd is a
diagonal matrix containing the reciprocals of standard devia-
tions of the data, and φd is a χ 2 random variable. If such is the
case, then the expected value of φd is equal to 2N. The inverse
problem given in equation (9) can be solved by minimizing a
global objective function given by

8(m) = φm + β−1(φd − φ∗d
)
, (10)

where β is the regularization parameter. Let us represent the
nonlinear mapping between the data and the model by d=
F(m). Our optimization problem is nonlinear and must be
solved iteratively. Let m(n) be the current model and δm be
a perturbation. The forward mapping operator is linearized by
a Taylor’s series expansion about m(n) which yields

F
(
m(n) + δm) = F(m(n))+ Jδm+O‖(δm)2‖, (11)
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where O‖(δm)2‖ contains the terms including the second and
higher order derivatives with respect to δm. J is the sensitivity
matrix of order 2N×M with elements Ji j = ∂di /∂mj . Neglect-
ing the second and higher order derivatives in equation (11),
the perturbed objective function can be written as

8
(
m(n) + δm) = αs

∥∥Ws
(
m(n) + δm−mre f

)∥∥2

+αz

∥∥Wz
(
m(n) + δm)∥∥2

+β−1{∥∥Wd
(
d(obs)−d(n)− Jδm

)∥∥2−φ∗d
}
.

(12)

The minimum of this perturbed objective function is found by
differentiating equation (12) with respect to δm and equating it
to zero. This generates a system of M equations in M unknowns
given by(

JT WT
d Wd J + βWT

m Wm
)
δm = JT WT

d Wdδd

−βWT
m Wmm(n) + βαsW

T
s Wsmre f , (13)

where WT
m Wm=αsWT

s Ws+αzWT
z Wz. The system in equa-

tion (13) is solved for δm. The new model at the (n+ 1)th itera-
tion is given by m(n+ 1)=m(n)+ δm, and the new misfit is given
by

φN L
d = ∥∥Wd

(
dobs− d

(
m(n+1)))∥∥2

. (14)

The value of β is adjusted using a line search, until the so-
lution of equation (13) generates a misfit of φN L

d =φ∗(n)
d where

φ
∗(n)
d is the target misfit at the nth iteration. The search is con-

tinued until φN L
d is close enough to φ∗d or a minimum misfit is

found if the target cannot be achieved. The level of desired mis-
fit at each iteration can be chosen based on a simple scheme:
φ
∗(n+1)
d = max[ζφ(n)

d , 2N], where 2N is the total number of ob-
servations and 0≤ ζ < 1.0.

To solve the inverse problem, it is required to compute
the sensitivities Ji j = ∂di /∂mj in equation (13). The sensi-
tivities are computed using the adjoint Green’s function
method (McGillivray and Oldenburg, 1990; Farquarson and
Oldenburg, 1993).

INVERSION OF SYNTHETIC DATA

As a test, we apply the inversion algorithm to synthetic
CSAMT data obtained from a five-layer conductivity model
shown in Figure 2b. The transmitter and receiver dipoles are
shown in Figure 2a, and apparent resistivity and phase data
were computed at 14 discrete frequencies (1–8192 Hz) yield-
ing 28 data points. The apparent resistivity data were contam-
inated with Gaussian noise having a standard deviation of 5%
of the datum value (apparent resistivity) and 2◦ for the phase
data. The model objective function is

φm = αs

∫
(ln σ (z)− ln σre f (z))2 d ln(z)

+αz

∫ (
d ln σ (z)
d ln(z)

)2

d ln(z), (15)

which is discretized as a layered model in Figure 1. The inte-
gral in Equation (15) is taken with respect to ln(z). This is a
natural choice for electromagnetic diffusive problems in which

the frequencies for the data are logarithmically spaced. Equa-
tion 15 is the same as equation (8) with ws(z)= 1/z, wz(z)= z,
and m= ln(σ (z)). Discretizing the first term in equation (15)
results in a M ×M weighting matrix for the smallest model
shown in Appendix A. This is given by

Ws = diag

(√
h1

z0
,

√
h2

z1
, . . . ,

√
hM−1

zM−2
,

√
hM−1

zM−1

)
, (16)

where zi is the depth to the i th interface and hi is the thickness
of i th layer; z0= ξ ∗ h1 with 0<ξ ≤ 1. Discretizing the second
term in equation (15) results in an (M − 1)×M weighting ma-
trix for the flattest model shown in Appendix A. This is given
by

Wz =


−γ1 γ1 · · · 0
...

...
...

...

0 0 −γM−1 γM−1

 , (17)

where γ j =
√

(zj + zj−1)/(hj + hj+1). The choice of z0 is the
same as for the smallest model.

The earth was parameterized into 50 layers with the layer
thickness increasing exponentially with depth. The reference
model is chosen to be 7× 10−4 S/m, which is the same as the
true background conductivity, and the target misfit at each it-
eration was halved (i.e., ζ = 0.5) as the iterative process contin-
ued. We carry out the inversions using two different objective
functions: (1) αs= 1.0, αz= 0, and (2) αs= 0, αz= 1.0. We refer
to models obtained from minimizing these objective functions
as the smallest and flattest model, respectively. The fits to the
observed apparent resistivity and phase for both smallest and
flattest models are shown in Figures 3b and 3c. The final misfit
for the smallest model and flattest models were 27.8 and 28.0,
respectively. The smallest model shown in Figure 3a delineates
the boundaries of the conductive layer, but it exhibits more
structure than the flattest model, which is a smooth version of
the true model. The difference in the two models is seen in the
recovery of the background conductivity at larger depth. This
occurs because the reference conductivity is chosen to be the
true background conductivity. The flattest model penalty term
does not have any information about the reference model and,
therefore, the model flattens out at depths which are not sensed
by data.

The next objective was to invert only one set of informa-
tion (i.e., either apparent resistivity or phase). In practice, this
is sometimes necessary because one of these data sets does
not exist, or one is contaminated with severe noise and must
be discarded. We first invert only the apparent resistivity data
contaminated with noise. The desired misfit in this case is 14.
The constructed smallest and flattest models are shown in Fig-
ure 4a, and the fit to the data is shown in Figure 4c. The final
misfits for the smallest and the flattest models are 13.9 and
14.0, respectively. The flattest model has slightly less structure
than that in Figure 3a, but the smallest model has considerably
more structure. Inverting only phase data produces the models
in Figure 4b, and similar conclusions hold. The fit to the data
is shown in Figure 4d. In the inversion with the flattest model
objective function where αs= 0, there is no influence of refer-
ence conductivity on the inversion. However, it is still possible
to recover the conductivity. This arises because the phase data
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obtained in the near-field and transition zone change with the
frequency and conductivity.

The results in Figure 4 show that conductivity information
can be obtained from either amplitude or phase information,
but having both data sets improves the inversion result. The
degree of improvement depends on the data errors and is also
problem dependent. In all three cases, the flattest model recov-
ers a smoother version of the true model, whereas the smallest
model shows more structure. A flattest model may be more
appropriate in cases where reference conductivity information
is not known a priori.

MT INVERSION OF NEAR-FIELD CORRECTED DATA

It is a common practice to invert CSAMT data by first re-
moving the near-field effects and then inverting the data using
an MT inversion code. We carry out this procedure to illus-
trate the advantage of working with fully modeled CSAMT
data. In this section, we present the inversion of near-field cor-
rected data using the scheme outlined by Bartel and Jacobson
(1987). Following Bartel and Jacobson, two half-space con-
ductivities σ1 and σ2 are chosen such that at frequency f

FIG. 3. (a) The recovered models from the simultaneous inver-
sion of apparent resistivity and phase data. The block model is
the true model, and the flattest model and the smallest model
are shown by solid and dotted lines, respectively. For clarity
the individual layers are not shown. (b) The synthetic appar-
ent resistivity data and associated error bars generated from
the five-layer model. Gaussian random noise with 5% standard
deviation of the generated datum value has been added to the
data. The predicted data from the smallest and flattest models
are shown by continuous and dashed curves, and are indistin-
guishable. (c) The synthetic phase data and associated error
bars generated from five-layer model. Gaussian random noise
having 2◦ standard deviation was added to the synthetic data.
The predicted data from the smallest and flattest models are
shown by continuous curves.

the apparent resistivity of the CSAMT response is bounded
between the two homogeneous half-space responses, that is,
ρCSAMT

a1 ( f )≤ ρCSAMT
am ( f )≤ ρCSAMT

a2 ( f ). The next step is to
use Bartel and Jacobson’s equation (3) to compute the near-
field corrected apparent resistivity given by

log(ρNFC ( f ))

=
[
log
(
ρCSAMT

am

/
ρCSAMT

a1

)
log
(
ρMT

a2

/
ρMT

a1

)]
log
(
ρCSAMT

a2

/
ρCSAMT

a1

)
+ log

(
ρMT

a1

)
, (18)

where the subscript “NFC” denotes the near-field corrected
value of apparent resistivity. Unfortunately there is no correc-
tion for phase data. This occurs for two reasons. First, the phase
at low frequency for CSAMT tends to be small because the no-
tion of frequency sounding breaks down and apparent resistiv-
ity depends on the geometry. Second, the half-space technique
that works for correcting the apparent resistivity is not appli-
cable since the phase of the MT response for a homogeneous
half-space is π/4 irrespective of the frequency or conductivity.

The important question to be asked in most near-field correc-
tions is which data belong to the near-field and which belong to
the transition zone? This is often difficult to judge since the rel-
ative contributions of the various factors are unknown. How-
ever, from theoretical modeling and characteristic features of
the curves (like the transition zone notch), one can select fre-
quencies which seem to be affected by the nonplane-wave

FIG. 4. (a) The recovered model from the inversion of appar-
ent resistivity data. The blocky model is the true model. The
flattest and smallest models are shown by solid and dashed
lines, respectively. (b) The recovered model from the inversion
of phase data. The flattest and smallest models are shown by
solid and dashed lines, respectively. (c) The fit to the apparent
resistivity data from the smallest and flattest models. (d) The
fit to the phase data from the smallest and flattest models.
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nature of the source. The apparent resistivity data generated
by the model in the last section shows a transition zone notch
around 100 Hz. Therefore, the data obtained for frequencies
lower than 128 Hz were corrected using equation (18). The
near-field corrected apparent resistivity, the CSAMT data, and
the computed MT response for the true model are shown in Fig-
ure 5b. The data for inversion consists of 14 apparent resistivi-
ties including the 10 near-field corrected data and 4 phase data
in the far-field region. The errors in apparent resistivity data are
assumed to be 5% of the datum value and 2◦ for the phase. The
data are inverted using an MT algorithm (Dosso and Olden-
burg, 1989) with a targetχ 2 of 18 for a flattest model. The result-
ing model is shown in Figure 5a. Next, the CSAMT inversion
was carried out with 14 apparent resistivity data and 14 phase
data. The resulting model for the flattest model penalty is super-
imposed on the MT inversion results for comparison. Although
the model objective function for the two inversions is identi-
cal, there is an erroneous higher conductive feature observed at
greater depth in the near-field corrected inversion. This is prob-
ably due to under corrections of the data in the transition zone.

In a more extreme example, we consider a conductive over-
burden model with a conductive layer in a resistive basement
shown in Figure 5c. We keep the same geometry of receiver and

FIG. 5. (a) The recovered model from the CSAMT inversion
(solid line) and the model from the MT inversion of near-field
corrected data (dashed line). The block model is the true
model. (b) The computed MT apparent resistivity for the true
model in (a) is shown as a solid line. The generated CSAMT
responses with receiver at (0, 2 km) from the center of the
transmitter are shown with error bars. The dashed line indi-
cates the near-field corrected data. (c) The block solid line is
the true model. The CSAMT inversion and the MT inversion
of near-field corrected data is indicated by solid and dashed
lines, respectively. (d) The computed MT apparent resistivity
for the true model in (c) is shown by a solid line. The CSAMT
responses are shown with error bars, and the dashed line indi-
cates the near-field corrected data.

transmitter as that of previous case. The CSAMT response, the
MT response, and near-field corrected response are shown in
Figure 5d. Unlike the previous case (Figure 5a), the response is
mostly obtained in the near-field zone and perhaps in the tran-
sition zone. This is probably due to a more resistive basement
than in the previous example. The inverted models obtained
by minimizing a flattest model objective function are shown in
Figure 5c. The deeper conductive layer is totally absent in the
near-field corrected inversion using MT, whereas it is clearly
visible in the CSAMT inversion.

FIELD DATA INVERSION

A goal of our research is to develop an algorithm which
produces an interpretable electrical conductivity model when
applied to field data. In practice, geophysical surveys are likely
affected by 3-D conductivity. Therefore, the validity of using
1-D algorithm to invert 3-D data can be in question, but this
is not the issue we are trying to address in this paper. Wan-
namaker (1997b) and Boschetto and Hohmann (1991) have
examined the discrepancy between the 1-D and 3-D modeling
results with CSAMT. Our goal here is to present a robust in-
version algorithm that can be applied to field data when the
earth is approximately 1-D. We present one example of invert-
ing field data and compare our results with near-field corrected
1-D MT inversion obtained from a commercial contractor.

In CSAMT, the data at low frequencies that contain the
deeper information are often contaminated with the near-field
effects. Therefore, the goal of this example is to investigate the
usefulness of CSAMT inversion in a conductive environment
when information about the deeper subsurface is desired. Our
data set was acquired during a mineral exploration survey in
Nevada. The observed apparent resistivity and phase data are
presented in Figure 6a and Figure 6c, respectively. The data
were collected using a transmitter of length 7450 ft (2270 m)
placed 14 800 ft (4500 m) from the receiving dipoles. The trans-
mitting dipole is parallel to the receiver dipoles. The receiving
dipoles are separated by 100 ft (30 m) along the survey line.
Data at 13 frequencies (0.5–2048 Hz) were acquired at 60 loca-
tions. Near-field effects, which cause the resistivity to increase
and phase to decrease with decreasing frequency, are observed
in the low-frequency regime shown in Figures 6a and 6c. If a
1-D assumption is valid, we expect the data to vary smoothly
from site to site. The phase data in Figure 6c do that, except in
the region between 2000 and 3000 ft, where there is an obvious
anomaly. The resistivity data in Figure 6a show somewhat more
variation from site to site, which could be due to static shifts
caused by surface conductors. We do not apply any static shift
correction prior to inverting the data.

To invert the data, we assigned a 10% error to apparent resis-
tivities and a 5◦ error on the phases. The target misfit was set to
26, which is equal to the number of data. We could reach the de-
sired target misfit of 26 for all the stations. The model objective
function chosen for inverting the data is a combination of
smallest and flattest component (αs= 0.0001 and αz= 1). The
reference model is a homogeneous half-space of 0.01 S/m.
The model obtained from inversion is presented in Figure 7a.
The recovered conductivity indicates a resistive anomaly near
2800 ft. The regional structure indicates a near-surface con-
ducting layer with a resistive basement. The shallow depth in-
formation is mostly obtained from the high-frequency data,
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which lies in the far-field region. The deeper information is
obtained from the near-field data collected at low frequencies.
Figures 6b and 6d indicate a good match between the pre-
dicted and the observed data. Because of the concern regarding
static shift of apparent resistivities, we also inverted the data by
downweighting the apparent resistivity values. This was done
by assigning an error of 20% to the resistivity data and 5◦ er-
ror to the phases. The conductivity model obtained was very
similar, but slightly smoother, than that obtained in Figure 7a.

Next we compare the CSAMT inversion with the 1-D MT
inversion of near-field corrected data. For comparison, we con-
sider the top 4000 ft (1200 m) of recovered model obtained
from CSAMT inversion and compare it with the near-field cor-
rected inversion shown in Figure 7b. The conductivity structure
in the upper part of the model indicates a shallow conductive
layer which agrees well with that obtained from CSAMT in-
version (Figure 7a). However, there are several differences in
the deeper structures as well as in the recovered amplitudes.
The amplitude of the resistive anomaly obtained at 2800 ft
from CSAMT inversion is higher than that obtained from the
near-field corrected data. The CSAMT inversion shown in Fig-
ure 7a indicates a gently dipping resistive basement, whereas
the near-field corrected data shows more structure in the
deeper section. In general, there is a reasonable agreement
between the two inversions (Figures 7a and 7b) at shallower
depths. This is because the data obtained at higher frequencies
lie in the far-field zone where the plane wave approximation
is valid. However, the agreement worsens at depth, which is

FIG. 6. (a) The observed apparent resistivity data for field data
collected in a conductive environment. (b) The observed phase
data. (c) The predicted apparent resistivity data from CSAMT
inversion. (d) The predicted phase data from CSAMT inver-
sion.

probably due to the near-field corrections applied to the low-
frequency data.

Some qualitative information about the conductivity can
be obtained from drillhole logs BH1 and BH2 shown in Fig-
ures 8b and 8c, respectively. The locations of the drillhole
logs on the inverted model are presented in Figure 8a.
BH1 penetrates the resistive block, and BH2 intersects the
surface conductive layer. The BH1 log shown in Figure 8b
indicates that the top alluvium layer is underlain by more
resistive siltstone and sandstone units. The rock type where
the resistive block is encountered is predominantly siltstone
with fine-grained sandstone. A few quartz veins with silicified
siltstone are also found in this region, consistent with the
high resistivity obtained from the inversion. The drillhole
information in BH2 indicates that the top layer is alluvium
followed by clay and siltstone. In the depth range of 470–710 ft
(143–216 m), there is clay-rich layer with occurrences of
siltstone and iron oxide that is relatively conductive. Although
there are no geophysical logs available in this region, the
high-resistive block and the shallow-conductive layer obtained
in our inversion are a qualitative indicator of the rock type
assemblage found in the two drillhole logs BH1 and BH2.

CONCLUSION

There are two reasons for not interpreting “corrected”
CSAMT data with a MT inversion algorithm: (1) inappropriate
correction of the near-field and transition zone data can gener-
ate artifacts in the inversion results, (2) the corrections are only

FIG. 7. (a) Resistivity model obtained from CSAMT inver-
sion of the data. Zero on the depth scale indicates the mean
sea level. (b) Inverted model obtained from MT inversion of
near-field corrected data obtained from commercial process-
ing.
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FIG. 8. (a) Resistivity model obtained from CSAMT inversion
for top 1150 ft (350 m) above mean sea level. The drillhole logs
are superimposed on the inverted section. (b) The rock type
assemblage in BH1. The drillhole is 795 ft (242 m) long and
penetrates the resistive block. (c) The rock type assemblage in
BH2.

applied to resistivity data and the phase data, which cannot be
corrected, must be discarded while carrying out MT inversion.
In this paper, we have developed an inversion algorithm to re-
cover a 1-D conductivity structure from CSAMT data without
applying any correction prior to inversion. The forward mod-
eling is carried out in the frequency domain, and sensitivities
are computed using an adjoint Green’s function. The inver-
sion method finds a particular model by minimizing a model
objective function subject to adequately fitting the data. Here,
we confine ourselves to models that are smooth vertically and
are also close to a reference model. Resistivity and phase data
can be inverted jointly or separately. Results from our inversion
are compared with those obtained by applying an MT inversion
algorithm to near-field corrected data. Significant differences
in the conductivity models are obtained in both synthetic and
field data examples, and these differences illustrate the need
to invert CSAMT data without any correction.
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APPENDIX A

DERIVATION FOR THE SMALLEST (Ws) AND FLATTEST (Wz) MODEL NORM MATRICES

In a CSAMT survey, data are acquired at frequencies which
span several decades (e.g., 0.5–4096 Hz). The corresponding
skin depths also span several decades, and so a logarithmic
depth spacing is appropriate to discretize the medium for a
1-D earth. We adopt equation (15) as a suitable model objec-
tive function to be minimized. Here, we derive the discretized
form of the model objective function in equation (15) for the
smallest and the flattest model component. The component for
the smallest model norm in equation (15) is given by

φs
m =

∫
(m(z)−mref (z))2 d ln z

=
∫ (

1
z

)
(m(z)−mref (z))2 dz, (A-1)

where m= ln σ is the model. We note that the additional
weighting function ws(z) defined in equation (8) is equal to
1/z. To prevent effects of singularity in the weighting, we set
ws(z)= 1/z0 when z≤ z0 and where z0 is a nonzero depth less
than the thickness of the first layer. For practical purposes, the
upper limit of the integral is evaluated up to zmax, which is cho-
sen to be sufficiently large. For the discrete 1-D model shown
in Figure 1, we choose a discrete set of weights for ws(z). This
is given by

ws(z)= 1
z0

for 0 ≤ z≤ z1

= 1
zj−1

for zj−1 ≤ z≤ zj ; j = 2, . . . ,M. (A-2)

Discretizing the integral for an M-layered earth yields

φs
m =

M∑
j=1

(
mj − (mref ) j

)2
(

1
zj−1

)
1zj

=
M∑

j=1

(
mj − (mref ) j

)2
(

h j

zj−1

)
, (A-3)

where 1zj = zj − zj−1= hj is the thickness of the j th layer.
Equation (A-3) can be rearranged such that it can be written

in the matrix form given by

φs
m =

M∑
j=1

[√(
h j

zj−1

)(
mj − (mref ) j

)]2

= mT WT
s Wsm.

(A-4)

Therefore Ws= diag(
√

hj /zj−1) for j = 1, . . . ,M . For the bot-
tom half-space, we choose the thickness to be equal to the
thickness of the layer above it (i.e., hM = hM−1). We note that
since the layer thickness increases exponentially with depth,
the ratio of hM−1/zM−1 is finite and on the order of unity, Thus,
at greater depths where the data are insensitive to the structure,
the inversion recovers the reference model.

The component for the flattest model norm from equa-
tion (15) is given by

φ f
m =

∫ ∞
0

(
dm(z)
d ln z

)2

d ln z=
∫ ∞

0
z

(
dm(z)

dz

)2

dz.

(A-5)

We note that the additional weighting function wz(z) defined
in equation (8) is equal to z. Discretizing the integral in equa-
tion (A-5) for an M-layered model yields

φ f
m =

M−1∑
j=1

(
zj + zj−1

2

) mj+1 −mj

1zj+1+1zj

2


2 (
1zj+1 +1zj

2

)

=
M−1∑
j=1

(mj+1 −mj )2
(

zj + zj−1

h j+1 + h j

)
. (A-6)

Equation (A-6) can be rearranged such that it can be written
in the matrix form given by

φ f
m =

M−1∑
j=1

[√(
zj + zj−1

h j+1 + h j

)
(mj+1 −mj )

]2

= mT WT
z Wzm. (A-7)

This implies that the flattest model norm matrix Wz is a
M − 1×M matrix with the elements shown in Equation (17).


