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I. Introduction
This chapter deals with the properties of piezoelectric plate vibrators having
laterally unbounded, parallel faces that have arbitrary inclinations to the
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natural axes of the crystals from which they are fashioned. The plate motions 
under discussion are the simple thickness modes; these do not depend on 
lateral coordinates, making the situation inherently one-dimensional. With 
the thickness coordinate the only direction of interest, plate orientation is 
specified uniquely by two angles, so the crystal cuts are spoken of as being 
“doubly rotated.” 

The use of such cuts is not new, nor is any practical problem, strictly 
speaking, one-dimensional. Why, then, an article on the topic at this time? 
There are two major reasons. Recent discovery of compensation of nonlin- 
ear effects in quartz offers the promise of new advances in the area of high 
precision frequency control, while the advent of new, high coupling, zero 
temperature coefficient materials is seen as providing exciting prospects for 
bulk wave filter and transducer technology as well as important applications 
in surface acoustic wave devices. In both cases, doubly rotated cuts are 
expected to be widely utilized in the future. Moreover, several aspects of the 
problems associated with this more general type of vibrator, such as the 
simultaneous excitation of two or three modes and their interaction have 
meanwhile been clarified. These have made possible a coherent account of 
the properties of these cuts, better approximations, and an indication of 
areas for further investigation and improvement, so that a survey of the 
situation now is particularly pertinent. As for the limitation to thickness . 
modes, this case has the estimable virtue of possessing an exact solution, 
even for plates devoid of crystal symmetry, while retaining those features 
most relevant to the characterization of practical devices. 

Singly and doubly rotated plates are shown in Fig. 1 in relation to the 
crystallographic axes X, Y, Z. In standard notation (Anonymous, 1949) the 

FIG. 1. Conventions for s&ifying plate orientations with respect to crystal axes X, Y, 2. 
(a) Singly rotated plate. (b) Doubly rotated plate. 
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singly rotated Y cut shown is described as (YXl)O; the AT and BT cuts of 
quartz are representative (Mason, 1964). Doubly rotated quartz cuts 
(YXwl)cp/U were investigated by Bokovoy and Baldwin (1935) starting from 
the singly rotated X cut, and this led to their discovery of the V-cut family. 
Improvements in frequency-temperature behavior motivated this early 
work on quartz plates, and remains a continued concern for most modern 
applications. Having two orientation angles available permits satisfaction of 
additional requirements simultaneously with temperature coefficient con- 
straints, as will become apparent in Sections IV and V. We shall lead up to 
these considerations by describing first the propagation of acoustic plane 
waves in piezoelectric crystals and the solution to the general unbounded 
plate problem. 

II. Waves and Vibrations in Piezoelectric Media 
One hundred years ago, Elwin Christoffel (1877) gave a formalism for treat- 
ing acoustic plane wave propagation in arbitrarily anisotropic, linear media. 
Lawson (1941) extended it to include piezoelectricity, finding correct expres- 
sions for the three stiffened phase velocities. Subsequent applications of the 
theory to thickness vibrations of plates proved rigorous only for particular 
cases involving excitation of a single mode until Tiersten (1963) produced 
the exact solution that showed the three modes to be piezoelectrically 
coupled by the plate surfaces. The exact analysis also disclosed in retrospect 
that various quantities required for discussing plate vibrations, such as the 
correct piezoelectric coupling factor driving each mode, could be obtained 
easily without considering any boundaries. 

This section outlines the Christoffel method and its application to 
simple thickness modes of plates. In keeping with the convention seen in 
Fig. I, a right-handed orthogonal coordinate system is taken to undergo two 
successive rotations from the crystallographic axes Xi (= X, Y, 2): a first 
rotation about X, by angle cp, followed by a rotation about X’, by angle 0. 
Plane waves are then taken to propagate along Xl;, which will subsequently 
become the thickness axis of our plate. 

A. PLANE ACOUSTIC WAVES IN PIEZOELECTRIC CRYSTALS 

In the following a subscripted index preceded by a comma denotes 
differentiation with respect to the coordinate having that subscript, and 

. twice-repeated indices denote summation. A time harmonic dependence 
exp( +j~t) is assumed. The pertinent sets of equations, referred to the crys- 
tallographic axes Xi, that are to be solved consist of the stress equations of 

. motion 

~j, i = --~2Uj; (1) 
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the definition of mechanical strain 

Sk, = 4bk. 1 + L’1. kh (2)’ ’ 

the Maxwell divergence relation 

Di, i = 0; (3) 

the quasi-static electric field-potential equation 

E, = -cDmn; (4) 

and the linear piezoelectric constitutive relations characterizing the medium 

~j = cE~/ Sk, - e,,ij E,, (5) 

Di = ei,,S,, + ~7~ E, . (6) 

In these equations Tj, Uj, S,, , Di, and E, are the components of 
mechanical stress, displacement and strain, electric displacement and field, 
respectively; p and <D are the mass density and electric potential. The mater- 
ial parameters CiEjkl, enij, and & are the elastic stiffnesses at constant electric 
field, the piezoelectric stress constants, and the dielectric permittivities at 
constant strain. All indices have the range 1, 2, 3. 

Equations (2) and (4) are used in Eqs. (5) and (6) to eliminate S,, and 
E,. The resulting relations are substituted into Eqs. (1) and (3) to yield four * 
equations in the displacements Uj and the potential. These are referred to the 
direction of propagation X); by making use of the transformation 

X:l = ClijXj. (7) 

With the abbreviations [ for X; and ai for C12i the resulting equations 
reduce to 

(8) 

(9) 

rJ”k = C~klC(iCII 

=k = f?,,k[~,~, 

ES = ES (y.a 
i In 1 II’ 

Equations (8) and (9) yield 

Tjk uk. ii = - pW211j (13) 
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and an equation in the potential that integrates to 

In order that Eq. (13) be compatible with the wave equation 

CUj. (< + /lW2Uj = 0 (16) 

requires that 

(i+jk - iT8jk)Uk, & = 0. (17) 

The solution to the eigenvalue equation yields three real roots I;,, ordered 
according to the relations 

ca > Cb 2 cc, 
which determine the piezoelectrically stiffened phase velocities v,: 

(18) 

urn = (T,/py2. (19) 

Corresponding to the roots c,,, are the orthonormal eigenvectors 7, which 
determine the direction cosines of particle displacement for each mode m 
with respect to the crystal axes Xi. 

One may include the phenomenological effects of small loss by con- 
sidering the viscosity as the imaginary part of the elastic stiffness (Lamb and 
Richter, 1966): 

A 

Cijkl = c:kl +joqijkl* (20) 

As long as ollijkl < c,Ejk, one may avoid the complex eigenvalue problem and 
compute the effective viscosity for each mode as 

Ylm = Hjk?rnjTrnk (21) 

using the lossless eigenvectors ?/n, and the analog of Eq. (10) 

Hjk = ~ijkl"ixl* (24 

For quartz and other high purity dielectric crystals at room temperature, 
q,,,/& is typically lo- I4 set, so that Eq. (21) is an excellent approximation 
into the microwave region. 

Applications involving the use of crystal plates as acoustic transducers 
or as devices for beam steering require a knowledge of the direction of 
energy flux for an assumed direction of phase progression. The power flow 
associated with each mode m consists of two parts: a mechanical portion 
with components 

(23) 
and corresponding electrical portion 
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An asterisk denotes complex conjugation. A forward-traveling wave propa- 
gating in direction c produces a displacement field with components propor- 
tional to T,,,~. Straightforward substitution of this plane wave solution into 
the pertinent foregoing equations yields the following expressions for the 
time average power flows due to mode m: 

where 

Pi:) = P,u’(Eijkl7/mjClkY,,)/U, (no VI sum), (25) 

(no VI sum) (27) 

with 

eikl = eikl - s’k &$; . (28) 
The quantity P, is an arbitrary amplitude factor. From the sum of Eqs. (25) 
and (27) the power flow direction is easily obtained. 

B. SIMPLE THICKNESS MODES OF PLATES 

The simple thickness modes of plates are those for which all variations 
depend solely on the thickness coordinate-in our instance [. We take the 
plate to be traction-free and driven by potentials +QO on the surfaces 
<= +h.The se b oundary conditions lead to the vanishing of the transformed 
stresses at the surfaces 

~ij(rjkUk, i + ~j-Ce) = 0 at [=kh. (29) 

Together with the potential boundary condition, Eq. (29) determines the 
constants in Eq. (15) as 

.d = (00/12) 
iI 

1 - 1 ki tan XCm)/XCm) , 
In I 

ti = 0, 

(30) 

(31) 
where 

Xc”‘) = oh/E,,, (32) 

and 

k~ = (~mj~j)2/~m&f 

Transformation of Eq. (6) leads to 

(no m sum). (33) 
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With the help of Eq. (15) this reduces to 

D, = -&;d; (35) 
the current density is then just 

J, = -jdls = +jco@d. (36) 

For any patch of area A, the total current passing through the plate is AJ,, 
so the input admittance is obtained for this portion by taking the quotient of 
total current to applied voltage 2@,,. The static capacitance of the plate 
section is 

C, = c$Aj2h, 

and the input admittance is found to be (Yamada and Niizeki, 1970) 

(37) 

The k, are the piezoelectric coupling factors responsible for excitation 
of the modes m. They are defined in terms of effective piezoelectric constants 
e, such that comparison with Eq. (33) leads to the identification 

Therefore, the effective piezoeIectric constants and coupling factors are 
simply obtained from the solution for the infinite medium. In the presence of 
small loss, Eq. (38) is used with XC”‘) from Eq. (32) replaced by 

Xfrn) 2L X(“‘( 1 - jWqm/2C,). (40) 

III. Critical Plate Frequencies 

The piezoelectric plate vibrator has critical frequencies defined by the zeros 
and poles of the input admittance, Eq. (38). The zeros determine three 
harmonically related sequences of open-circuit antiresonance frequencies 
.fk’$). A4 is an odd intege r, the harmonic number, and N, = u,/2 is the 
frequency constant for mode m: 

j’;yA’ = MN,,/2h. (41) 

In the antiresonance case the three thickness modes uncouple from each 
other. The short-circuit resonance frequencies, obtained from the poles of 
the admittance, are coupled so that the frequencies cannot be ascribed to 
any mode, except in a loose manner of speaking. They are denoted& and 



122 Arthur Ballato 

found from the solution of 

Ck 
2 tan Xfm) 
m 

nl 
X(m) = lo 

where 

Pm) = bGwdS~A)- 

(44 

(43) 
Operation of the resonator in an air gap or in series with an external 

capacitor will have no effect upon the antiresonance frequencies; the reso- 
nance frequencies, however, will all be shifted to higher values. If the capaci- 
tance value inserted in series is CL, then the modified resonance frequencies 
are found from Eq. (42) using 

!t; = k;/(l + Co/C,). 

A. Two AND THREE MODES EXCITED 

Doubly rotated crystal plates generally will have all three k, finite; yet 
it is still possible in many instances to treat the resonance frequencies as if 
they were uncoupled. This will be addressed in Section III,B. Here we con- 
sider the situation where such a simplification is not justified, and the coup- 
ling must be taken into account. The three mode case follows the 
discussion for two modes, so we start with the two mode case. A practically 
important instance is the rotated-Y-cut family of cuts in crystal class 3~2, 
which includes lithium tantalate and lithium niobate, discussed in Section V. 

The interplay between two excited modes is seen in the dispersion 
diagram sketched in Fig. 2. The heavy lines trace branches of the solution of 
Eq. (42); plotted along the abscissa is the antiresonance frequency ratio 

p =f (21Alf \‘.l = v*/v1, (45) 
and the ordinate is normalized frequency 

Q =f/f\Q. (46) 
Bounds are readily established, as will be described below; these permit one 
to construct any portion of the spectrum rapidly, and from the construction 
to infer the behavior of the input admittance with driving frequency. 

Construction of the terrace plot for two coupled modes proceeds by 
first finding the lines corresponding to the antiresonances for both modes. 
For mode one, 

Q\“a = M (M = 1, 3, 5, . . .). (47) 
These are a sequence of horizontal lines in the diagram. For mode two, 

i22(2Nd = N/3 (N = 1, 3, 5, . . .), (48) 
giving lines of slope N. Next, Eq. (42) is solved twice: once with kl set to 
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2 

I 

FIG. 2. Dispersion diagram for a plate vibrator having two piezoelectrically excited 
modes. Normalized frequency R is plotted against /I, the ratio of fundamental antiresonance 
frequencies. Regions between succeeding resonances and antiresonances, for fixed fi, are 
crosshatched. 

zero, and then with k, = 0. (Single mode solutions are discussed by graphi- 
cal construction in Section III,B.) When k2 is zero, the solution yields for Qt:) 
a series of horizontal lines, each below the antiresonance line having the 
same M, but approaching successively closer to the Q\“,) lines with increas- 
ing M. With kr set to zero, the solution set consists of lines radiating from 
the origin. The line for Q \T has slope less than N, but approaching N for N 
large. 

The next stage in the construction consists in finding where the horizon- 
tal a\%) lines intersect the solutions of Eq. (42); this is easiiy shown to occur 
where the C2\%) lines cross radial lines of slope N, with N even. Similarly, the 
radial lines for Q$T cross the horizontal lines with A4 even at positions 
satisfying Eq. (42) also. Solutions of Eq. (42) for A4 even and N odd are 
marked in Fig. 2 as circles; those with A4 odd and N even are marked as 
triangles. 

What happens when one of the two tangent functions in Eq. (42) 
approaches a pole? In order to balance the equation, the other tangent must 
obviously also approach a pole in such a fashion as to cancel the effect. This 
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line of thought may be carried out to show that the resonance frequency loci 
in the coupled mode case pass through the intersections with M and N odd; 
these are shown as squares. 

Using the circles, triangles, and squares as a lattice of points through 
which the spectrum must pass, and with the horizontal and radial lines 
acting as boundaries, the solution branches to Eq. (42) may be found easily. 
In Fig. 2 the heavy solid lines have been drawn to show R, for relatively 
large coupling factors. The shaded areas are those for which the input reac- 
tance is positive; i.e., the resonator appears inductive. 

For a given crystal cut, the ratio /3 will be a fixed number, usually 
between 1 and 2. A vertical line on the diagram at this value immediately 
gives the mode spectrograph sequence of resonances, the pole-zero separa- 
tion of each resonance, and their location in frequency. In addition, one 
clearly sees how the resonances move with respect to each other when p is 
changed and how the separations are affected. 

When the full set of three k, is allowed, a thre,e-dimensional construc- 
tion is required, consisting of two p axes 

P2 =f a/f \‘A7 P3 =s Wf :2, (49) 

and the R axis of Eq. (46). The result consists of the same sequence of 
horizontal resonance and antiresonance lines in both p-Q planes as in Fig. 2. 
The radial resonance lines differ in each plane if k, # k,. A terraced set of 
surfaces then describes the compIete solution, the construction of which 
follows in general the procedure outlined here. 

B. SINGLE MODE EXCITED 

Equation (42) reduces to the single mode equation 

k2 tan X = X (50) 

when two k, vanish, as occurs for certain combinations of crystal symmetry 
and plate orientation. An example is the excitation of rotated-Y-cut mem- 
bers in crystal class 32, which includes the AT and BT cuts of quartz. In 
many instances Eq. (50) may be used as an adequate approximation to Eq. 
(42) even when two or three k, are nonzero. The conditions permitting the 
approximation may be seen for the two mode case from Fig. 2. In those 
regions of the diagram where the curves lie near the lines C&2) or QiN,), Eq. 
(50) may be used, including specifically the points marked by circles and 
triangles, where it is exact. As the coupling factors become smaller, the 
extent of the applicable regions increases, and conversely. Always to be 
avoided are the areas where, for N and M odd. 

, 
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these positions are those marked in Fig. 2 with squares. Here Eq. (50) 
cannot be used. 

A graphical solution to Eq. (50) is shown in Fig. 3. Intersections of the 
tangent function branches with a straight line of slope kW2 define the 
frequencies of resonance f i$); the poles of the tangent function correspond 
to the antiresonance frequencies f a%) The zero subscripts denote the . 

c 
FUNDAMENTAI 

(31 
fRO, 

1 THIRD HARMONIC 

/ 
-. (31 

fAO 

X- 

FIG. 3. Graphical solutions to the single mode frequency equations for resonance and 
antiresonance. The mass loaded case is distinguished by the subscript 11. 

absence of mass loading due to the electrode, which is considered in the next 
subsection. From the construction one sees that the solution consists of a 
progression of roots successively drawing closer to the harmonically related 
anti resonances. As the piezoelectric coupling factor k increases, the 
resonance-antiresonance separation increases at each harmonic. Using Eq. 
(38) the effective input capacitance of the resonator in the limit of zero 
frequency is 

(52) 
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Since the stored energy of a capacitor must be positive, the limiting value for 
the sum of the three ki is unity. If only one k, is finite, unity becomes its 
limiting value; such a value would reduceSi’d to zero frequency-a clearly 
unphysical result. Piezoelectric materials, however, are available today with 
coupling factors in excess of 70%, which means that the fundamental reso- 
nance frequency is depressed by the large coupling to values less than three- 
quarters of the antiresonance frequency. Because of the anharmonic ratios of 
the frequenciesfLy) arising from Eq. (50), it is more convenient to character- 
ize many of the plate properties in terms of the antiresonance frequencies 
f a$, and to use f $j as the basis of normalizations. 

C. EFFECTS OF MASS LOADING ON FREQUENCIES 

It is current practice to plate metallic electrodes directly on the major 
surfaces of thickness mode vibrators in order to apply the driving voltage. 
The electrode coating is assumed here to be devoid of elastic stiffness and to 
be negligibly thick so that it is represented as a lumped mass r~i per unit area 
on each plate surface. Replacing Eq. (29) is the stress boundary condition 

trjk %, 5 + Ejd) =TT 102~Uj at [= +_h. (53) 

Reduced mass loading is defined as 

P = mJph, (54) 

and in terms of this quantity Eq. (53) leads to a modification of Eq. (38) in 
the presence of electrode coatings: 

Y” =)wc~ 1-c 
il I( 

cl tan Xtrn)- 

m 1 - pX(“) tan Xfm) 1 Ii 
-x(m) * (55) 

As in the traction-free situation, the open-circuit frequencies are un- 
coupled, but now each is determined from the roots of 

pX’“’ tan Xfm) = 1, (56) 

so they are no longer harmonically related. The resonance frequencies, on 
the other hand, remain coupled and are found from 

cl( @I 
1 - pX(“) tan XCm) 1 I tan Xfm)’ 1 

m x(m) = * (57) 

The discussion of Fig. 2 can be extended to cover mass loading, with two or 
three km nonzero. Bounds are readily constructed from which the depressed 
spectra are obtained in the general case; we show here the effect on a single 
mode, which is applicable whenever the conditions of Section III,B hold. 
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For one’mode, Eq. (57) becomes 
tan X = X/(k* + pX*) (58) 

with associated graphical solution shown in Fig. 3. Roots of Eq. (58) are 
designated f i:); those of Eq. (56), f . a”,) In each case p has the effect of 
lowering the critical frequency; but for harmonics where X < k/p”*, the 
piezoelectric contribution to the lowering predominates and the resonance 
frequencies with and without p cluster while the antiresonance frequencies 
form a separate group. Mass-loading effects predominate for harmonics for 
which the inequality is reversed, with the mass-loaded frequencies occurring 
together and the unloaded frequencies forming a separate group. 

A more convenient measure of frequency shift due either to mass load- 
ing or piezoelectric coupling is frequency displacement, defined by Ballato 
and Lukaszek (1974) as 

6 = M - 2X/71. (59) 
In terms of antiresonance and resonance displacements, Eqs. (56) and (58) 
respectively become 

tan(Jr)n/2) = p(M - dy))n/2, (60) 
and 

tan(@%/2) = p(M - 6kM))n/2 + 2k2/n(M - JL”)). (61) 
Figure 4 shows how Sk”) varies with M and k as a function of p; for k = 0, 
Sk”) becomes Sr). 

The foregoing has considered some effects of mass loading on plate 
frequencies when both surfaces are equally loaded. A fact often overlooked 
in manufacturing is the influence of mass imbalances on the frequency spec- 
trum. When an imbalance exists, even harmonics become excited as well as 
those that are odd. Although the effect is usually small as far as the magni- 
tudes of the even resonances are concerned, nonlinear coupling via third 
order elastic constants can produce undesired activity dips at the operating 
resonance. In addition, the families of anharmonic overtones associated with 
each thickness mode by virtue of couplings to lateral modes in finite plates 
all couple to the even modes and their families. The result can be a very 
complex mode spectrum under the best of circumstances; but when doubly. 
rotated cuts are used with their attendant complexities due to lack of orien- 
tational symmetry, any further geometrical asymmetry such as electrode 
imbalance further worsens the spectrum and decreases the utility of these 
elements in oscillators and filters. 

D. APPROXIMATIONS FOR CRITICAL FREQUENCIES 

Apart from the antiresonances of traction-free plates, the critical 
frequencies are determined as roots of transcendental equations. Approxi- 
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PIEZOELECTRIC COUPLING, K PIEZOELECTRIC COUPLING, K 
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FIG. 4. Single mode frequency displacement versus mass loading for various piezoelectric 
coupling and harmonic values. Frequency displacement is a normalized measure of departure 
from antiresonance frequency with zero mass loading. 

mate solutions to these equations, adequate for most applications, take the 
form of simple algebraic functions. Some of these are given here. 

In the absence of mass loading, the resonance displacements are ap- 
proximated by 

S$ N 4k2/rc2M( 1 + 4k2/n2M2) 2 4k2/n2M. (62) 
The last form is accurate for all k when M > 1, and up to k = 3Oyt) when 
A4 = 1; the first form is within 1% at the fundamental up to k = 50%. 

With mass loading the displacements are found from 

with SL5) from Eq (62). Setting k = 0 in Eq. (62) produces the result for ~?a”) 
using Eq. (63). * 

Differences between resonance and antiresonance displacements are 
found to vary in p dependence according to whether A4 = 1 or not. The 
expressions for the approximations are 

S& - 82; z (2/4( 1 - (1 - k2)1’2)6kb)/[(2/x)( 1 - (1 - k2)1’2) + &j/C21 

(64) 
when A4 = 1, and for A4 > 1, 
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Operation of the vibrator with series load capacitance modifies the 
effective coupling factor as shown in Eq. (44). The modified value for k2 
introduced into Eqs. (62)-(65) produces the approximations pertinent to the 
use of S[$) and SL‘). 

IV. Static Frequency-Temperature Behavior 

One of the most important practical considerations for frequency control 
and selection is that of temperature behavior. The AT cut has maintained its 
dominant position among the thickness mode resonators for so many years 
mainly because of its superior characteristics in this regard. This section 
outlines how the temperature influence on the various critical frequencies is 
treated phenomenologically under the assumption that thermal changes 
take place slowly enough so that the vibrator is constant.ly at thermal equilib- 
rium. The static behavior is described for single and multiple modes along 
with associated approximations. 

A. FIRST ORDER TEMPERATURE COEFFICIENTS 

Bechmann (1956) expanded the static frequency-temperature function 
as a power series and found that three terms were normally sufficient for an 
adequate description of AT- and BT-cut quartz resonators. This formalism 
has subsequently been applied to general, doubly rotated cuts of quartz and 
to other materials with satisfactory results. 

If at reference temperature T, the critical frequency of interest isfO, the 
expansion is 

with 

7-y = [(ay/aT”)/rl! j&k 7‘, . (67) 
The higher order terms with 17 = 2 and 3 are dealt with in Section IV,B; here 
the linear term is considcrcd. As with the critical frequencies themselves, the 
temperature coefficients may bc coupled or uncoupled. Simplest of-all to 
describe are the first order temperature coefficients of the antiresonance 
frequencies. These are found by taking the logarithmic derivative of Eq. (41) 
with substitution of Eq. (19) to obtain 

(68) 
TI,” and T(h’) are obtained from the thermoelastic constants for the material, 
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while FL) requires differentiation of the cubic that arises from Eq. (17).’ 
Because the rjk involve the elastic, piezoelectric, and dielectric material 
constants plus the plate orientation angles, the expression for FL) is lengthy 
in general, but is nevertheless straightforward. In Eq. (68) the superscript 
relating to the harmonic (M) has been omitted; the antiresonance result is 
independent of M. 

Using Eq. (68), the locus of T(r,* - ‘) - 0 was mapped in detail by Bech- 
mann et al. (1962) for quartz, with the result shown in Fig. 5. The angles are 

9o” I I I I I 

60” AT FC IT 
3o"'- SC 

9 o- * LC 

- 
-300 BT---- J”-’ 
-60@ 

-_ -- cc 

-90°& ' I I I I 
IO0 2oa 3o" 

+ 

FIG. 5. Loci of zeros of first order temperature coefficient of antiresonance frequency in 
quartz. The angles are those shown in Fig. I. Solid lines denote the slower quasi-shear mode c; 
the dashed loop indicates the faster quasi-shear mode b. Locations of a number of useful cuts 
are shown. 

those described in connection with Fig. 1. In Fig. 5 the locations of the AT 
and BT cuts are seen to belong to different branches. Shown dashed is the 
zero temperature coefficient locus for the b mode, while the solid lines indi- 
cate the locus for the c mode. Also indicated are a number of additional cuts: 
the IT cut (Bottom and Ives, 1951); the RT cut (Bechmann, 1961); the LC 
cut (Hammond,and Benjaminson, 1965); the FC cut (Lagasse et al., 1972); 
and the SC cut (Holland, 1974; EerNisse, 1975). These cuts will be discussed 
more extensively in Section V,A in connection with properties of quartz. It is 
important to notice here that the presence of a continuous locus of zero 

i In defining the temperature derivative of the elastic constants, p, h, and C, are allowed to 
vary. However, more fundamental equations could have been derived in terms of reference 
(material) coordinates, and p and h would have been constant. The result would have been an 
equally valid, but numerically different, set of effective elastic constant temperature coefficients. 
In either case the temperature dependence of the effective elastic constants depends explicitly on 
temperature and strain, including the strain dependence on temperature. 

Very recently (Tiersten. 1975a), an analysis has been made using the third-order elastic 
stiffnesses; the portions of dependence of the effective elastic constants on the third-order 
stiffnesses and on the change in strain with temperature have been calculated. From these 
results the fundamental dependence of the effective elastic constants on temperature can be 
obtained (H. F. Tiersten, private communication, 1976). 

The alternate procedure, used here, was that followed by Bechmann rt al. (1962); the 
third-order elastic constants only became available at a later date (Thurston er al., 1966). 
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temperature coefficient orientations affords the possibility of locating a cut 
having some other optimal property simultaneously with good static ther- 
mal characteristics. 

Figure 5, plotted for the thickness modes, also furnishes the approxi- 
mate loci for other modes, e.g., contour modes (Baldwin and Bokovoy, 
1936), and surface acoustic wave (SAW) modes (Schulz et al., 1970). When 
c,,, and h are defined properly, Eq. (68) is just the negative of the temperature 
coefficient of delay employed in SAW analyses; to characterize these ele- 
ments requires the addition to Fig. 5 of a third axis representing propaga- 
tion angle so the zero locus is a surface in angle space. 

Resonance frequencies differ from the antiresonances in depending 
upon the coupling factor. For the single mode case, Onoe (1969) showed 
that the difference between the resonance and antiresonance temperature 
coefficients is proportional to the temperature coefficient of coupling: 

7-t” _ T’u= 7-4” - 
J-R J-A x - -Go Fkl), 

where 

Go = 2k2/(X2 + k2(k2 - l)), (70) 

and where X is the Mth root of Eq. (50). In the limit of small k, Eq. (70) 
becomes 

Go= 8k2/7r2M2. (71) 

This approximation is suitable for many quartz applications, and on the 
scale of Fig. 5 no sensible difference between Pii and PJ1l would be 
manifest. For high precision applications, as well as for high coupling mater- 
ials, Eq. (70) must be used since the difference in the temperature 
coefficients can be appreciable. An example is given in Section V,C. Equa- 
tions (69)-(70) contain the influence of harmonic on PJ1,/; the additional 
effect of mass loading has been given recently (Ballato, 1976). Insertion of a 
series load capacitor C, also shifts the temperature behavior, its influence 
acting like a shift to a higher harmonic with the exception that the harmonic 
shift is quantized. The load frequency temperature coefficient is 
approximately 

(72) 
When considering the multimode case, Eq. (42) must be differentiated 

to find the temperature coefficient of resonance frequency. The result is 

(73) 
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where 

B, = tan X(m)/X(m), A, = B, - sec2 Xc”), (74) 

and where Xcm) is a root of Eq. (42). 
Alternatively, one may find PiJ numerically by computing the effective 

values of the elastic, piezoelectric, and dielectric constants at two tempera- 
tures using their temperature coefficients in the analog of Eq. (66) and then 
finding& at those temperatures in the manner described earlier. From these 
values and the temperature interval, ?‘-$ii follows approximately from Eq. 

(60 

B. HIGHER ORDER TEMPERATURE COEFFICIENTS 

Expressions analogous to Eq. (68) for n = 2 and 3 were derived in 
Bechmann et al. (1962). These are more succinctly written as 

where 

for n = 1, (76) 

for n = 2, (77) 

I 7-p - T’j?’ - 7-y’ + +(Tyq3 for n = 3, (78) 

and where Y is fmA, cm, p, or h. Altitude charts for all three orders of the c 
mode in quartz are given in Hafner (1974). Only one orientation exists where 
7-“‘AA = 0 simultaneously for n = 2 and 3; this occurs for the c mode, and 
defines the LC cut (Hammond and Benjaminson, 1965). At this orientation 
the frequency-temperature curve is ultralinear and the cuts are well suited 
for thermometric application. 

The higher order temperature coefficients are listed in Table I for 
selected cuts along the upper zero locus of Fig. 5. The inflection temperature 
T, defined as the temperature for which the second derivative of Eq. (66) 
vanishes, is obtained from 

(79) 
it is seen from Table I to increase monotonically with angle cp. 
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TABLE I 

HIGHER ORDER TEMPERATURE COEFFI- 
CIENTS OF QUARTZ CUTS (MODE c) 

?I/‘,’ T’:,’ 
cut (10-9/K2) (lo- lZ/K3) 

AT 
5” v 
10” v 
13.9” v 
FC 
IT 
SC 
25” v 
30” v 

- 0.45 108.6 
- 1.77 104.7 
- 2.65 96.2 
- 4.37 85.6 
- 5.55 82.2 

- 10.1 68.4 
- 12.3 58.2 
- 13.8 47.4 
- 12.4 31.4 
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Resonance frequency temperature coefficients for the single mode case 
are determined from the relations 

with Tjf) from Eq. (69), and T’,2’ and T’!) determined approximately from 

for n = 2, 3. Go is given in Eq. (70); X and k are to be used for Y from Eqs. 
(77)-(78) in the expansions of Eq. (82). These equations and those corre- 
sponding for n = 1 relate TyA to r(;l and the associated coupling factor 
coefficients of different orders. Fyi is found from Eqs. (75)-(78) in the 
manner described for n = 1 following Eq. (68); Tf’ is obtained from differen- 
tiation of Eq. (33). 

Inclusion of mass-loading effects leads to modification of Eqs. (75) 
(79)-(82) and is treated in detail by Ballato and Lukaszek (1975). Exper- 
imental data relating ,u to changes in the higher order coefficients are pres- 
ently very scarce; T. J. Lukaszek (private communication, 1976) has found 
a lowering of T with p. 

The higher order coefficients for the resonance frequencies in the 
multimode case may be determined after the manner of Eq. (73), but the 
results are quite lengthy, and recourse to the numerical method is not to be 
discouraged. 
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V. Properties of Doubly Rotated Cuts 

This section is devoted to a compilation of data on doubly rotated cuts of 
four materials: quartz, aluminum phosphate, lithium tantalate, and lithium 
niobate. Quartz and aluminum phosphate are members of crystal class 32 
and have remarkably similar properties. Quartz is treated in considerable 
detail. Its position as perennial favorite for many frequency control applica- 
tions certainly merits an expanded account. However, the attention given 
this familiar material here is largely for a different reason: that a new, and 
hitherto unsuspected, but most desirable, property has recently come to 
light. It appears that certain doubly rotated orientations in quartz possess 
compensating combinations of nonlinear elastic properties that render the 
plate frequencies insensitive to mechanical and thermal shocks of various 
types. This fortunate circumstance can be expected to have widespread con- 
sequences for a number of high precision uses. Aluminum phosphate, like 
quartz, has a locus of zero temperature coefficient cuts-a property only 
recently determined (Chang and Barsch, 1976). It has an appealing potential 
for wider band resonator, filter, and SAW applications because it combines 
low loss with piezoelectric coupling factors about 2.5 times that of quartz. 

Lithium tantalate and lithium niobate are refractory oxides of crystal 
class 3~2. The tantalate possesses a locus of zero temperature cuts and 
moderate to large coupling values, making it suitable for wideband filter and 
transducer uses. Lithium niobate lacks cuts having zero temperature 
coefficients, but its large coupling coefficients commend it for a variety of 
transducer applications. 

Although they could not be included here, a number of additional types 
of materials deserve mention as potential candidates for future work. These 
include the tungsten bronze structures (crystal class 4mm) comprising the 
solid solutions consisting of mixtures of strontium barium niobate with 
barium lithium niobate; for various ratios these are likely to have good 
temperature behavior with sizeable piezoelectric coupling. A group of sulfo- 
salts appears to have promise as high coupling, low velocity, and zero tem- 
perature coefficient materials. Tl,VS,, in class 43m is representative 
(Weinert and Isaacs, 1975). These and other crystals from the 20 piezoelec- 
tric classes may be characterized as to their resonator properties by means of 
the theory outlined in previous sections. Compilations of measured crystal 
constants may be found in the Landolt-Bornstein tables (1966, 1969). 

A. QUARTZ 

In the first part of this section the linear properties of quartz pertinent 
to vibrators are discussed. The next portion considers those effects relying 
on nonlinear elastic behavior. Tradeoffs between doubly rotated quartz cuts 



5. Doubly Rotated Thickness Mode Plate Vibrators 135 

and the traditional AT cut are given in the last part of the section. All 
calculations were carried out using as input data the values given by Bech- 
mann (1951, 1958) and Bechmann et al. (1962) along with the temperature 
coefficients of permittivity from Landolt-Bornstein (1966). Alternative sets 
of constants such as those of Koga et al. (1958), McSkimin et al. (1965), or 
Zelenka and Lee (1971) produce results differing from those given here 
generally by only a small percentage, which is comparable to the error likely 
to be encountered in using the one-dimensional approximation. Additional 
results for this material are given in Section VI. An excellent resume of other 
aspects of quartz crystal resonators, their technoIogy, and applications is 
given by Hafner (1974) with further references to the literature. 

1. Linear Properties of Quartz Resonators 

A global view of the most important resonator quantities of interest is 
given in Fig. 6 for orientations (YXwl)cp/B, with CJI = 0”(6”)30” and - 90” I 
0 5 90”. The three modes are labeled in accordance with Eq. (18). Frequency 
constants IV,,, are obtained from halving the velocities in Eq. (19); coupling 
factors are found from Eq. (33); and Eq. (68) yields the antiresonance tem- 
perature coefficients. 

For cuts (YXw)q, lk,l rises nearly linearly from zero at cp = 0” to 
about 9% at CJI = 30”; Ik,l rises in a parabolic fashion from zero at CJI = 0” 
to a 7% maximum at cp E ll”, and falls parabolically to zero at CJI = 30”; 
1 k, I falls nearly linearly from about 13.5% at cp = 0” to zero at cp = 30”. All 
modes nearly coincide at 6.5% for cp = 18”. 

Because X, is a digonal symmetry axis in quartz, the elastic constants 
with indices 15, 16, 25, 26, 35, 36, 45, and 46 vanish along with the 
piezoelectric constants with indices 15, 16, 21, 22, 23, 24, 31, 32, 33, and 34. 
For rotated-Y-cut plates (YXI)0, the digonal axis is, moreover, contained 
in the plane of the plate, and this leads to zero cp derivatives of many 
quantities. These cuts are therefore less complicated than doubly rotated 
cuts. For example, only the pure shear mode is piezoelectrically driven. 
In the sequel we shall give values for various quantities and their angle 
derivatives for a number of doubly rotated cuts so that the effects of angle 
variations may be calculated from the relation 

4% 0) = &PO 3 00) + Pq/W((P - cpo) + @l/~we - Qo), (83) 

where q is any quantity. When q. = O”, one usually has to extend the expan- 
sion to second order. The most important instance of this is the expansion 
for the temperature coefficient of the AT-cut c mode: 

T’,Lb((p, 0) - F;;(O”, e,) II (- 5.1 x lo- 6/~, ce)(e - 6,) 

+ (- 9.0 x lo- g/K, (“(p)2)((JI)2. (84) 
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FIG. 6. Thickness mode properties of doubly rotated cuts of quartz. Frequency constants 
N are in kHz mm, coupling factors Ik 1 are in percent. and temperature coefficients 7’;: are in 
lo- 6/K. 
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FIG. 6-conrina~l 

Equations (83)-(84) are extremely useful for determining the influence of 
manufacturing deviations on yield and the tradeoff between angular errors. 

Figure 5 displays the loci of T’,!: = 0 for modes b and c. From Fig. 5 one 
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sees that the b- and c-mode curves touch at 40 = 0”. 0 2: -24”, correspond- 
ing to the point in Fig. 6 where N, = N,. Another point of degeneracy exists 
in quartz. It was found by Epstein (1973) and occurs at the point in Fig. 5 
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TAHLE 11 

FKEOUENCY CONSTANTS AND ANGLE GRADIENTS. QUARTZ CUTS (YXwl)cp/O > 0 u 

Crystal 

CU1 degrees kHz mm kHz mm/deg II kHz mm/deg cp 
- 

AT 0 35.25 3.504 1900 1661 3.60 6.9 1 2.09 0 0 0 

5 v 5 34.94 3497 1903 166X 3.X9 6.44 1.92 - 2.45 1.90 3.0’ 

to v 10 34.64 3471 1915 1690 4.34 5.59 1.x7 -4.X9 3.70 5.95 

13.9 v 13.90 34.40 3454 1931 1717 4.x 1 4.71 1x3 - 6.16 4.96 8.12 

FC 15 34.33 3446 1936 1726 4.96 4.45 1.80 - 7.2X 5.29 X.7 I 

IT 19.10 34.0x 341 I 1959 1766 5.59 3.56 1.51 -9.17 6.39 10.X 

SC 21.93 33.93 33x2 1977 1797 6.08 3.15 1.03 - 10.4 7.05 12.0 

25 V 25 33.72 3346 2000 1X36 6.67 3.05 0.06 - 11.7 7.76 13.1 

30 v 30 33.42 32x I 204 1 1905 7.76 4.36 -3.13 - 13.7 9. I4 13.9 

LC II.17 9.39 3 165 2140 1727 19.0 - 17.9 -7.15 - 6.07 17. I - 10.0 

a Tf’J = 0 for the c mode of these cuts 

where the h-mode loop intersects the c-mode line at cp 2 10.4“, 0 2 -26.6,. 
Near this point the power flow angles exhibit their maximum departures 
from the propagation direction (. 

The cuts selected for inclusion in the following tables are those having 
T\!,) = 0, plus the LC cut. Of greatest importance is the c-mode locus for 

Crystal 

Cl11 degrees kH7 mm k Hz mm:deg 0 kHz mm deg cp 

BT 0 - 49.20 30X9 2536 1xx4 - 10.2 - 3.x4 5.56 0 0 0 

5 - 46.56 3075 250x 1901 - 10.6 - 5.76 x.44 5.69 -6.32 -0.x9 

IO -3X.63 3032 2391 1990 - 11.X - 10.9 15.9 12.9 - 14.0 - 2.92 

5 --24.9X 2169 2296 2277 - 15.5 -6.66 15.2 12.1 - 10.x -3.x5 

IO -32.23 2950 2313 2107 -13.x - 13.1 20.5 15.4 - 16.3 -3.71 

12.5 - 33.33 3004 22X6 2075 - 12.6 - 13.6 19.5 16.1 - 17.0 - 4.63 

RT 15 - 34.50 3059 ‘260 2040 - Il.3 - 13.9 IX.2 16.1 - 17.0 - 5.46 

Il.5 - 35.78 3112 2236 2003 - 4.96 - 14.1 16.5 15.X - 16.6 -6.13 

20 - 36.79 3161 2209 1971 -X.7’ - 14.2 14.9 15.3 - 16.0 -6.76 

” T)‘: = 0 for the h mode of first three entries: for the c mode of remainder. 
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FIG. 7. Antiresonance frequency constants of the h and c modes in quartz along the 
AT-SC locus of Fig. 5. Mode separation declines from 14% at the AT cut to loo/, at the SC cut. 

8 > 0” which is adequately described by a straight line with equation 

8” = + 35.25” - (11/18O)(p”. (85) 
Its importance derives from the nonlinear behavior discussed in Section 
V,A,2. Figure 7 shows, for the b and c modes, the antiresonance frequency 
constants along this locus. Tables II and III list N, and their angle gradients 
for 8 2 O”, respectively. Tables IV and V similarly pertain to /km I, with 
Fig. 8 showing plots of the coupling factors on the upper zero temperature 
coefficient locus. 

IO 
?/id 

I I I I 

FIG. 8. Piezoelectric coupling factors along the AT-SC locus of Fig. 5. At the SC cut, the 
h and c mode excitations are approximately equal. 
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TABLE IV 

COUPLING FACTORS AND THEIR ANGLI: GRADIENTS. QUARTZ CUTS (YXwl)cp/O > 0 ” 

141 

Crystal 

cut 

9 0 

degrees 

AT 0 35.25 0 0 8.80 

5 v 5 34.94 0.80 1.29 X.63 

10 V 10 34.64 I .60 2.53 7.97 

13.9 v 13.90 34.40 2.20 3.39 7.16 

FC 15 34.33 2.37 3.61 6.X9 

IT 19.10 34.08 2.96 4.33 5.79 

SC 21.93 33.93 3.33 4.71 4.99 

25 V 25 33.72 3.71 5.05 4.1 I 

30 v 30 33.42 4.23 5.43 2.87 

LC 11.17 9.39 3.2 I 7.64 9.2 I 

0 

- 0.24 

- 0.47 

-0.65 

- 0.69 

-0.87 

- 0.98 

- 1.10 

- 1.28 

- 0.67 

0 
- 1.28 

- 2.45 

-3.13 

- 3.27 

- 3.69 

-3.x 1 

- 3.8 1 

- 3.56 

0.03 

- 2.97 

- 2.69 

- 1.88 

- 0.93 

-0.61 

0.72 

1.75 

3.01 

5.19 

- 0.45 

1.57 2.57 

1.59 2.50 

1.54 2.21 

1.47 1.x7 

1.44 1.76 

1.33 1.30 

1.23 0.98 

1.09 0.70 

0.82 0.39 

0.28 1.15 

0 

- 1.00 

- 1.90 

- 2.42 

- 2.53 

-2.78 

-2.7X 

- 2.58 

- 1.73 

- 4.63 

’ FtJ = 0 for the c mode of these cuts. 

TABLE V 

COUPLING FACTORS AKD THEIR ANGLE GRADIENTS. QUARTZ CUTS (YXwl)cp/O < 0 u 

cut degrees percent IO- “:deg cp 

BT 0 - 49.20 0 5.62 0 0 1.95 0 2.34 0 1.1 I 

5 - 46.56 1.16 5.96 0.64 0.71 1.85 0.20 2.08 -0.68 1.27 

10 -3X.63 3.02 6.73 I .49 1.36 1.4x 0.15 1.78 - 1.53 1.43 

5 -24.9x 3.24 X.67 4.42 1.08 -31.2 63. I 5.1 I - 13.0 20.7 

IO - 32.23 3.93 7.63 1.49 I .49 1.32 -0.16 2.07 - 1.89 1.17 

12.5 - 33.33 4.19 7.03 1.x0 1.54 1.27 - 0.40 1.35 - 1.77 1.06 

RT I.5 - 34.50 3.27 6.46 2.12 1.55 1.26 - 0.54 0.x2 - 1.63 1.03 

17.5 -35.7x 3.23 5.90 2 35 1.52 1.27 - 0.53 0.42 - 1.50 1.07 

70 - 36.70 4.14 5.41 2.77 I.43 I .30 - 0.49 0. 12 - I.39 1.10 

The temperature cocfficicnts ofantircsonancc frequency and their angle 
gradients for the selected cuts are given in Tables VI and VII. Corresponding 
entries for the coupling tcmperaturc coefficients appear in Tables VIII’and 
IX. Use of the r’,iz’ values in Eq. (69) discloses that along the locus expressed 
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by Eq. (85), Fd’ for mode c remains nearly constant at -0.25 x 10e6/K for 
cp < 18” and then nearly linearly increases to -0.15 x lo- 6/K at p = 30”. 

Associated with the solution to Eq. (17) are the piezoelectrically 

TABLE VI 

ANTIRESONANCE FREQUENCY TEMPERATURE COEFFICIENTS AI\;D THEIR ANGLE GRADIENTS. 

QUARTZ CUTS (YXwl)cp:O > 0 ’ 

cp 0 V(u) v-(h) V(c) 
?7-f(a) i7-f(h) iTf‘(c) ?7y(a) c’7y(h) ?7-f(c) -- 

(‘0 C’U it) CYp ?cp icp 
Crystal 

cut degrees IO- 6/K 10m6/K deg 0 10e6/K deg cp 

AT 0 35.25 - 48.9 -31.3 0 - 0.86 
5- v  5 34.94 - 48.8 -31.3 0 -0.87 
IO- v  10 34.64 - 49.2 - 30.6 0 -0.87 
13.9” v  13.90 34.40 - 49.8 -29.5 0 -0.87 
FC 15 34.33 - 50.1 - 29.1 0 -0.87 
IT 19.10 34.08 -51.2 - 27.5 0 -0.87 
SC 2 1.93 33.93 - 52.1 - 26.2 0 -0.88 
25” v  25 33.72 - 53.5 -24.7 0 -0.88 
30: v  30 33.42 - 56.3 -21.5 0 -0.88 
LC II.17 9.39 -26.1 - 39.7 39.8 - 0.93 

1.54 - 5.08 
1.52 - 4.99 
1.40 -4.71 
1.26 -4.41 
1.21 - 4.32 
1.07 - 3.98 
1.02 - 3.78 
1.05 - 3.65 
1.45 - 3.80 
0.55 0.34 

0 
- 0.09 
-0.18 
-0.25 
-0.28 
-0.37 
- 0.44 
-0.53 
-0.71 
-0.19 

0 0 
0.16 -0.10 
0.31 -0.18 
0.41 -0.21 
0.43 -0.21 
0.50 - 0.20 
0.54 -0.18 
0.60 -0.15 
0.85 - 0.22 
2.58 - 2.28 

(1 r/(m) stands for r/: (mode m). 

TABLE VII 

ANTJRESONANCE FREYUENCY TEMPERATURE COEFFICIENTS AND THEIR ANGLE GRADIENTS. Q~JARTZ 

CUTS (Yxw!)Cp/~~ < 0“ ’ 

cp 0 V(a) U(h) 
i’Tf‘(a) n-f(h) Cry(c) c’rf(a) n-j‘(h) ?rJ(c) 

V(c) - -- 
CYl iv tYl icp &p c’cp 

Crystal 

cut degrees 10-6/K 10e6/K deg 0 lO-?K deg cp 

BT 0 - 49.20 - 95.6 0 
5 - 46.56 -94.5 0 

10 - 38.63 - 86.6 0 
5 -24.9x -91.4 39.7 

10 - 32.23 - 83.4 II.7 
12.5 - 33.33 - 78.5 4.52 

‘RT 15 - 34.50 - 74.6 - 1.49 
17.5 - 35.78 -71.7 - 6.47 
20 - 36.79 - 69.2 - 10.4 

- 30.9 -0.74 2.06 2.84 0 0 0 
- 24.0 - 0.46 1.82 2.6 1 1.09 - 1.05 -0.10 

- 7.71 0.35 1.18 1.57 2.06 - 2.02 - 0.05 
0 1.49 -8.31 8.37 3.19 - 4.8 1 1.77 
0 0.69 1.06 0.55 2.48 -2.65 0.28 
0 0.74 0.78 0.96 2.07 -2.28 0.32 

0 0.76 0.56 1.37 1.71 - 1.92 0.32 
0 0.76 0.41 1.75 1.42 - 1.58 0.25 
0 0.76 0.29 2.09 1.19 - I.31 0.19 

a T!(m) stands for Fj/‘: (mode m). 
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TABLE VIII 

TEMPERATURE COEFFICIENTS OF COUPLING AND THEIR ANGLE GRADIENTS. QUARTZ CUTS 
(YXwl)cp/O > 0”” 

degrees lo-hlK 10-“/K deg 0 IO-‘/K deg cp 

AT 0 35.25 - 
5.’ v  5 34.94 - 192 
10” v  10 34.64 - 192 
13.9 v  13.90 34.40 - 191 
FC 15 34.33 - 191 
IT 19.10 34.08 - 191 
SC 21.93 33.93 - 191 
25” v  25 33.72 - 191 
30” v  30 33.42 - 190 
LC 11.17 9.39 - 157 

88.2 - 
- 183 89.1 - 1.81 
- lR4 104 - 1.81 
- 188 127 - 1.83 
- 190 136 - 1.84 
-200 181 - 1.87 
-210 224 - 1.90 
- 225 290 - 1.94 
- 262 428 -2.01 

-93.9 - 138 -0.87 

-27.5 
-27.9 
- 28.8 
- 29.2 
-31.5 
- 33.7 
- 36.9 
- 42.9 

3.14 

16.0 0 
15.9 0 
14.0 - 0.04 
10.9 - 0.05 
9.58 - 0.05 
1.39 - 0.06 

- 9.60 - 0.05 
- 32.6 - 0.04 
- 12.0 -0.01 

7.85 0.17 

0 
- 1.17 
-7 33 -._ . 
- 3.34 
- 3.65 
- 5.04 
- 6.25 
- 8.01 

- 11.8 
- 2.8 1 

0 

2.45 
5.34 
8.22 
9.19 

13.6 
17.5 
22. I 
21.1 

5.89 

’ 7’,‘: = 0 for the c mode of these cuts. 

stiffened eigenvectors Y, which determine the directions of particle displace- 
ment and enter the expressions for power flow, effective coupling constant, 
etc. For rotated Y cuts, the driven mode is uncoupled and has motion 
strictly along the digonal axis X,. In general, the doubly rotated cut has 
particle motion out of the plane of the plate with consequent increased > 
coupling to mounting supports and to the compressional mode in the am- 
bient fluid. Both of these,mechanisms will lead to increased loss. In order to 
show the displacements belonging to each mode in a simple and symmetrical 
fashion, we adopt the following conventions defining the displacement 
angles ~pl;“) and Oi*) with respect to the plate (Xy) axes: 

For mode u, which is predominantly thickness extensional, the displace- 
ment direction is that corresponding to Xi when it undergoes the rotations 

For mode b, the fast quasi-thickness-shear mode, the displacement di- 
rection is that corresponding to Xl; when it undergoes the rotations 

(87) 
For mode c, the slow quasi-thickness-she&- mode, the displacement 

direction is that corresponding to X;l when it undergoes the rotations 

(x’; x ‘; w I)cp’,“/Olf’. 
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TEMPERATURE COEFFICIENTS OF COUPLING AND THEIR ANGLE GRADIENTS. QLARTZ CUTS 
(YXwl)cp/U < 0” D 

Crystal 
cut degrees 10m6/K 10-‘/K deg 0 10m6)K deg cp 

BT 0 -49.20 - -444 - 5.57 - 0 0 0 
5 -46.56 -218 -433 189 3.40 5.26 - 13.8 - 0.4 1 - 1.26 0.91 

10 -38.63 - 197 -402 115 2.81 ‘4.91 - 7.25 -0.84 -2.33 3.2 1 
5 -24.98 -152 -354 -249 2.35 - 7.45 -9.00 -2.42 -7.14 -21.2 

10 -32.23 - 180 -372 84.0 2.58 4.63 - 2.26 - 1.27 ‘- 1.23 11.2 
12.5 -33.33 -185 -381 112 2.48 5.50 4.14 -0.84 - 1.71 12.3 

RT 15 -34.50 - 190 - 393 136 2.42 6.69 7.75 -0.50 - 1.95 11.X 
17.5 - 35.78 - 194 -407 153 2.39 8.07 7.96 - 0.26 - 2.09 IO. 1 
20 -36.79 - 196 -421 168 2.36 9.92 7.79 - 0.09 - 1.86 8.61 

’ Fji = 0 for the h mode of first three entries; for the c mode of remainder. 

Aside from symmetry, this choice of definitions for c&” and Ot;“) has the 
advantage of showing deviations from pure mode displacements for which 
both angles vanish. Figure 9 displays ) ~11”) 1 as solid lines for all modes and 
1 QLrn) 1 as dashed lines along the locus of Eq. (85). The AT cut (cp = 0”) c 
mode is pure, with the a and b modes coupled. As cp increases, the out-of- 
plane displacements for the desired c mode increase appreciably. Tables X 
and XI provide displacement angles for the selected cuts. 

0” 6” 12” 18” 24” 30” 
cp 

FIG. 9. Angles or particle displacement for quartz plates along the AT-SC IOCUS of Fig. 5. 
Solid lines are for ) cpLrn’ 1, and dashed for 1 Ol;“’ ( 
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TABLE X 

PARTICLE DISPLACEMENT ANGLES AND MOTIONAL TIME CONSTANTS. QUARTZ CUTS 
(YXwl)fp/O > 0” a 

Crystal 
cut 

cp 0 ICI I4c’l Id-‘I IV1 IV1 IQ-1 Tw , $b) k *Id 1 

degrees degrees degrees femtoseconds 

AT 0 35.25 0 3.56 0 3.56 0 0 10.2 6.71 11.8 
5” v  5 34.94 3.04 3.78 1.46 3.87 1.66 3.14 10.3 6.73 11.8 
10” v  IO 34.64 6.05 4.04 2.84 4.36 3.27 6.26 10.3 6.69 11.8 
13.9’ v  13.90 34.40 X.36 4.23 4.12 4.88 4.76 8.69 10.4 6.62 11.8 
FC 15 34.33 9.00 4.28 4.55 5.05 5.24 9.37 10.4 6.59 11.8 
IT 19.10 34.08 Il.3 4.37 6.60 5.76 7.49 11.9 10.5 6.46 11.8 
SC 21.93 33.93 12.9 4.2X X.57 6.3 1 9.57 13.7 10.5 6.35 11.7 
25” V 25 33.72 14.5 3.95 11.5 7.01 12.6 15.6 10.6 6.2 1 11.7 
30” v  30 33.42 16.9 2.38 19.3 8.29 20.0 18.6 10.8 5.97 11.6 
LC 11.17 9.39 6.33 23.6 27.9 20.4 27.5 4.40 11.6 9.70 10.8 

’ Fii = 0 for the c mode of these cuts. 

TABLE XI 

PARTICLE DISPLACEMENT ANGLES AND MOTIONAI. TIME CONSTANTS. QUARTZ CUTS 

(YXwl)cp/ll < 0” * 

v  11 
Crystal 

cut degrees 

BT 0 - 49.20 
5 - 46.56 

10 -3X.63 
5 -24.9X 

10 - 32.23 
12.5 - 33.33 

degrees 

0 90.0 
‘7.51 21.7 24.0 
15.9 24.7 17.2 
12.9 6.7X 13.0 
1x.1 25.5 16.4 
19.3 29.x 12.2 

11.X 90.0 
12.5 80.6 
14.0 70. I 
17.X 69.2 
16.2 6X.2 
14.6 64.6 

10%) I 

degrees 

T(bl 1 

femtoseconds 

11.8 11.8 4.89 8.6X 
13.3 Il.9 5.06 8.X I 
17.6 12.1 5.x4 9.06 
13.9 15.2 7.27 6.36 
20.5 12.7 6.37 x.x3 
20.3 12.3 6.46 9.13 

RT 15 - 34.50 19.x 25.5 x.02 13.0 61.2 19.9 11.X 6.44 9.4 1 
17.5 -35.7X 19.7 22.0 3.9x Il.4 58.0 19.3 11.5 6.42 9.68 
20 - 36.79 19.3 1x.7 0.17 9.97 54.7 1x.7 11.2 6.34 9.92 

’ 7’,‘, = 0 for the h mode of first three entries: for the c mode of remainder, 

Also given in Tables X and XI are the motional time constants 

r:“’ = t&k”, , (89 

where Q,, and c,,,, are obtained from Eqs. (2 1) and ( 17), respectively. Viscosity 
values of Lamb and Richter (1966) for room temperature have been used for 
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the calculations. The time constant is related to the resonator quality factor 
Q,,, by the relation 

Q,,, = I/W, r\“‘), (90) 

with o0 the nominal angular frequency of the mode; the relation of T\"') to 
the parameters of the equivalent electrical network will be discussed in 
Section VIA. The loss represented by q,,, in Eq. (89) pertains solely to the 
bulk wave attenuation due to the crystal viscosity, and Eq. (90) hence gives 
the intrinsic Q for each mode. To this will be added any’ other loss mecha- 
nisms such as that due to mounting of the plate and mode conversion losses 
due to surface features. The frequency-temperature curves along the c mode 
locus of Eq. (85) may be constructed using the data of Tables I and VI plus 
Eq. (83). This is done in Fig. 10 for the case of the SC cut. From the graph it 

Af 
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-'25 
I I l/d 

'20' 45 
I I I I I 

70 95 120 145 170 195 

T in degrees Celsius 

FIG. 10. Frequency-temperature characteristics for SC-cut quartz, as a function of 
variations in angle 0. The lower turning point is convenient for oven-controlled applications, 
and is flatter than the corresponding AT cut at its upper turning point. 

is apparent that this cut should be excellent for oven-controlled applications 
due to its high inflection temperature of 95.4”C; comparison with the corre- 
sponding AT-cut curves discloses that the SC cut is flatter than the AT cut 
and less sensitive to changes in 0. 

2. Nonlinear Effects in Quartz Resonators 

A brief and qualitative account is given in this section of a number of 
effects whose explanations lie in the area of nonlinear elasticity (Thurston, 
1964). Some of the effects are small in magnitude; but for high and even 
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medium precision quartz resonators, all constitute nonnegligible error 
budget entries. Although they are interrelated, the effects are grouped, for 
convenience, in four categories: 

(a) initial stress and acceleration, 
(b) nonlinear resonance and intermodulation, 
(c) nonlinear mode coupling, 
(d) dynamic thermal and film stress. 

Recent theoretical predictions by Holland (1974) and EerNisse (1975) 
of doubly rotated quartz cuts exhibiting greatly reduced category d effects, 
followed by experimental confirmation (Kusters, 1976), will very probably 
have far-reaching consequences in opening up for detailed exploration and 
use multiply rotated cuts of quartz and other materials. Because the nonlin- 
ear effects listed above are related, one may minimize one effect by a choice 
of <p and 0 and expect that, by comparison to the standard AT cut, at least 
some of the other effects would simultaneously be reduced in size. Most 
applications will dictate a zero temperature coefficient requirement, so that 
the choice of angles follows the curves of Fig. 5. Experimental considera- 
tions indicate that the region of greatest interest is the c-mode locus for 
0 > 0” containing the FC, IT, and SC cuts, and along this locus is where we 
concentrate our attention. It is entirely possible that a second SC cut exists 
on the 0 < 0” locus as well, along with an analogous SAW mode cut. 

a. initial stress and acceleration efficts. In-plane diametric forces 
applied to the periphery of vibrating plates produce frequency changes that 
depend upon the azimuth angle $ in the plane of the plate. If $ is measured 
from the Xy axis, then it is found experimentally (Gerber and Miles, 1961) 
that for the AT cut the effect is zero at $ values of 60” and 120”. For the IT 
cut at cp = 19.1”, Ballato (1960) found the zeros to occur at $ = 85” and 163” 
with a maximum value only one-third that of the AT cut. This points to a 
reduced coefficient at the SC cut as well. Calculations for rotated Y cuts (Lee 
and Haines, 1974; Lee et al., 1975) show excellent agreement with 
experiment. 

Plate resonators subjected to acceleration fields experience distributed 
body forces in place of the concentrated edge loadings discussed above, but 
the effect is similar. Frequency shifts are comparable in both cases (order 
10m9), and a factor ten improvement is needed in applications involving 
operation in shock and vibration environments. Work in this.area has been 
carried out by Valdois et al. (1974) as well as by Lee and Wu (1976) with 
encouraging results. 

b. Nonlinear resonance and intermodulation effects. The nonlinear 
resonance, or amplitude-frequency effect (Hammond et al., 1963) pertains to 
the shape of the resonance amplitude versus frequency curve. Resonance 
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curves for linear systems with small loss will be symmetric; with nonlineari- 
ties present, the curve is distorted by leaning toward higher or lower 
frequencies. The AT cut leans toward higher frequencies, its effective stiffness 
increasing with drive level, while the BT cut behaves in opposite fashion as a 
soft spring. Indirect evidence indicates that the curve becomes symmetric in 
the region between the FC and SC cuts, with a compensation of the nonlin- 
earities taking place.2 Figure 11 represents a typical surface for a hard 

FIG. 11. Pleated surface depicting the frequency (j’), input power (P), amplitude (A ) 
behavior of a nonlinear resonator with hard spring. AT cuts are representative; around the SC 
cut the pleat disappears until much higher power levels are reached. 

spring, with amplitude 1 A 1 plotted as function of resonator frequencyfand 
input power level P. Beyond a certain power level (normally in the micro- 
watt range) the amplitude-frequency curve becomes distinctly asymmetric; at 
still higher levels it ceases to become a single-valued function of frequency. 
Advances in characterizing this important effect have been made by Gag- 
nepain (1972). Tiersten (1976) has made a very accurate analysis of the 
problem. 

Closely related to the nonlinear resonance phenomenon is that of inter- 
modulation, where energy supplied to a resonator at one frequency “spills 
over” and appears at another frequency. This cross talk occurs with both 
discrete resonator and monolithic filter (Spencer, 1972) structures. It is im- 
portant in front-end filters and in adjacent channel filtering with transmit- 
ters proximate to receivers, The effect appears due to nonlinearities 

’ This has been experimentally confirmed in cuts of orientation cp = 21.93 , (1 = + 34.11 . 
The resonators were planoconvex, of I-dioptcr contour, and diameter 15 mm. They operated at 
10 MHz, third harmonic. The lower turning points occurred at 72 + 4-C (J. A. Kusters. private 
communication, 1976). 
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associated with the bulk material as well as to surface features such as 
microcracks and microtwinning (Smythe, 1974; Tiersten, 197Sb). 

c. Nonlinear mode colrpliny ejfects. Anomalies in the frequency or 
admittance temperature characteristic of a resonator are called “ activity 
dips ” or “ bandbreaks.” They are generally conceded to be caused by var- 
ious combinations of different modal frequencies coming into coincidence at 
particular temperatures because of differing temperature coefficients. The 
presence of activity dips is a persistent problem and necessitates a good deal 
of costly testing for medium and high precision resonator units. Doubly 
rotated cuts generally could be expected to have even more problems in this 
regard than AT cuts since they exhibit less symmetry and have, therefore, a 
more complicated mode spectrum when lateral boundaries are taken into 
account. 

The modal interference that takes place may be linear or nonlinear. If 
the impressed voltage can drive the desired thickness mode and at the same 
time drive a harmonic of a flexural mode, e.g., then the vibrator admittance 
will reflect this fact as the linear superposition of the separate modal admit- 
tances. With temperature changes it is possible for the two resonance 
frequencies to cross and produce an anomaly. Linear activity dips have been 
described by Wood and Seed (1967) and by Fukuyo et al. (1967). 

Nonlinear activity dips are less well understood and perhaps more 
important. Wood and Seed (1967) found the AT-cut fundamental thickness 
shear frequency to be affected by interfering modes at twice its frequency; 
Franx (1967) observed the same type of coupling due to a mode at three 
times the fundamental. Birch and Weston (1976) investigated both cases. 
Koga (1969) found the twenty-first harmonic of contour extension interfer- 
ing nonlinearly with the thickness shear fundamental. Similar results were 
obtained by Fukuyo et al. (1967) who succeeded in measuring the tempera- 
ture coefficients of a spectrum of interfering modes. In all cases the sensitivity 
of mode coupling to power levels is a characteristic of the nonlinearity. Hafner 
(1956) found that the anomalies encountered at the fifth and seventh har- 
monics were nonlinear in nature and depended on the electrode film as well 
as the quartz. This finding correlates with certain film stress results to be 
described in category d. 

d. Dynamic thu-ma/ u~cl Jilrlr stress c$ixt.s. Section IV discussed static 
frequency-temperature resonator characteristics; here transient thermal 
effects are reviewed. If an AT cut at thermal equilibrium experiences a small 
but abrupt temperature rise, the resonance frequency exhibits a sharp nega- 
tive spike (order 10-‘/K) followed by an asymptotic approach to its new 
equilibrium value (Warner, 1963). The BT cut behaves in opposite fashion. 
This dynamic thermal effect has been ascribed to thermal gradients, and 
explained on this basis by Holland (1974). He also disclosed (Holland, 1974, 
1976) that the effect could be greatly reduced at the TS cut (thermal shock) 
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of orientation (YXwl)cp E 22.8’/6 1: 34.3”. The prediction was quickly 
verified (Kusters, 1976; Kusters and Leach, 1977) with the experimental 
TTC cut (thermal transient compensated) having angles cp = 21.93”, 
0 = 33.93”. For crystals of this orientation, the thermal transient effect for 
the c mode is reduced by a factor of more than one hundred, leading to 
promising applications for both fast warm-up oscillators and high precision 
frequency standards. It appears also possible that low cost temperature 
control could be provided for lower precision units by placing heating ele- 
ments directly on the quartz surfaces. 

The first actual disclosure of orientation angles for a doubly rotated cut 
having planar stress compensation was made by EerNisse (1975). This cut, 
designated the SC cut (stress compensated) is located at (YXwl)q 2 
22.4”/8 1: 34.3”. The resonance frequencies of plates of this orientation are 
free from third-order elastic constant effects of mechanical stress bias, as 
would be caused by electrode films on the plate surfaces. It is no accident 
that the TS- and SC-cut orientations nearly coincide. Although the rationale 
in each case is different, the formulations are practically identical; they differ 
only in that electrode stresses are isotropic, whereas thermal stresses are not. 
Both problems are one-dimensional. Because “stress compensated” is a 
more general phrase, we choose to use it indifferently for the general family 
of cuts TS/TTC/SC in the neighborhood of which one or more planar stress 
effects are minimized. The acceleration problem mentioned in a is one- 
dimensional, and could also reasonably be expected to be improved for SC 
cuts. The influence of mechanical stress bias caused by eIectrode films may 
be seen from the experiments of Warner and may be related to Hafner’s 
(1956) discovery of their role in causing activity dips. Warner (1963) in- 
vestigated frequency transients caused by sudden temperature changes 
applied to resonators plated conventionally as well as to resonators plated 
for lateral field excitation. In the latter units the frequency spike was drast- 
ically reduced, probably because the most active central area of the resona- 
tor was devoid of plating, as is necessary for lateral field excitation. These 
results are discussed by Gerber and Sykes (1974). Another example of film 
stress bias is demonstrated by the experiments of Filler and Vig (1976), who 
used patches of electrobonded nickel applied diametrically at the periphery 
of circular AT-cut resonators to study the azimuthal dependence. Their 
results are similar to the azimuthal behavior found for the edge force effect, 
with frequency change replaced by apparent orientation angle shift. 

The problem of aging, or long-term frequency drift, depends upon a 
number of causative factors, and electrode stress must be included among 
them. As electrode films relax slowly in time, the resonator frequency will 
similarly change, unless the cut is stress-compensated. Fortunately, for the 
SC cuts, the locus of zero stress sensitivity is nearly perpendicular to the 



5. Doubly Rotated Thickness Mode Plate Vibrators 151 

locus of zero temperature coefficient, so these may be adjusted virtually 
independently (EerNisse, 1976). The static frequency-temperature behavior 
of these cuts has been presented in Fig. 10. It is adjusted by slight changes in 
8; the stress coefficient is altered by changes in q. 

3. Summary of Advantages and Disadvantages of Doubly Rotated Quartz Cuts 

We conclude the discussion of quartz resonators by summarizing the 
current status of pros and cons of doubly rotated resonators with orienta- 
tions on the 0 > 0” branch of the zero temperature coefficient locus. In all 
cases the comparison is with respect to an AT cut having the same frequency 
and electrode area. The doubly rotated cut in question usually lies in the 
neighborhood of the SC cut, although in some instances the data at present 
are too fragmentary to permit more than an indication of the orientation of 
optimal behavior. 

Advantages 

Lessened edgeforce sensitivity. The IT cut has about one-third the mag- 
nitude of the AT cut. This is of importance in shock and vibration 
environments. 

Reduced acceleration sensitivity. One order of magnitude improvement 
is presently needed. 

Improved amplitude-frequency behavior. This is of importance for high 
precision oscillators. 

Lessened intermodulation effects. This is required for filters. 
Fewer activity dips. Nonlinear elastic constants are compensated, reduc- 

ing mode couplings. 
Greatly improved transient frequency-temperature behavior. Two or 

three orders of magnitude improvement is found. This is important for fast 
warm-up oscillators. 

Greatly improved planar stress behavior. Electrode film relaxation is a 
long-term aging factor that would be virtually eliminated. It is probable that 
current low aging crystals achieve their low aging behavior due to compen- 
sating aging processes. An SC cut fabricated using standard AT-cut cleaning 
procedures would probably show higher aging because the film component 
would be absent (J. R. Vig, private communication, 1976). Ultraclean 
procedures would nearly eliminate the contamination process and would 
lead the way to ultralow aging units. 

Improved staticfrequency-temperature behavior. Inflection temperature 
is increased; frequency deviation is decreased. For high precision oven- 
controlled applications, operation at the inflection temperature or at the 
lower turning point is more stable than at the AT-cut upper turning point. 

Thicker, less fragile plates; slightly improved quality factors. 
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Increased capacitance ratio. (See Section VI.) High precision applica- 
tions call for reducing the influence of external circuitry to a minimum to 
maintain a good noise figure. Data on FC cuts indicate improvements in 
phase noise. 

Disadvantages 

More complex unwanted mode spectra. Additional contouring or bevel- 
ling restraints are imposed; suitability for filter use is potentially impaired. 

Proximity and strength of b mode. At the SC cut the undesired b mode is 
nearly of equal strength with the useful c mode, and about 10% above it in 
frequency. Additional circuitry is required to suppress the b mode in some 
applications; in others, proper contouring reduces its strength adequately. 

Larger out-of-plane displacements. There are increased mounting losses 
with attendant Q degradation. Proper contouring can improve this 
situation. 

Increased capacitance ratio and motional resistance. An increased ratio is 
an advantage in certain high precision applications, but is a drawback for 
temperature-compensated crystal oscillators (TCXOs) of the fast warm-up 
variety and for monolithic filters (Spencer, 1972). 

Orienting and X raying doubly rotated cuts more dijjicult. The relatively 
strong 1231 plane at q = 19.10”, 0 = + 16.57” used for locating the IT cut 
can also be used for the SC cut. 

Tighter cp, 0 tolerances required. Most physical and electrical properties 
are more sensitive to angle misorientations when cp > 0”. For AT cuts, most 
quantities of interest have zero cp derivatives, so departures in cp are man- 
ifested only in second order. 

The last two disadvantages are manufacturing considerations that will 
largely be obviated by new technology such as microprocessor control. Re- 
maining entries are intrinsic and stem from the double rotation that lowers 
the plate symmetry from monoclinic to triclinic. Theoretical analyses are 
also rendered more difficult. The advantages enumerated arise largely from 
compensation of nonlinear effects. Additional considerations are given by 
Ballato and Iafrate (1976). At present there are insufficient data comparing 
AT and doubly rotated cuts with regard to ease of obtaining required surface 
finish, impurity migration rates, and X-ray/neutron resistance and recovery. 

Additional work on doubly rotated orientations in quartz and other 
crystals is needed particularly in the areas of calculating the dispersion 
curves and developing approximate plate theories of various orders. These 
tasks have been carried out for piezoelectric crystals with monoclinic sym- 
metry by Lee and Syngellakis (1975) and Syngellakis and Lee (1976). The 
study of static stress effects and acceleration sensitivity in triclinic plates is 
also of pressing interest, and measurement of the higher order piezoelectric 
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and dielectric constants (Besson, 1974) is needed to fill in portions of the 
nonlinear treatments. 

An additional nonhnear mechanism sufficiently large in quartz to cause 
discrepancies in high precision applications is the polarizing effect (HruSka 
and Kazda, 1968; Kusters, 1970; HruSka, 1971; Baumhauer and Tiersten, 
1973; Tiersten, 1975a). In this effect (order lo- l2 m/V) bias or stray electric 
fields produce changes in the effective elastic, piezoelectric, and dielectric 
material constants. The largest changes in quartz take place in the elastic 
constants, but the coefficient happens to vanish for the driven mode in 
rotated Y cuts. For doubly rotated cuts in general, the effect will be present. 
Ungrounded units used in probes, or in vibrators subject to oscillator cir- 
cuitry biases, are susceptible but can be protected in a simple manner (J. A. 
Kusters, private communication, 1976). 

B. ALUMINUM PHOSPHATE 

Aluminum phosphate, AlPO,, also known as berlinite, is a material in 
crystal class 32 very like quartz in structure and physical properties. It 
occurs naturally only as tiny crystals, but may be grown to large size by the 
hydrothermal method (Stanley, 1954). An early determination of the elastic 
and piezoelectric constants was reported by Mason (1950). More recent 
work by Chang and Barsch (1976) disclosed the presence of zero tempera- 
ture coefficient thickness modes; zero coefficient SAW cuts have also been 
found (Carr and O’Connell, 1976, Jhunjhunwala et al., 1976). 

Using the recently determined material constants and temperature 
coefficients of Chang and Barsch (1976), Fig. 12 shows the calculated 
frequency constants Nm = v,/2, the coupling factors 1 k,, 1, and antireson- 
ante temperature coefficients p/d,\ for doubly rotated cuts (YXwl)cpjO, 
cp = 0’(6”)30”, and 10 1 I 90”. The similarity to Fig. 6 is readily apparent. 
Frequency constants for berlinite are somewhat lower; the coupling factors 
are roughly double that of quartz, and the temperature coefficients are very 
much the same. Degeneracy of the h and c modes takes place at 
(YXl)O cz -24.5”. 

For plates (YXw)cp, as cp varies from 0” to 30”, 1 k, 1 rises almost linearly 
from 0 to 16%; Ik, I arcs from 0 to 11 y0 and back to Oyi, while I k, ) falls 
nearly linearly from 24 to 0%. 

The loci of T’,L,‘, = 0 for m = b, c are shown in Fig. 13. From Fig. 12 it 
is seen how shallow the 7”‘) surfaces are, particularly for cp > 12”. Small 
changes in the values of the measured constants could therefore affect the 
loci in Fig. 13 appreciably. For this reason, it is not appropriate to pursue 
more detailed calculations of angle gradients, etc., at this time. On the basis 
of current information, berlinite appears particularly attractive for mono- 
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FIG. 12. Thickness mode properties of doubly rotated cuts of aluminum phosphate. 

Frequency constants N are in MHz mm, coupling factors are in percent, and temperature 
coefficients 7’jAJ are in IO-‘/K. 

lithic (Tiersten, 1969) and wider band conventional filters and for SAW 
applications. Additional measurements of the higher order temperature 
coefficients and the nonlinear elastic constants would be most desirable. 
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C. LITHIUM TANTALATE 

Lithium tantalate and lithium niobate (discussed in Section V,D) are 
refractory oxides in crystal class 31~1. A thorough investigation of their 
elastic, piezoelectric, and dielectric properties, including first and second 
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order temperature coefficients, was made by Smith and Welsh (197 1). More 
recently. D&taint and Lanqon (1976) investigated doubly rotated thickness 
modes of the tantalate and constructed altitude charts of coupling and tem- 
perature coefficients. In Fig. 14 are shown N,, . 1 k,) and PjdA for lithium 
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FIG. 13. Loci of zeros of first order temperature coefficient of antiresonance frequency in 
aluminum phosphate. Note the similarity to Fig. 5. 

tantalate cuts (YXw/)~plll, cp = 0”(6”)30”, and ) 0) I 90”. These have been 
computed using the data of Smith and Welsh (1971) with e33 taken from 
Warner et al. (1967) as suggested by Detaint and Lancon (1976). Points of 
accidental degeneracy of the b and c modes occur for cuts (YX!)0 ‘v -29.9”, 
+26.9”, and 37.8”. 

Whereas quartz possesses a digonal axis of symmetry, 3m crystals have 
a mirror plane (Juretschke, 1974; Nye, 1957); taking this normal to the X, 
axis causes the elastic constants with indices 15, 16, 25, 26, 35, 36, 45, and 46 
to vanish along with the piezoelectric constants with indices 11, 12, 13, 14, 
25, 26, 35, and 36. Some of the differences between the 32 and 3m symmetries 
may be seen by a comparison of Fig. 14 with Fig. 6 or 12 for the case 
q = 30”. For example, when 0 = 0” for class 3m and when 10 1 = 90” for 
class 32, 1 k, 1 is zero, while both /k, I and I k, I are finite; when 0 = 0” for 
class 32 and when 10 I = 90” for class 3~1, ) k, I is finite, while both /k, I and 
) k, I vanish. Also, for rotated Y cuts, the pure shear mode in class 32 is the 
only one piezoelectrically driven, while it is undriven in class 3m, and the 
quasi-extensional and quasi-shear modes are driven instead. For lithium 
tantalate plates (YXw)cp, as 9 varies from 0” to 30”, I k, I decreases from 2 1 
to 0%; I k, ( rises from 33 to 42.5’%,; and I k,l rises from Oo/, to a shallow 
maximum of 2.5’%, at cp = 1 lo and levels off to 2%. 

Because of the large piezoelectric coupling constants, the difference 
between the resonance and antiresonance fundamental frequencies is rela- 
tively large, as is the difference between their respective temperature 
coefficients. In Fig. 15 are given the loci of the zeros of T’r’,’ and Tyi versus 
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60" 

cp, 8 for modes b and c, from Dittaint and Lancon (1976). Mode a has no 
zero temperature coefficient. The curves are for A4 = 1; changing M, or 
using a series load capacitor C, will shift the 7”$,’ loci toward the invariant 
F$i loci. The b-mode resonance frequency loop for q > 15” has no corre- 
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sponding T’,k’ curve; it occurs in the region of maximum 1 k, I. An altitude 
chart of 1 kbl in percent, from D&taint and Lanqon (1976), is shown in 
Fig. 16. When q = O”, 1 k, ) vanishes for -90” I 13 I -29.9”, and for 
+ 26.9” I 0 < + 37.8”. Altitude charts of the fundamental resonance 
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the fundamental harmonic. (After Detaint and Lancon, 1976). 
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FIG. 16. Piezoelectric coupling coefficients for the h mode in lithium tantalate. (After 
Ditaint and Lancon, 1976). 



162 Arthur Ballato 

frequency constants, defined as in Eq. (41) with fR substituted for f’!L, are 
given by Detaint and Lancon (1977). 

The presence of a zero temperature coefficient locus in lithium tantalate 
for the fundamental and harmonics of the b and c modes, simultaneously 
with large piezoelectric coupling values, indicates excellent filter device 
potential. Three of the practical areas of work remaining for this material 
are: investigation of higher order temperature behavior T’i); measurement 
of the nonlinear elastic and piezoelectric constants with determination of 
possible “ SC cuts “; computation of dispersion diagrams for doubly rotated 
orientations for both open- and short-circuited boundary conditions, and 
application of these spectra to the design of monolithic filters and other 
devices. Exact and approximate dispersion curves for these electrical condi- 
tions have already been determined for rotated Y cuts of LiTaO, (Lee and 
Syngellakis, 1975; Syngellakis and Lee, 1976). 

D. LITHIUM NIOBATE 

The data of Smith and Welsh (1971) have been used to compute the 
frequency constants N,, piezoelectric coupling factors ( k, 1, and first order 
temperature coefficients T(rmA ‘) for lithium niobate. Figure 17 presents the 
results for doubly rotated cuts (YXwl)cp/B, cp = 0”(6”)30”, 18 [ I 90”. Degen- 
eracy of the b and c modes takes place for cuts (YXl)e, 0 % + 24. I”, + 48.9”, 
and + 59.0”. For plates (YXw)cp, as cp varies from 0” to 30”, 1 k, 1 decreases 
slowly from 31 too%; lkbl rises from 57 to 69x, and I k, I rises slowly from 
0 to 7%. There are no orientations having PjL, values greater than -40 x 
lo- (j/K; the main advantage of this material for piezoelectric applications is 
its suitability for transducer use owing to large I k I values. Wideband filter 
applications are also possible. 

VI. Electrical Characteristics of Plate Vibrators 

The use of mechanical vibrators as undamped resonant elements for 
frequency control and as acoustic transducers has led to their representa- 
tions as equivalent electrical circuits (Mason, 1948). This section gives ex- 
pressions for the lumped equivalent circuit parameters of thickness mode 
plate vibrators with traction-free boundaries, obtained from the exact rela- 
tion for input admittance. In terms of these parameters, values are given for 
doubly rotated quartz plates. Also provided are data on mode spectra for a 
variety of quartz cuts, showing the influences of multimode couplings. 

A. LUMPED EQUIVALENT CIRCUIT PARAMETERS 

Crystal vibrators are usually represented in the vicinity of a single 
resonance by an electrical circuit consisting of a shunt capacitance C, in 
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FIG. 17. Thickness mode properties of doubly rotated cuts of lithium niobate. Frequency 
constants N are in MHz mm, coupling factors are in percent, and temperature coefficients p(A) 
are in 10m6/K. 

parallel with a series C,, R,, L, chain (Mason, 1948). Reduction to this form 
starts from Eqs. (38) and (40). It is convenient to discuss the lossless case 
first, and to deal with a single mode. When Eq. (38), written for a single 
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mode, has subtracted from’ it the immittances corresponding to a shunt 
capacitor Co, followed by a series capacitor - Co, the remaining admittance 
is 

YrL =jwC,k2 tan X/X. (91) 
Expansion of the tangent function in partial fractions leads to a network 
realization of the individual terms as series LC circuits; YrL is then just the 
shunt connection of these series branches. Each series branch consists of an 
inductance of constant value 

L = h2/2C,k2v2 

and a capacitance that depends on the harmonic M 
(92) 

Cb = 8Cok2/;n2M2. (93) 
M is an odd integer, and u is obtained from Eq. (19). The complete and exact 
circuit for a single lossless mode is then a shunt capacitor Co, followed by a 
series capacitor -C,, followed in turn by an infinite number of parallel 
branches each consisting of a series K’b chain (Onoe and Jumonji, 1967). 
Loss is incorporated by adding to each UI’L chain a resistance Rkf of value 

R;, = T&‘;, = rc2M2qh/4e2A. (94) 
The piezoelectric constant e is given by Eq. (39) and the viscosity 7 by 
Eq. (21). Motional capacitance ratios I$,, are 

rh = Co/C;, = n2M2/8k2. (95) 

In order to obtain the simple four-element circuit described earlier, 
valid in the vicinity of a single resonance, the influences of both the series 
negative capacitor and of the shunt harmonic branches K’k must be taken 
into account. We assume all shunt branches resonating above the branch of 
interest are represented as capacitors, and those below are represented as 
open circuits. Then the elements of the equivalent circuit become 

’ co = Co/F, (96) 

L = CF2, (97) 
c,$f = c,/r, . (98) 

In Eqs. (96)-(98) 

F = 1 - k2Z, (99) 
I = 1 - 8C’j7r2, ( w 

I’= 1 K-2 (K M odd), (101) 
K < M 

r,=r;,F- 1. (102) 
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R, = R:,F2. (103) 
The four-element circuit conventionally used thus consists of RM , L, and CM 
connected in series, all shunted by CO; in the limit of small k these may be 
replaced by Rh, L, CL, and CO, respectively. Extension of the foregoing to 
more than one mode is straightforward, but usually not warranted. Equa- 
tion (91) then consists of one term for each mode represented; the realiza- 
tion for each mode is the same as in the single mode case, with the infinite 
shunt branches in parallel. Reduction to a four-element network then fol- 
lows. Temperature coefficients of the circuit elements are readily obtained 
from the material in Section IV and the defining Eqs. (92)-(103). 

The piezoelectric coupling factors in quartz are not large, and the capac- 
itance ratios T,,, for each mode m can be obtained separately from Eq. (95). 
From Eqs. (43), (59) and (62) it follows that the fractional difference be- 
tween antiresonance and resonance frequencies is approximately 1/2v, for 
each mode; and from Eq. (71) it is seen that GO * l/r,. Capacitance ratios 
are therefore important quantities in oscillator and filter design. For doubly 
rotated quartz cuts on the locus of Eq. (85), the ratios r,,, for m = a, b, c are 
given in Fig. 18 for the fundamental harmonic M = 1. At the SC cut the 
c-mode ratio is about three times that of the AT cut. Tables XII and XIII list 

IO4 

I I 1 I 
0” 6” 12” 18” 24” 30” 

0 

FIG. 18. Capacitance ratios for doubly rotated quartz cuts along the AT-SC locus of 
Fig. 5. 



168 Arthur Bdato 

TABLE XII 

CAPACITANCE RATIOS AND THEIR ANGLE GRADIENTS. QUARTZ Curs (YXw/)cp/O > 0 ’ 

Crystal 

cut degrees IO+2 IO’ 2/deg 0 10’ *,ldeg cp 

AT 0 35.25 - - 1.59 - - 0.11 - - 0 

5” v 5 34.94 191 74.3 1.66 11.2 14.7 0.10 -75.5 -28.8 0.04 

10” v to 34.64 48.1 19.3 1.94 2.80 3.73 0.09 -9.27 - 3.36 0.09 

i3.9" v 13.90 34.40 25.4 10.7 2.4 1 1.49 1.97 0.06 -3.38 - 1.18 0.16 

FC 15 34.33 22.0 9.45 2.60 1.29 1.71 0.05 -2.68 -0.92 0.19 

IT i9.10 34.08 14.1 6.59 3.68 0.83 1.12 -0.09 - 1.26 -0.40 0.35 

SC 21.93 33.93 1 I.1 5.55 4.96 0.65 0.90 -0.35 -0.82 -0.23 0.55 

25" V 25 33.72 8.95 4.84 7.31 0.53 0.73 - 1.07 -0.53 -0.13 0.92 

30" v 30 33.42 6.90 4.19 14.9 0.42 0.55 - 5.39 -0.27 -0.06 1.80 

LC 11.17 9.39 11.9 2.1 I 1.46 0.50 -0.002 0.01 -2.08 -0.06 0.15 

a 7’,k’ = 0 for the c mode of these cuts. 

values of r,,, and their angle derivatives for selected quartz cuts. Note that the 
AT cut value of 159 given is for a laterally unbounded plate with a uniform 
distribution of motion over the plate surface area. This value is a lower 
bound; in practice, values in the range 180-210 are usually encountered. To 
account for the nonuniform amplitude distribution, Bechmann (1952) in- 
troduced a factor Y equal to the quotient of the square of the surface integral 

TABLE XIII 

CAPACITANCE RATIOS AND ~‘HEIR ANGLE GRADIENTS. QUARTZ CUTS (YXwl)cp/O < 0’ o 

v  0 

Crystal 

CU1 degrees 

)‘a r’h 1’1 

to+ 2 10t2/deg cp 

BT 0 -49.20 

5 - 46.56 

I 0 -3X.63 

5 -24.YH 

IO -32.23 

12.5 - 33.33 

3.90 
92.2 3.41 302 
13.6 2.72 55.3 
II x I .64 6.3 1 

7.94 2.12 55.4 
7.04 2.50 3x.0 

- 0.27 
- II.4 - 0.22 - 19.1 

- 1.2’ - 0. I2 - 1.09 

-0.7x 1.1x - I x.0 

- 0.6 I - 0.07 1.20 
- 0.52 - 0.09 1.68 

0 
- 33.2 0.0X - 120 

- 1.60 0.1’ - IO.6 

- 3.71 0.49 -5.Yl 

- 0.x4 0. I I -8.70 

- 0.45 0.13 -4.4x 

RT 15 - 34.50 6.98 3.0 I 27.0 -0.44 -0.12 1.39 -0.26 0.15 -2.68 

17.5 -35.78 6.90 3.54 20.6 -0.50 -0.15 0.89 -0.14 0.18 - 1.x0 

20 -36.79 7.19 4.21 16.0 - 0.52 - 0.20 0.57 - 0.04 0.2’ - 1.2x 

’ 7’;: = 0 for the h mode of first three entries: for the c mode of remainder 
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FIG. 19. Motional capacitances for doubly rotated quartz cuts along the AT-SC locus of 
Fig. 5, normalized to that of an AT cut having identical electrode area and frequency. 

of the normalized amplitude function by the surface integral of its square. 
This factor, which is less than or equal to one, multiplies CM and divides L 
and RM to produce effective values. This approximate technique can be 
applied to doubly rotated cuts if the motional distribution is known for a 
given design; alternatively, one may derive more accurate expressions for 
any resonator geometry by using variational methods (Tiersten, 1969; Hol- 
land and EerNisse, 1969; Lee and Haines, 1974). 

Motional capacitance CM is proportional to electrode area and to fun- 
damental frequency. Considering these to be fixed, we can determine the 
value of CM normalized to that of the AT-cut c mode. For the locus of 
Eq. (85) the result is plotted in Fig. 19 from the harmonic-independent 
relation 

CM Cl (~:f/r(~‘N,,, ) 
C MtAT) = &AT) = (I:T/I.(~)N,)~~ ’ 

( 104) 

Since in crystals of trigonal symmetry E: does not depend on angle cp and the 
zero temperature coefficient locus is nearly a constant in 0, the permittivities 
in Eq. (104) are virtually equal and the variations in Fig. 19 result from 
changes of coupling factor and modal velocity. The ratios shown will more- 
over hold well for finite plates since Y will be approximately constant for 
both the AT and doubly rotated plate, and will cancel in the quotient. 
Utilizing Eq. (94) plus the foregoing makes it possible to plot the ratio of the 
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motional resistances along the locus; the results are given in Fig. 20. The 
results are similar to those in Fig. 19, but they depend, additionally, on the 
variations in z\“) with position on the locus. The same remark concerning 
finite plates holds here also. If C, is maintained constant, rather than elec- 
trode area and fundamental frequency, the resistance ratio curve for the c 

fs AND Ae CONSTANT 

6 0 - 

2 0 % - 

MODE a. 

FIG. 20. Motional resistances for doubly rotated quartz cuts along the AT-SC locus of 
Fig. 5, reciprocally normalized to that of an AT cut having identical electrode area and 
frequency. 

mode remains virtually unaltered; the b-mode curve is raised from about 60 
to 75% at cp = 30”, while the u-mode curve rises to 25% at rp = 30”. 

B. MODE SPECTROGRAPHS 

Mode spectrographs are plots of resonator input susceptance versus 
frequency. Often measured in practice is a quantity proportional to the 
resonator plate susceptance when the shunt capacitance Co has been bal- 
anced out, e.g., by a bridge. We have plotted this quantity BR normalized to 
the susceptance B, of the shunt capacitance in Fig. 21 for the FC cut of 
quartz at cp = 15”. The ordinate is found from 

4 

!  ---!=I 
Ck 

2 tan Xtrn) tan Xcrn) 
B, m m xtm) Ii! 

1 _ c k; -~~~m~.-. 
m 

The abscissa is percentage frequency offset from the c-mode fundamental 
antiresonance frequency. Figure 21 is plotted for the lossless case, but both 
resonances are marked with a figure in percent to indicate the response Ieve 
when losses are present, compared to the AT-cut c-mode fundamental reso- 
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FIG. 2 1. Mode spectrograph for an FC-cut quartz resonator, showing proximity of h and 
c modes. Indicated on each resonance curve is the ratio of mode height, when loss is included, to 
that of an AT cut. 

nance. The relative levels are given by 

Table XIV contains a list of modal parameters for additional cuts on the 
locus of Eq. (85); the entry 1 B,/B, 1 denotes the maximum value. From this 
table one can visualize the shifting modal strengths and separations of the 
spectrographs with changing q. In Fig. 22 is given a wider frequency plot for 
the SC cut. The ordinate is in decibels relative to the b-mode fundamental. 
Normalized frequency is the abscissa; the modes and their harmonics are 
labeled by the notation m (M) One sees the cluttering of the spectrum . 
produced by the three series of harmonics. These are only the thickness 
modes; in practice, each mode will have associated with it anharmonic 
overtones due to lateral phase reversals across the plate, further crowding 
the spectrum. Contouring can reduce these effects very much. More impor- 
tant in many respects are the strength and proximity of the b- and c-mode 
fundamental resonances. Here contouring can reduce the b-mode strength 
somewhat, but the separation remains fixed. 

When thin flat plates are required to have clean mode spectra, e.g., high 
frequency filter crystals and crystals for fix-tuned oscillators, the required 
amount of mode spectral purity is achieved by control of the electrode 
geometry. According to energy trapping considerations (Shockley et al., 
1967), optimal suppression of unwanted responses occurs when the electrode 
diameter to plate thickness ratio times M * & equals KLvl, a constant. For 
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FIG. 22. Extended frequency spectrograph of an SC-cut resonator. Mode levels are 

normalized to the b-mode fundamental strength. Modes are labeled with superscript harmonic 
numbers. The ordinate scale is in decibels. 

M = 1, KM ranges from 1.8 to 2.4; K,+., = 1.8, 1.6, and 1.4 for M = 3, 5, and 7, 
respectively, for AT-cut quartz. Strictly speaking, the electrode patch can 
be longer in one direction than in the other, and the best shape is nearly 
an ellipse (Mindlin, 1968). For SC-cuts, similar considerations appear to 
apply, with the possibility of even larger KM. Spectra nearly devoid of 

TABLE XIV 

MODAL PARAMETERS OF SELECTED QUARTZ RESONATOR CUTS” 

cut 

Mode h Mode c 
Mode 

r ‘51 thtihl r Tl I ~Rl4l I separation 

AT co 6.7 0 159 11.8 100 14.4 
13.9” v 1071 6.6 26.6 241 11.8 66.4 12.4 
FC 945 6.6 30.3 260 11.8 61.6 12.1 
IT 659 6.4 47.3 368 11.8 39.9 10.6 
SC 555 6.4 53.5 496 1 I.7 32.4 9.8 
30” v 419 6.0 75.5 1493 1 I.6 10.9 6.9 

’ Y for fundamental resonance (M = 1); or in femtoseconds; mode separation in 
percent; 1 B,/Bol m p ercent. normalized to AT-cut, c-mode value. 
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anharmonic responses for all three modes up to A4 = 5 have been attained 
(T. J. Lukaszek, private communication, 1977). 

VII. Analog Electric Network Models 

In the preceding section lumped parameter networks were discussed. These 
are used to represent resonators over relatively narrow frequency ranges. 
When other than traction-free boundary conditions are to be employed, as 
in transducers, the lumped analysis can be extended to include the new 
circumstances. Operation over wider frequency bands, in the time domain, 
or with materials having large piezoelectric coupling, requires use of more 
exact networks. These contain transcendental functions representing wave 
transmission in the vibrator. Mason’s book (1948) is the classical reference 
for such networks; Berlincourt et al. (1964) have provided a valuable survey 
of these equivalent circuits for many kinds of vibrators. 

This section describes equivalent networks of the analog type. These 
have the distinction of being drawn in such a fashion as to match up, on a 
one-to-one basis, the circuit components with the physical features they 
represent. This description produces a schematic that is valid in a point-to- 
point manner rather than merely yielding a circuit that produces the correct 
port-to-port immittance matrix. Matching the physical features and their 
electrical counterparts leads to a building-block approach that heightens 
understanding and simplifies the representation and analysis of more com- 
plex structures; it also facilitates the use of computer aided design (CAD) 
techniques. 

A. TRANSMISSION LINE EQUATIONS FOR WAVES IN A 
PIEZOELECTRK CRYSTAL 

Waves on a transmission line obey the Heaviside equations 

V m.< = -.jwim zm lvm (107) 
and 

I m. i = - jw Vm /Z, v, . (108) 

Vm and I, are the modal voltage and current, respectively; 2, is the modal 
impedance; and urn is the wave velocity. Application of transmission line 
formalisms to acoustic wave problems has been made recently by Oliner 
(1969) Oliner et al. (1972a,b), and Auld (1973). We show here that acoustic 
plane waves propagating in an arbitrarily anisotropic, linear, piezoelectric 
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medium satisfy Eqs. (107)-( 108). In Section VII,B transmission lines are 
incorporated into analog networks for doubly rotated thickness mode 
plates. 

Normal coordinate transformations of displacement and stress are 
defined by 

Us = ~mjl~j ( 109) 
and 

TSO, = ymj(rjk Uk. [ + 5jd). (110) 
With the help of Eqs. (17) (39) and (109), Eq. (110) becomes 

qrn = Cm ~4;. i + em&. (111) 
The first term on the right-hand side of Eq. (111) is due to the “wavy” stress 
component F&, while the second term is a spatial constant, arising from the 
piezoelectric effect, that we shah denote as ?$,,. For the wave portion we 
have 

cm = cm u;* 6. (112) 
Equation (1) is transformed into 

Tmj zj, i = - POJ2U~ * (113) 
The left-hand side of this equation is T&, ;, but becauseTFm, ; vanishes 
within the crystal, we get finally 

-0 T - -po2u;. cm.< - (114) 
Equations (112) and (114) become isomorphic with Eqs. (107)-( 108) by the 
definitions 

l/m = ATrn (115) 
I, = -jwu; (116) 
Z, = Apm (117) 

and identification of u,~ with Eq. (19). 

B. EQUIVALENT NETWORKS FOR THICKNESS MODES 

Synthesis of Eq. (30) representing the electrical input admittance, 
begins as in Section VI,A with extraction of the static shunt capacitor C,, 
followed by a negative C, in series. The negative capacitance results from the 
reactions between the driving electric field applied and the i-directed electric 
fields produced by the acoustic waves. With the capacitors extracted the 
remainder is [cf. Eq. (9 1 )] 

Y,, = jwC, C ki tan Xcm)/Xcm). (118) 
m 
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The terms in Eq. (118) are now interpreted in the light of Section VI&A as 
leading to transmission lines. That is, each of the admissible plane waves for 
a given propagation direction [ is represented by a transmission line sup- 
porting one of the wave stresses Ft,,, in the bulk of the crysta1. The piezoelec- 
tric driving stresses c,,, come into play at the plate surfaces only. In order to 
have an analog network, the ideal transformers that are the circuit equiva- 
lents of the T&, must be removed to the surfaces. It has been shown that 
when this is d&e, the network that results is an exact analog of the physical 
workings of the plate vibrator (Ballato et al., 1974). 

For a single mode, the analog network is shown in Fig. 23 along with 

ELECTRODE 
INERTIA 

PI EZO 
SURFACE 
TRACTION 

{G LI 
{ r- 

PIE20 
WAVE 

REACTION 

TOTAL 
CURRENT 

CRYSTAL PLATE 

MECHANICAL 
WAVE MOTION 

7 0 r , PIEZOELECTRIC 

’ POLARIZATION 
\ J 

CURRENT 

+co CURRENT 

QUASISTATIC 
THICKNESS 
EXCITATION 

FIG. 23. Analog quasi-static exact equivalent network for a thickness mode crystal plate 
with one piezoelectrically excited mode. rnductors represent inertial tractions due to electrodes; 
transformers represent piezoelectric surface tractions driving the mode. Physical 
correspondences with network features are labeled. 

the corresponding physical features. Lumped at the surfaces are identical 
piezoelectric transformers supplying 6 functions of traction to drive the 
plate. The primaries are connected in parallel. Also located at the surfaces 
are the mechanical ports and the negative capacitor. In the traction-free 
case, the mechanical ports would be short-circuited; in Fig. 23 they have 
been provided with terminating inductors Li that represent mass loadings 
caused by electrodes. The lumped electrode masses result in 6 functions of 
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inertial traction at the boundaries in series with the piezoelectric tractions. 
The inductances are of value 

Li = pi A, (119) 

where pi is the mass per unit area on each surface. When the surface masses 
are equal, the schematic of Fig. 23 is mechanically symmetrical; the trans- 
mission line center is a current node, and may be bisected to yield the 
simplified network of Fig. 24. Figure 24 is no longer an analog circuit due to 

I 
I 

-co 
0 Al-4 j 

1 
I I 

+co 
T IIt 

212, K 

-,-I. I - 
w 

I * 
I 

ELECTRICAL.. BOUNDARY IELECTRODE BISECTED I 

PORT AND SHUNT1 PIEZO / FILMS / CRYSTAL 

CAPACITANCE ) NETWORK 1 (LUMPED 1 PLATE 
MASSES) 

FIG. 24. Bisected version of Fig. 23 for the case of equal inductors. 

the bisection, but its components are interpretable in physical terms. It has a 
transmission line of characteristic impedance Z/2 = Apv,/2 and propaga- 
tion constant K = cu/u,; the inductor is L/2 = miA/2 = ph@/2, and the turns 
ratio is n = e, A/2h. The input admittance of Eq. (55) is exactly realized, for 
one mode, by Fig. 24. 

In the multimode case, where two or three modes are excited, the 
analog network is given by an augmented version of Fig. 23. Each mode has 
a transmission line of length 2h, terminated at its mechanical ports by induc- 
tors if mass loaded or by short circuits if traction-free; in series with the 
mechanical ports are piezoelectric transformer secondaries. The primaries of 
all transformers are connected in parallel and lead to the -CO and shunt 
capacitor CO. Each transformer has a turns ratio of 

%I = e, A/2h = (C, Acmki/2h)1’2. ( 120) 

The dot convention of Fig. 23 must be maintained for all transformer pairs; 
this is the manifestation of the polar nature of the piezoelectric effect. As 
long as the impedances terminating the mechanical ports are equal in pairs, 
the network may be bisected to yield a network like Fig. 24 having secon- 
dary circuits in parallel. For equal lumped masses on both surfaces, this 
circuit realizes the electrical port admittance Eq. (55) exactly. 
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Any of the analog networks described above may be used for time- 
domain analyses in addition to the usual frequency-domain uses. When a 
network is analog in nature, a solution of the circuit problem evaluated at 
any value of the thickness coordinate gives immediately the solution of the 
corresponding physics problem at that point. 

C. INTERFACE NETWORK 

Figure 23 and its generalization to three modes were presented in the 
preceding subsection simply as realizations of the electrical port ‘input 
admittance of Eq. (38). In this instance the mechanical ports at the plate 
surfaces were shorted to satisfy traction-free boundary conditions. Termina- 
tion of the mechanical ports by inductances realized the input admittance of 
Eq. (55), stemming from the boundary conditions of Eq. (53). The analog 
networks given are however capable of greater generality than the brief 
derivation might Iead one to expect. Because there are three components of 
traction and of particle displacement at each surface as well as the electrical 
port, the complete representation of the overall electromechanical system 
takes the form of a seven-port network. This extended circuit equivalent is a 
necessary consequence of the multimode nature of doubly rotated crystal 
vibrators, and must, in general, be used to characterize their behavior unless 
the criteria of Section III,B are met. 

At each surface the three mechanical ports in the equivalent network 
appear with the normal coordinate variables of Eqs. (109)-( 110). Conver- 
sion to components referred to the crystallographic axes Xj requires that the 
three ports of each surface be connected to a network realizing a three- 
dimensional orthogonal transformation (Carlin and Giordano, 1964). This 
network, consisting solely of interconnected ideal transformers, is shown in 
Fig. 25. The secondary turns ratios are the components of the coordinate 
transformation; switching primary and secondary ports requires only that 
the transposed components be substituted in the ratios. If one network of 
Fig. 25 is attached to the mechanical ports on each side of the normal 
coordinate circuit, the result is a complete analog network that exactly real- 
izes the seven-port impedance function of the vibrator. As drawn in Fig. 25, 
the primary ports would be attached to the normal mode ports, and the 
secondary ports would then represent the coordinates Xi. Then the Pmj 
appearing in the figure would be identified with the stiffened eigenvector 
components ~~j. For a number of reasons, such as the stacking of plates to 
be described in the next subsection, it is often more convenient to refer the 
secondary ports of Fig. 25 to a laboratory coordinate system,coinciding with 
the plate thickness and lateral directions, rather than to the crystallographic 
axes. Since, by Eq. (7), the transformation to the plate axes from the crystal 
axes is determined by ~ij, and the transformation to normal coordinates is 
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P 
32 

FIG. 25. Ideal transformer realization of a three-dimensional orthogonal transformation. 
This boundary, or interface. network converts between normal coordinates utilized within the 
plate and laboratory coordinates used at the surfaces for plate stacking. Turns ratios are the 
components of the transformation. 

given by Tag, one has 

Pmi = clij~!mj. 

(121) 

With these turns ratios the total equivalent circuit has its mechanical ports 
referred to the plate axes. 

The network of Fig. 25 subjects immittances to similarity transforma- 
tions. An impedance network, characterized by elements Zz,,, that is at- 
tached to the primary ports will be perceived at the secondary ports as 
having components 

If the impedance is of diagonal form, no transformation takes place; the 
inductors of Eq. (119) are thus unchanged by the boundary network, which 
can be discarded in this instance. The network may be simplified in other 
cases as well because of inherent crystal symmetry and/or propagation direc- 
tion. The role of these networks for stacks of plates will be discussed in the 
next subsection. Boundary and interface networks for waves at nonnormal 
incidence in isotropic media have been determined by Oliner et al. (1972b). 
Ballato (1974) has described networks for representing the inclusion of 
the electromagnetic modes when the quasi-static constraint is relaxed. 
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D. STACKING OF DOUBLY ROTATED PLATES 

Stacking of plates is used to form composite transducers, delay lines, 
and filters. These devices have almost invariably been of the single mode 
variety (Sittig, 1972). Use of doubly rotated crystal plates in a layered 
configuration opens the way for an extension of these devices to include the 
use of more than one mode. One example of such a use is the stacked-crystal 
filter (SCF) which operates on the multimode principle (Ballato et al., 1974). 
Stacking of multimode plates was described by Onoe (1972) using Mason 
equivalent circuits. 

Use of the complete analog circuit for the multimode plate, including 
the interface networks, permits the description of a stack of plates in a simple 
manner. The interface, or boundary, networks of Fig. 25 are referred for 
each plate in the stack to a common laboratory reference frame. This referral 
amounts to, at most, an additional rotation about the common thickness 
direction for each network; the rotation is manifested by a change in the 
turns ratios Pmi to account for the azimuthal angle $. Upon referring all 
networks to the common frame, stacking is accomplished by connecting 
corresponding mechanical ports together. That is, if one axis of the labora- 
tory frame coincides with the mutual thickness coordinate of two adjacent 
plates, then the ports for this axis are joined, and so on. The entire stack then 
appears as a cascade connection -of transmission line and interface networks. 
Simplifications arising from crystal symmetry or propagation direction that 
render certain of the Pmi zero are directly interpretable from the circuit 
schematic; so too are simplifications in the piezoelectric driving terms n,. 
All of the multimode interactions are readily traced from the analog network 
picture. Analytically, each plate is representable by a set of seven-port im- 
pedance relations, wiih stacking carried out by a matrix procedure using 
extended A, B, C, D parameters which are themselves matrices. 
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