
< IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 39, NO. 3, MAY 1992 3 3 5

’ Acceleration Effects in Crystal Filters-A Tutorial
R. C. Smythe

Abstract-The quasi-static method for the analysis of vibration-
induced modulation in crystal filters is briefly reviewed, and
a dynamic method, in which the filter is treated as a linear
network with time-varying elements, is introduced. The dynamic
method, which allows determination of both amplitude and phase
modulation due to vibration, is illustrated by examples. It is then
applied to the analysis of the spectrum clean-up case, consisting
of a frequency source with an output filter, both of which are
undergoing the same acceleration.

I .  INTRODUCTION

UNDER VIBRATION, a crystal filter modulates signals
passing through it, adding its own vibration-induced

sidebands to those of the signals it passes. Both amplitude
and phase modulation may occur. After briefly reviewing the
quasi-static method, this paper presents a dynamic method for
analyzing vibration-induced modulation in crystal filters, in
which the filter is treated as a time-varying linear network.
The dynamic analysis is then applied to the spectrum clean-up
case in which a frequency source, such as a crystal oscillator,
is followed by an output filter.

It is assumed throughout that the modulation is due entirely
to the vibration-induced frequency variation of the crystal
resonators, but the approach can readily be extended to include
other components. Also, while the discussion is restricted to
bandpass  filters, the method of analysis is also applicable to
bandstop  filters, and to filters other than quartz crystal filters.

A. Resonator G-Sensitivity

The acceleration sensitivity of quartz crystal resonators and
oscillators has recently been reviewed by Filler [l],  [2].  For
accelerations that are not too large, the instantaneous circular
frequency, wS(Z),  of a resonator subjected to an acceleration,
a’  = Z(t), is

w,(Z)=w,(1+6Z) (1)

where I! is the acceleration-sensitivity vector of the resonator
and w, is its zero-acceleration frequency. For sinusoidal vi-
bration:

a’  = Lzcosw,t (2)

we(t)  = w, + Aw, cosw,t (3)
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where

+
AwS/wS  = I., a’. (4)

B. Quasi-Static Analysis

Before developing the dynamic method of analysis that is
our principal subject, we first review the quasi-static method.
Although a filter under vibration is a time-varying linear
system, at vibration frequencies that are sufficiently small, the
vibration-induced modulation can be estimated from a quasi-
static analysis [3]. Quasi-static analysis of a filter assumes that
the element values are varying sufficiently slowly that the filter
response at each instant is well-approximated by the steady-
state response that would be obtained if the instantaneous
element values were time-invariant. The principal advantage
of quasi-static analysis is its ease of use. The principal dis-
advantage is that it does not provide an estimate of the error
arising from the quasi-static assumption.

Consider first the simplest situation, in which all the res-
onators of a multiresonator filter have identical acceleration
sensitivity vectors, identically oriented, so that their vibration-
induced frequency changes are equal. In the case of static
acceleration, a constant acceleration produces a simple trans-
lation in frequency of the steady-state filter response. If we
postulate a very low-frequency sinusoidal vibration, the filter
response can be thought of as oscillating back and forth along
the frequency axis at the vibration frequency. That is, the
filter center frequency wo,  varies according to (3) with w,
replacing w,. The effect on a sinusoidal signal of frequency
w is then well-approximated by its first-order change in phase
and amplitude:

A&  = AwJdQJdw) W

a n d

AV,  = AwJdG/dw) 0)

where 4 and V are the phase and amplitude of the signal, and
19 and G are the phase shift and gain of the filter.

For signals in the passband, dG/dw is usually small enough
to be neglected, so that the principal effect of vibration is
phase modulation in accordance with (5a). Now, dO/dw  is just
the negative of the group delay, Tg(w).  Hence, for sinusoidal
vibration the peak deviation is

cpv = (i: . fi)w,Tg(w,). (6)
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A simple example will illustrate the use of the quasi-static
method. Consider a two-pole Butterworth filter, with

$1 = 1 . 10-gG-l

f. = 10 MHz

BWa = 1 kHz

L(t)  c

Pt
(4

where BWs  is the 3-dB  bandwidth of the filter. At center
frequency the group delay is given by

v-1 V+l  Lo c
+ +
Tc-

c
T
1

Tg(w,)  = fi/7rBWs  = 0.45 ms. (b)

Then for a 5-G peak acceleration, the peak phase deviation is

(isv = 1 . 1o-g  .27r.  107.  5.0.45.  lo-”

= 1.414. lo-* rad

F i g .  1 . Equivalent circuit of a resonator whose frequency is perturbed due
to vibration. (a) Variation of resonance frequency is represented by L(t).
(b) Small variations of resonance frequency can be represented by controlled
voltage sources.

which corresponds to a single-sideband phase modulation L
of -83 dBc.  At center frequency, dG/dw  = 0, so that only
phase modulation is present. Note that as a result of the quasi-
static assumption, these results are independent of the vibration
frequency (within the limits of that assumption.)

The simplicity of the foregoing analysis is partly a con-
sequence of assuming that all the resonators have the same
G-sensitivity. When this is not the case, a quas&static  analysis
can still be carried out using network sensitivities-the effect
on the filter gain and phase shift of small changes in individual
resonator frequencies-but considerably more computation
will be required.

I----------A

Fig. 2. Two-pole filter equivalent circuit.

Because of its simplicity, the quasi-static view is quite useful
where valid. However, this is not always the case. A case
of particular importance is the class of spectrum clean-up
filters, or post-filters, discussed in a later section, in which
the vibration frequencies may exceed the filter half-bandwidth.
Here the quasi-static method is clearly inadequate.

It is shown in the Appendix that the effect of L1  can be
represented by a set of equivalent controlled voltage sources,
one for each sideband. For the small perturbations usually of
interest it is adequate to include only the first upper and first
lower sidebands, as shown in Fig. l(b); however, the method
is general.

C. Dynamic Analysis

To overcome the limitations of the quasi-static assumption,
the filter must be considered as a linear network with time-
varying elements. As for many time-varying linear systems,
the steady-state solution can be obtained, after some prelimi-
naries, by essentially frequency-domain methods.

Consider a resonator whose equivalent circuit is given
by Fig. l(a). For present purposes Fig. l(a) represents the
motional  impedance of a quartz crystal resonator subjected
to vibration; however, it could equally-well represent many
other types of resonator. If its resonance frequency varies sinu-
soidally, as in (3) small frequency variations can be accurately
represented by a sinusoidal variation of either capacitance C
or inductance L. Arbitrarily choosing the latter:

To illustrate, we again consider the two-pole Butterworth fil-
ter. The coupled-resonator equivalent network of Fig. 2, which
can represent several physical realizations, both discrete-crystal
and monolithic, will be used. In series with each motional arm
are two controlled voltage sources, one for the lower sideband
and one for the upper sideband. As outlined in the Appendix,
the network is first analyzed at the carrier frequency, obtaining
not only the output voltage, but also the carrier frequency
currents in each resonator, which are needed to determine
the amplitude and phase of the sideband generators. Once the
controlled-source parameters have been determined, they can
be used either simultaneously, or, since superposition applies,
individually to calculate the output at each sideband frequency.
Finally, carrier and sideband phasors are added together at the
filter output and then demodulated to separate the amplitude-
and phase-modulation components.

L(t)  = L(J  + 2L1  COSWJ

where

L1 = (-Aws/ws)LO.

Substituting (4) in (8):

(7)

(8)

The generality of this procedure makes it straightforward
to consider cases in which the highest vibration frequency
is not restricted by the quasi-static assumption. In addition,
the resonators need not have identical G-sensitivities, and the
relative contribution of each resonator is readily determined.
All of these situations are easily handled once the analysis has
been set up.

Fig. 3 plots the single sideband power as a function of
the vibration frequency when both resonators have the same
acceleration sensitivity. The quantities in Figs. 3, 4, and 6-9
are normalized as follows: vibration frequency is normalized
by one-half the 3-dB  bandwidth of the filter, BW/2;  single

L1 = (3.  ‘qLo.
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F i g .  3 . Vibration-induced sideband power (normalized) for a two-pole But-
terworth filter with r’t =  l?z, showing the relative contributions of the two
resonators when the carrier is at band center.

sideband power is normalized by [PC@  . A’. L&BW)~], where
P,  is the carrier power.

In Fig. 3 the carrier is at band center; hence, upper and
lower sideband levels are equal. At low frequencies the level
corresponds to that given by quasi-static analysis. Also shown
are the sideband levels due to each resonator. As would be
expected from quasi-static theory, for low frequencies the
two resonators contribute equally. However, for vibration
frequencies in the filter stopband, the principal contributor
is resonator 2, since it is connected directly to the load,
while the sidebands generated by resonator 1 are attenuated by
resonator 2. Since the Butterworth transmission characteristic
is symmetric, and the carrier is at the filter center frequency,
there is no amplitude modulation at wU,  although there are
small AM components at even multiples of w,;  therefore, the
sideband levels plotted in Fig. 3 are entirely due to phase
modulation.

It can be seen from Fig. 3 that if the two resonator
G-sensitivity vectors are equal in magnitude and oriented an-
tiparallel, then at w, = 0 their contributions exactly cancel, as
shown in Fig. 4. For high vibration frequencies, no cancellation
takes place, since the output modulation is due almost entirely
to resonator 2. While resonators having identical sensitivity
vectors are not easily come by at the present state of the art,
it is nevertheless useful to understand the basic effects.

When the carrier does not lie at band center, the vibration
induces both amplitude and phase modulation. Fig. 5 shows
the relative AM and PM levels as a function of carrier offset
from band center, when the vibration frequency is BW/4.  For
small offsets, the modulation is principally phase modulation,
while at large offsets it is principally amplitude modulation, the
crossover occurring near (w,-w,)  = *1.4.BW/2.  Modulation is
plotted in normalized form: the normalized phase modulation
is CJ$,~~~/(F  . A’  . w,IBW),  where $neak  is the peak pha_se
dzviation;  the normalized amplitude modulation is m,,/(r 9
A . w,/BW),  where mam  is the modulation index.

Fig. 6 compares the vibration-induced sideband levels for
2-, 4-, and 6-pole Butterworth filters in which all resonators
have the same g-sensitivity and the carrier is at band center.
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F i g .  4 . Vibration-induced sideband power (normalized) for a two-pole
Butterworth filter with r’r  and ?z  parallel and antiparallel.

F i g .  5 . Amplitude and phase modulation as a fun_ction  of carrier offset for a
two-pole Butterworth filter with rr =  rz.

The coupled-resonator equivalent circuit model is used in
all cases. At low vibration frequencies, the filters have the
sideband levels predicted by the quasi-static model, while at
high vibration frequencies, all three filters have asymptotically
identical sideband levels. In this region the sidebands are due
almost entirely due to the resonator nearest the load.

Because all resonators are assumed to have the same g-
sensitivity, the results in Fig. 6, although obtained for filters
having the coupled-resonator topology, apply for other topolo-
gies as well. The relative contributions of individual resonators
to the filter’s vibration performance are, however, topology-
dependent.

D. Spectrum Clean-Up Filters

Many frequency sources, including both oscillators and
synthesizers, use spectrum clean-up filters to reduce vari-
ous spurious output components, and to lower noise floors.
Spectrum clean-up filters, or post-filters, are also sometimes
considered as a means of reducing vibration-induced sideband
levels in a frequency source. Therefore, we now consider
a frequency source whose nominally sinusoidal output is
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Fig. 6. Comparison of normalized vibration-induced sideband power for 2-,
4-, and 6-pole Butterworth filters. Carrier is at band center, and all resonators
have the same I!.

frequency-modulated due to vibration and then passed through
a filter that is also subject to vibration. (The two vibration
environments will be assumed to be the same, although this
is not necessarily the case; e.g., if either the source or the
filter is protected by vibration isolators.) The- filter in turn
modulates both the carrier and the vibration sidebands of the
source; however, modulation of the latter, being a second-order
effect, will be neglected. Hence, the vibration sidebands of the
filter output are essentially the vector sum of the sidebands of
the source, attenuated and phase-shifted by the filter, and the
sidebands due to the modulation of the carrier by the filter.

Since clean-up filters are ordinarily as narrow as possible,
quasi-static methods may not be applicable. This was shown
for a single-resonator (one-pole) filter by Horton and Morley
[4]  who observed that for sinusoidal vibration at frequency
fV, (3), and a sinusoidal input at a carrier frequency fC the
output is a phase-modulated signal for which, for small phase
deviation:

.Wv)  = 201og  (i:. A.g,/[l  + (zY~fv/fc)~]“~) (10)

where QL  is the loaded Q of the resonator. The dynamic
analysis method confirms this result. Since the 3-dB  bandwidth
of a one-pole filter is

BW  = fc/Q~. (11)

Equation (10) can be written

C(fV)  = 2Olog  (?. A’.  (fC/BW)/[l  + (fw/BW/2)‘]  “‘).

(12)
From (10) and (12) it can be seen that the phase modulation
exhibits a frequency dependence corresponding to a one-pole
filter gain characteristic. For vibration frequencies within the
filter passband, the denominator in (12) is approximately 1
and the vibration-induced phase noise is nearly constant at the
level predicted by quasi-static analysis. On the other hand,
for vibration frequencies far removed from the passband,
(10) and (12) are asymptotic to the expression [l]  for the
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Fig. 7. Relative sideband levels for an oscillator with and without a one-pole
post-filter when the filter resonator has the same acceleration sensitivity as
the oscillator.

single-sideband level for a frequency source having the same
acceleration sensitivity vector:

Wu) = 201og  (r'GLf,lzf,,). (13)

Thus, at low vibration frequencies the filter’s contribution to
vibration-induced phase noise is less than that of a crystal os-
cillator using the same resonator (or, in general, any frequency
source having the same acceleration sensitivity) while at high
vibration frequencies the two contributions are the same. This
is illustrated in Fig. 7. The curve labeled “filter” represents
the phase modulation of a sinusoidal carrier by the filter;
“oscillator,” the phase modulation present on the unfiltered
oscillator output; and “filter t oscillator” the phase modulation
at the filter output, discussed below. The vibration frequency
is normalized to one-half the 3-dB  bandwidth, BW, of the
filter; the sideband levels are shown relative to the unfiltered
oscillator sideband level at BW/2.

The curve labeled “Filter+Oscillator” represents the vector
sum of the sidebands of the source, attenuated and phase-
shifted by the filter, and the sidebands added by the filter.
It can be seen that for identical gamma vectors identically
oriented, the single-pole filter does not improve the output
phase modulation, but rather degrades it by as much as 2.5 dB
in the vicinity of the passband  edges. (However, if the gamma
vectors of the source and filter were oriented antiparallel
instead of parallel, some improvement would occur in the
same region.) For vibration frequencies much greater than or
much less than BW/2, the vibration-induced sideband level is
essentially unchanged by the filter. This means that the filter
may still play a useful role in cleaning up spurious responses,
etc., but in order to reduce the vibration-related sidebands the
filter resonator’s acceleration sensitivity must be less than the
frequency source’s.

Fig. 8 shows the sideband levels for a source with a two-
pole Butterworth postfilter when the acceleration sensitivities
of the two filter resonators are the same in magnitude and
orientation as that of the oscillator and the center frequency
of the filter equals the oscillator frequency. It is seen that the
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Fig. 8. Relative sideband levels for an oscillator with and without a two-pole
Butterworth postfilter when the filter resonator has the same acceleration
sensitivity as the oscillator.
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Fig. 9. Reduction in vibration sideband levels for a source with a two-pole
Butterworth postfilter for three values of the gamma ratio (see text.)

filter provides no net improvement in the vibration-induced
sidebands and a degradation of 3 dB  at the filter passband
edge. If the filter crystals are oriented antiparallel to obtain
cancellation, as for Fig. 4, the only benefit in this application
is to remove this 3-dB  “bump.”

The net effect of the filter is more easily seen in Fig. 9,
which shows the vibration sideband reduction for the two-pole
Butterworth as a function of normal@ed  vibration_frequency,
with the gamma ratio, defined as (ratter  crystat/(I’source(,  as
a parameter. Three curves are shown. A gamma ratio of 1
corresponds to the equal-gamma case, Fig. 6; a ratio of 0.5,
to the case in which the acceleration sensitivity of the filter
crystals is one-half that of the source; and a ratio of 0.2 to the
case in which the acceleration sensitivity of the filter crystals
is one-fifth that of the source.

II. CONCLUSION

Acceleration effects in bandpass  crystal filters have been
analyzed by treating the filter as a linear, time-varying net-
work, thereby overcoming the limitations of the quasi-static
model. By using controlled-voltage sources to represent the
vibration-induced frequency variation of the crystal resonators,
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the problem is reduced to the analysis of a linear network with
constant coefficients. With this approach, not only can side-
band levels be accurately calculated, but also, by demodulating
the calculated filter output, amplitude modulation and phase
modulation effects can be separately determined.

Using this method of analysis, the use of spectrum clean-
up filters for improving the vibration-induced sideband level
of frequency sources has been examined and found to be of
limited value.

While the entire discussion has been in terms of sinusoidal
vibration, because of linearity the methods apply directly to
multifrequency and random vibration. Further, the method of
analysis presented is not limited to crystal filters, but can be
applied to any filter that can be represented by a lumped-
element equivalent circuit.

APPENDIX
CIRCUIT  REPRESENTATION AND A NALYSIS

For a linear network excited by a sinusoidal source whose
frequency is wC  and having one or more elements that are
time-varying at a rate wv,  it is readily apparent that the only
frequencies present in the steady state are wC  and sidebands
at intervals of w,:

w~=w,+i.w,(i=  ..‘) -1,0,+1,...). (14)

Moreover, since the network is linear, superposition applies;
we can therefore consider the variation of each element
separately and then add up their combined effects. In this
Appendix we model the sinusoidal variation of resonator
frequency by a perturbation of the motional inductance. (This
variation may be due to vibration, as in the present application,
or to any other mechanism.) We then use Bolle’s complex
symbolism [6]  to obtain the voltage-current relations for a
sinusoidally varying inductor. In general, the relations include
summations that are doubly infinite, but when the element
variation is sinusoidal they conveniently simplify to a finite
summation. This procedure yields an equivalent circuit in
which the time-varying inductor is replaced by a fixed inductor
and a voltage generator at each significant sideband frequency.
While the method is quite general, we will consider only the
case in which sidebands of second and higher orders can be
neglected.

For a resonator whose frequency is varying sinusoidally
at a rate wV, small frequency variations can be accurately
represented by a sinusoidal inductance variation, (7). If we
call ei  = Eicosw;t  the voltage across L, and ii = Iicoswit
the current through L, at frequency wi, then from (9) of Bolle,
the voltages at, respectively, the first upper sideband, carrier,
and first lower sideband frequency are

El = jwl[LlIz  + LoIl  + -&IO] (159
Eo = jwo[LlIl  + LoIo  + LlI-11 Wb)

E-1  = ~w-~[L~I~  + LoI-  + LII-21. (15c)

Up to this point, we have made no simplifying approxima-
tions. In (15a) and (15c), for the upper and lower sideband



voltages, we now neglect terms containing second-order side-
band currents. We also neglect the terms containing first-order
sideband currents in (15b). These simplifications are justified
for most cases of interest. We then obtain

where the maximum and minimum are taken over one period ’
of the lowest vibration frequency. If it is known that the
output is essentially only amplitude-modulated or only phase-
modulated, then the modulation index and related quantities
can be obtained directly from the sideband levels relative to
the carrier.

E. = jwoLoIo (16b)
E-1 = ~w-~[L~I~  + LoI-l]. (16~)
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