

Near- and MID-IR Semiconductor Laser-Based Sensors for Industrial Process Monitoring

Mark G. Allen Physical Sciences Inc.

May 2001

Sources and Target Gas Absorptions

Direct current injection devices from 0.43 \rightarrow 2.0 μ m; 4.6 \rightarrow 25 μ m

• Frequency converted devices from 0.22 \rightarrow 0.43 μm (SHG); 2.3 \rightarrow 4.5 μm (DFG, OPO)

PHYSICAL SCIENCES INC.

Example of PSI Multi-Wavelength Near-IR TDL Sensor Configuration

- Multiple lasers integrated into single instrument module
- Fiber/copper transmission of ~ 1000's m to measurement location

PHYSICAL SCIENCES INC

Simultaneous Detection of CH₄, CO₂, and H₂O Using Multi-plexed Diode Laser Sensor

VG01-102-3

- 0.5 Torr CH_4 , 68.1 Torr CO_2 , 14.1 Torr H_2O
- 50 cm path, single-pass, room-temperature

 10 ms sweep (sum of three lasers), 200 sweep average, 2 second measurement time

PHYSICAL SCIENCES INC.

Grating-Coupler, Sampled Reflector Laser

VG01-102-4

• Current tuning is de-coupled from gain

Example GCSR Tuning Surface from ADC

VG01-102-5

- Any point on this surface can be selected with ~1 μ s or less
- This single laser can access CO, CO_2 , OH, H_2O , N_2O , ...

GCSR Scan of Laser Mix 4% CO, 9% CO₂, Balance He, N₂, H₂, atm Pressure

- SSG reflector scan at fixed coupler, gain currents
- No phase current control (open circuit), resulting in mode-hops

Example TDL Sensor Dynamic Range: Atmospheric Trace NO₂ Monitor

• More than 10⁴ linear dynamic range

PHYSICAL SCIENCES INC

VG01-102-8

• Demonstrated sensitivity in 1 m path at STP

Species	Wavelength (µm)	Sensitivity (ppm-m)
H ₂ O	1.31, 1.39	40, 1
CO	1.57	5
CO ₂	2.0	0.5
CH ₄	1.65	0.1
NO	1.79	3
NO ₂	0.67	0.02
N ₂ O	1.52	1
HCN	1.54	0.02
O ₂	0.76	10
HCℓ	1.2, 1.7	0.01
NH ₃	1.54	0.2

• Others added frequently

Comparison of Measured and Equilibrium CO Concentrations

VG01-102-9

• Methane air flame, atmospheric pressure

Acquired with GCSR laser

Diode Laser Sensors for Control of Oxygen-Enriched Furnaces

 Temperature
 Exhaust Gas

 Heat Flux
 TDL Sensor

 Natural Gas
 for CO, O2

 Oxygen
 Vater

• In partnership with AirLiquide for pulsed oxy-fuel furnace control

VG01-102-10

Chicago Research Center

O₂ Measurement Comparison

VG01-102-11

Chicago Research Center

O₂ Monitoring Demonstration

VG01-102-12

 Noise contributions dominated by radiative emission fluctuations in furnace

Chicago Research Center

CO Monitoring Demonstration

VG01-102-13

Isolated CO lineshape at 1244 K, 30 cm path (R14 transition, (3,0) band)

CO sensor response in pulsed fuel operation mode

- Noise levels reduced compared to O₂ data due to smaller detector aperture
- rms CO noise level ~ 160 ppm-m

VG01-102-14

 Measure integrated absorbance from two transitions and define their ratio, R, as:

$$\mathsf{R} \equiv \frac{\int \mathsf{S}_{(\mathsf{T})} \mathsf{g}_{(\omega)} \mathsf{N} \, \mathsf{d}\omega|_{1}}{\int \mathsf{S}_{(\mathsf{T})} \mathsf{g}_{(\omega)} \mathsf{N} \, \mathsf{d}\omega|_{2}}$$

$$= \left(\frac{S_1}{S_2}\right)_{T_o} \bullet exp\left[-\frac{hc(E_1 - E_2)}{k}\left(\frac{1}{T} - \frac{1}{T_o}\right)\right]$$

where ${\rm T_{\rm o}}$ is an arbitrary reference temperature

- Sensitivity of the temperature measurement depends on the choice of absorption lines
- Accuracy of the temperature measurement depends on the accuracy of the measured ratio

Simultaneous Water Vapor Density and Thermometry H_2 -air flame, 70 cm pathlength, 3 second time constant

- Temperature precision ±15 K, thermocouple disagreement < 50 K
- Density precision ±2 x 10¹⁶ cm⁻³ (<2%)

Optical Mass Flux Sensor Basics

VG01-102-16

Technology:

 Velocity sensitivity to ~ 1 m/s at atm pressure

$$-\Delta\omega_{\rm v}/\Delta\omega_{\rm a}\sim10^{-4}$$

Continuous Gasdynamic Sensing in Supersonic Combustion

VG01-102-17

In collaboration with Tohoku University, Sendai, Japan

10 Hz sensor response in blowdown SCRAMJET model

NASA Dryden Full-Scale Engine Tests

VG01-102-18

P&W Engine

- ρ = 0.9 to 1.0 kg/m3
- u = 0 to 170 m/s
- $\dot{m} = 0$ to 100 kg/s

Measurement Standards

Inlet pitot-static probes (p, u, m)

DEEC (m)

Mass Flux Measurements NASA Dryden Full-Scale Engine Tests

VG01-102-19

 TDL sensor accuracy equivalent to or better than test facility standard

Aeroengine Flight Mass Flux Sensor

 Ground testing on F-100 engine showed ± 2% uncertainty from idle to mil-spec power

Flight sensor module on vibration test stand

Example "shake & bake" test result

- Sensor package (including optical interfaces) passed environmental tests and awaiting early 2001 flight
 - vibration requirements for F-18 operability exceed
 Pegasus launch requirements

PSI Airborne Diode Laser Sensors

VG01-102-21

V-2195

(a) PSI/NASA O2 Mass Flux Sensor

(b) PSI/DOE UAV Hygrometer

VG01-102-22

Supported by NASA Dryden Flight Research Center for Engine Control Applications

Optical interface hardware installed and flying for ~ 8 months

Compact, Airborne Laser Multigas Sensor

•

Program Goals

- Develop diode laser sensor for in-situ measurement of trace gas species from aircraft for atmospheric research on global climate change
- Develop capability for multiple species measurement using several lasers and fiber-optic network
- Automate and size sensor for deployment on new generation of research aircraft: Unmanned Aerial Vehicles (UAVs)

- UAV payload parameters
 - volume: 16 x 6 x 6 in.
 - weight: 10 kg with probe
 - power: 120 W
- Expandable to multiple lasers

External air probe provides true in-situ sampling

Altus UAV

VG01-102-23

PHYSICAL SCIENCES INC

Probe remotely mounted from processor module

Hand-Held TDL Gas Plume Sensor

 Collect topographic backscatter to check for gas absorption in illuminated region

- Presently under development for hazardous gas leak detection (HF, H₂S, CH₄) in petro-chemical processing facilities
 - 10 ppm-m sensitivity

PHYSICAL SCIENCES INC

Recent Advances in Room-Temperature Mid-IR Lasers

VG01-102-25

• MQW devices on GaSb substrates

- MIT Lincoln Lab, Univ. of Houston, Sarnoff, Univ. Montpellier
- multi-longitudinal mode, Fabry-Perot cavity
- quasi-CW peak power ~ 10 to 100 mW at room temperature

• Type II intersubband cascade on GaSb

- Univ. of Houston, AOI, Northwestern, NRL
- multi-longitudinal mode, Fabry-Perot cavity
- quasi-CW peak power ~ 100 mW, but only T \leq 250K

• Type I intrasubband quantum cascade on InP

- Lucent
- Fabry-Perot <u>and</u> DFB, single-mode
- quasi-CW peak power ~ 10's mW at T $\,{}_{\rm S}$ 350 K

Example Tuning, L-I, and V-I Characteristics of 5.4 μm DFB QC Device

VG01-102-26

- Temperature measured at cryostat mount
- Data obtained at Lucent using liquid-N₂ mount

Lucent QC Laser Package

VG01-102-27

• Each chip contains six lasers, two of which are wired

Top View

Front View

- Increasing regulatory pressure for pollutant and particulate omissions control on land and airborne gas turbine systems
 - CO, NO levels < 5 ppm
 - particulate levels ~ 10⁻⁴ g/m³
- In-situ monitoring of ~ 1 ppm levels of CO, NO difficult to accomplish with near-IR absorption
- MWIR emission/absorption offers possibilities for in-situ surveys of gaseous, particulate emissions
 - FTIR: major species concentrations, temperature, some trace species
 - QCL: high sensitivity measurement of CO, NO, SO₂

Example Detectivity Improvements Using Mid-IR Sensor

VG01-102-29

• Detection limits per meter absorption

	Demonstrated Limit	Potential Limit Mid-IR	
	Near-IR	2.3 μm	4.7 μm
300 K	3 ppm	20 ppb	0.1 ppb
Flames	100 ppm	0.7 ppm	5 ppb

CO

NO

	Demonstrated Limit	Potential Limit Mid-IR	
	Near-IR	2.7 μm	5.2 μm*
300 K	30 ppm	600 ppb	30 ppb
Flames	140 ppm	3 ppm	200 ppb

*Sensitivity of 80 ppb demonstrated at 5.41 μm

Ambient CO Measurements Using QCL

VG01-102-30

• atm pressure, 21 m path, 300 K

- Measured level \Rightarrow 200 ppb
- BRD-based detection limit ~ 5 ppb

Example NO Detection with QCL

VG01-102-31

- Unresolved doublet
- 550 ppb-m detection limit

PHYSICAL SCIENCES INC

Example SO₂ Detection with QCL

- 10 ppm-m detection limit → extend to 100 ppb-m using sensitive detection techniques
- H₂O vapor interferences will be important in combustion exhaust applications

VG01-102-32

Other QC-Laser Based In-Situ Sensors Under Development

VG01-102-33

• SO₂ and SO₃ measurements from combustion sources

- 7 to 9 μm region
- project 10 ppm-m detection limits at 600 K

• H₂CO and CO measurements in ambient troposphere

- 5.6 and 4.6 μm
- project ~10 ppb sensitivity with 100 m Herriot Cell
- NO and CO measurements in combustion gases

Frequency-Converted Diode Laser Sources in the MID-IR

VG01-102-34

- Built around PPLN chip containing APE waveguides
- Two near-infrared diode lasers for input
- Difference-frequency generation (DFG) to produce tunable mid-IR output radiation
- Tapered structures used to excite single mode of highly-multimoded waveguide

Copyright 2000 by Laser Focus World/PennWell Corporation

Advantages of Guided-Wave DFG Source

VG01-102-35

- PPLN has high nonlinear coefficient
- Near-IR input lasers lead to room temperature operation, low cost, portability
- DFG process leads to broad wavelength coverage using tunability of near-IR lasers, engineering of PPLN
- Waveguides increase the conversion efficiency $P_1 = \eta_{dev} P_2 P_3$ if $\eta_{dev} = 10\%/W$, two 100 mW lasers yield 1 mW

Waveguide DFG Power vs. Time

VG01-102-36

Methane Absorption Spectrum

VG01-102-37

Data/designs provided by Gemfire Corporation

105 100 95 % Transmission 90 85 80 open air at 23°C 30% relative humidity 100 23 cm path 99.9 3525.4 3525.5 3525.6 3525.7 3525.9 3525.8 99.8 Frequency, cm⁻¹ x100 99.7 3525.25 3525.35 3525.45

Data/designs provided by Gemfire Corporation

VG01-102-38

CO_2 ISOTOPES AT 4.3 μ m

VG01-102-39

Data/designs provided by Gemfire Corporation

The Next Level of Integration

VG01-102-40

Data/designs provided by Gemfire Corporation

Summary

- PSI has nearly a decade of experience in diode-laser-based gas sensors
 - multi-million \$ commercial spin-off company
 - over 70 custom units delivered to research customers in the U.S., Europe, and Asia
 - partnerships established with major industrial companies for eventual high volume applications
- Present research activities moving to advanced current-pumped mid-IR sources for DIAL and *in-situ* sensor applications
 - partnerships established with Lucent and AOI/University of Houston
 - licensed technology from Gemfire and growing capabilities in engineered non-linear optical materials for frequency-converted sources

