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1.1 INTRODUCTION

The wealth of electrical circuits currently present in laboratory settings and com-
mercial equipment can be grouped into a few basic types. Electrical circuits con-
tain a power source to supply electrical charges to the circuit and circuit elements
that affect the energy of the charges in the circuit. If the circuit element is passive,
then the charge loses energy in the element. If the circuit element is active then the
charge may gain energy in the circuit element. A circuit is either passive or active,
where active circuits have at least one active circuit element.

Measurements in electrical circuits focus on charges, their motion and their
energy. If the motion (current) and energy (voltage) in a circuit remain constant in
time the circuit is a direct current (dc) circuit. Many circuits of interest will have
currents and voltages that vary in time and are alternating current (ac) circuits.
However, there are many basic principles of electrical circuits that are present in dc
circuits and we will explore those principles in this chapter.

Electrical circuit measurements can be made in different systems of units, and
in this book the measurements will be in mks (meter kilogram second) units. Sci-

entific notation accompanies the units so that one can write, for instance, 10−2

volts, or 10−2 V using the abbreviation for volts. Units in the mks system have stan-
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dard prefixes and these are important since in electronics the prefix is preferred to
scientific notation. Using the prefix one should write 10 millivolts or 10 mV instead

of 10−2 V. Prefixes for various powers of ten are given in Table 1.1.

TABLE 1.1. Powers-of-Ten Prefixes

Some prefix symbols appear in more than one way in electronics. This is pri-
marily due to printing requirements on components. Greek characters are often not
available and the character u will replace µ on capacitors. Since pico is the same as
micro-micro the capacitors might be marked in uuF instead of pF for picofarads.
Capitals occasionally replace small letters on components as well. We will use cap-
ital letter prefixes for positive powers of ten, and small letter prefixes for negative
powers of ten.

1.2 ELECTRIC CHARGE AND CURRENT

There are two kinds of electric charge, positive and negative. They are so named
because they add and subtract like positive and negative numbers. All atoms con-

tain charge; the usual picture of an atom is a small (10−15 m diameter) positively
charged nucleus around which negatively charged electrons move in orbits of the

order 10−10 m diameter. Charge is measured in coulombs (C), and the charge on one

electron is −1.6 x 10−19 coulombs. Although electric charges (positive and nega-
tive) in electric circuit problems are integral multiples of the charge of the electron,
in most electric circuit problems the discrete nature of electric charge may be
neglected, and charge may be considered to be a continuous variable.

Prefix Symbol Meaning Example

giga G 109 1 gigahertz = 1 GHz = 109 hertz

mega M 106 1 megohm = 1 MΩ = 106 ohms

kilo k or K 103 1 kilobyte = 1 KB = 103 bytes

milli m 10-3 1 millivolt = 1 mV = 10−3 volts

micro µ or u 10-6 1 microampere = 1 µA = 10−6 amperes

nano n 10-9 1 nanosecond = 1 ns = 10−9 seconds

pico p or uu 10-12 1 picofarad = 1 pF = 10−12 farads
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One of the most fundamental conservation laws of physics says that in any
closed system the total net amount of electric charge is conserved or, in other
words, is constant in time. For example in a semiconductor if one electron is
removed from a neutral atom then the atom minus the one electron (the ion) has a

net electric charge of +1.6 x 10-19 coulombs.

The flow of electric charge, either positive or negative, is called the current;
that is, the current I at a given point in an electric circuit is defined as the time rate
of change of the amount of electric charge Q flowing past that point.

(1.1)

Current is measured in amperes (amps or A); one ampere of current is the flow of

one coulomb of charge per second, which is is 6.25 x 1018 electrons per second.
One ampere is a lot of current for a benchtop circuit. More common units of current

in circuits are the milliampere (mA), which is 10−3 A, and the microampere (µA),
which is 10−6 A.

The direction of the current is taken by convention to be the direction of the
flow of positive charge. If electrons are flowing from right to left in a wire, then this
electron current is electrically equivalent to positive charges flowing from left to
right; so, we say the current is to the right. Since current has both magnitude and
direction it is a vector quantity; however, in electical circuits the wires and other
components effectively restrict the direction to two choices.

We can compare electric current in a wire to water flow in a pipe, the water
molecules being analogous to the electrons in the wire. A flow of water in kilo-
grams per second is analogous to a flow of electric charge in coulombs per second
or amperes. Ignoring the individual electrons in the current is similar to ignoring
the individual molecules in water flow.

I
td

dQ≡
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 FIGURE 1.1. Conservation of current at a point.

From the law of conservation of charge we know that all the charge that goes
into a point in a circuit must come out as shown in Fig. 1.1. This can be restated as
the current law: The sum of all currents at a point is zero.

1.3 ELECTRIC POTENTIAL AND VOLTAGE

Between any two charges there is a force, called the Coulomb force. The Coulomb
force F depends on the amount of each of the two charges Q1 and Q2, the distance
between the two charges r and the permittivity of free space ε0. The quantity 1/4πε0
is approximately 9 x 109 Nm2/C2.

(1.2)

The direction of the force is along the line between the charges. The force is repul-
sive if the two charges have the same sign and attractive if the two charges have
opposite sign. The electric field Emeasures the force per unit charge and is given in
N/C.

(1.3)

A charge that moves in an electric field may do work. Electrical work has units of
energy and is defined as the path integral of the charge as it moves under the influ-
ence of the Coulomb force.
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(1.4)

In (1.4)W is the work and dl is the component of the path parallel to the direction of
the force. The Coulomb force is conservative and the work done is independent of
the path taken by a charge. If the starting point and ending point are the same the
work done must be the same as if the charge had never moved and had performed
no work. This is conservation of electrical energy and can be restated: The work
done by an electric charge along a closed loop is zero.

The voltage (tension in some parts of the world), or electric potential, V at a
point in a circuit is defined as the electrical potential energy W of a positive charge
Q at that point divided by the magnitude of the charge; that is

(1.5)

The unit of voltage is the volt (V); one volt is defined as one joule per coulomb
(J⁄ C). Combining this definition with the definition for the electric field (1.3)
one can express the electric field in units of V/m, using L for the length between the
two measured voltage points.

(1.6)

The positive charges will tend to move from points of higher voltage toward points
of lower voltage; for example, positive charge will move from a point with a volt-
age of +15 V toward a point with a voltage of +12 V. Similarly, negative charges
will tend to move from points of lower voltage toward points of high voltage; for
example, negative charge (electrons) will move from a point of voltage −12 V to a
point of voltage −7 V.

In (1.4) we defined electrical work relative to a starting point in the path. Simi-
larly, voltage is measured relative to some other specified reference point in the cir-
cuit, where we say the energy of all charges is zero. This reference point is usually
called ground. A good ground provides a continuous path of metal to the earth such
as a cold-water pipe or sometimes just the metal chassis or box enclosing the cir-
cuit. The key is that the circuit ground has a constant potential or voltage simply
because it is so large and is a reasonably good conductor. Any charge taken from or
added to the earth through a circuit’s ground wire will not appreciably change the
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total charge on the earth or the earth’s voltage. The symbols used for ground nota-
tion are shown in Fig. 1.2.

FIGURE 1.2. Symbols used for ground in circuits.

The voltage at a given point has no absolute meaning but only indicates the
potential energy per unit charge relative to ground. In terms of the analogy between
current and water flow, the voltage is analogous to the water pressure, because
water tends to flow from points of higher pressure to points of lower pressure. It is
sometimes useful to think of the voltage as causing or forcing the flow of current,
just as one thinks of the water pressure as causing or forcing the flow of water. In
this view, voltage is a cause, and current is an effect.

Now we can talk about a circuit and the current and voltage in the circuit. An
electrical circuit consists of one or more circuit elements connected together. Cur-
rent flows through each element and a voltage change is present across each ele-
ment. The voltage represents the change in electrical potential through a circuit
element and is equivalent to the work done by an electric charge flowing through
the element. When a voltage is measured at a point in the circuit it is assumed to be
measured with respect to ground. The absolute voltage at a point does not matter
for the behavoir of the circuit, only the change in voltage across a circuit element.
We can restate the conservation of electrical energy as the voltage law: The sum of
voltages around a closed loop is zero.

chassis grounds earth grounds
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 FIGURE 1.3. Conservation of voltage around a loop.

Power is defined as the time rate of doing work W or the time rate of expend-
ing energy.

(1.7)

The unit of power is the watt; 1 watt = 1 joule/second (J/s). Combining equations
1.1, 1.5 and 1.6 gives an expression for the power expended in an electrical circuit
element carrying a current I and with a voltage change V:

(1.8)

1.4 CONDUCTORS

Our definition of a circuit element has a current that flows through the element, a
voltage difference across the element, and two wires on either end of the element.
This type of circuit element is called a two-terminal device.

V1

V2

V3

V1 V2 V3+ + 0=
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FIGURE 1.4. Current and voltage through a two-terminal device.

If a current I flows through any two-terminal device, then the current into the
circuit element must exactly equal the current leaving the element, from the conser-
vation of charge law (see Fig. 1.4). V2 is the voltage at the terminal where the cur-
rent enters the circuit element; V1 is the voltage where the current leaves. For a
passive circuit element the charge loses energy and V2 must be larger than V1.

The static or dc resistance (usually referred to simply as the resistance) of the
circuit element is defined as the voltage difference, V2 - V1, between the terminals
divided by the current I.

(1.9)

Strictly speaking, this definition applies only to a circuit element that converts elec-
trical energy into heat, but this situation occurs in the overwhelming majority of
cases in electronic circuitry. Resistance is measured in ohms (Ω); one ohm is
defined as one volt per ampere (V⁄ A).

Conductivity

Real two-terminal devices are not undefined boxes, but are three-dimensional
objects with real material properties. We will consider a simple two-terminal
device like a wire that is cylindrical with a cross-sectional area A and length L as in
Fig. 1.5.

V1

I

V2

R
V2 V1–

I
------------------≡
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 FIGURE 1.5. Flow of current through a wire.

The device has a voltage difference V which results in an electric field E (1.6). This
causes a current to flow in the device like pressure causes water to flow through a
pipe. The current density J is defined as the current per unit area: J = I/A. If we use
the analogy of water flowing through a pipe then a narrow garden hose and wide
fire hose may both have the same current, but the narrow hose will have a greater
current density due to the smaller cross-sectional area.

Experiments show that up to some maximum voltage the current density is
proportional to the electric field. The conductivity σ is defined as the ratio of the
current density to the electric field.

(1.10)

Conductivity can depend on the material, field, temperature, pressure, or many
other physical properties, but conductivity does not depend on the size and shape of
the device.

To approximate the conductivity in a metal, we assume an electron is acceler-
ating freely for time τ, due to a force F = eE, then it collides with an atom and starts
over. The acceleration of the electron is:

(1.11)

With constant acceleration, the electron’s velocity, or drift speed, is:

(1.12)

E=V/L
J=I/A A

L

σ J
E
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And, if the number of electrons in the conductor is n, then the current density is:

(1.13)

The conductivity is the ratio of the current density to the electric field (1.10). In our
approximation the conductivity depends only on the number of electrons and mean
time between collisions. These terms are all constants of a particular metal, so the
conductivity is a constant as well.

(1.14)

Conductivity has units of current density divided by the electric field or

(A⁄ m2)⁄ (V⁄ m) = 1⁄ Ω·m. The conductivity multiplied by the length of

the conductor gives the conductance and is measured in Ω−1. This is the reciprocal

of resistance. One Ω−1 is called a siemen (S) or mho (“ohm” spelled backward).

Resistivity

Resistivity is the inverse of conductivity: ρ = 1/σ and is measured in units of Ω·m.
The resistivity expresses the difficulty an electron has in moving through the mate-
rial due to the collisions it experiences with the atoms. Resistivity values for vari-
ous materials are given in Table 1.2.

J nev
ne2τ
m

------------E= =

σ ne2τ
m

------------=
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TABLE 1.2. Resistivity Vaules of Various Materials

A conductor is a substance or material with “low” resistivity. Most metals are
good conductors; copper or aluminum wire is usually used in electronic circuits to
carry current. An insulator is a substance or material with “high” resistivity that is
used to prevent current flow. Most plastics, rubber, air, mica, and quartz are good
insulators; wire is usually covered with a plastic sheath insulator to confine the cur-
rent flow to the wire. Note that germanium and silicon have resistivities that are
much greater than those of metals but less than those of insulators. Hence they are
often called semiconductors.

Resistance measures the integrated resistivity per cross-sectional area over a length
of conductor. A uniform piece of conducting material of length L and cross sec-
tional area A has a resistance of R:

(1.15)

Material Resistivity at 20ºC (Ω·m)

Conductors

Silver 1.5 x 10−8

Copper 1.7 x 10−8

Aluminum 2.8 x 10−8

Tungsten 5.5 x 10−8

Carbon 3.5 x 10−5

Semiconductors

Germanium 4.3 x 10−1

Silicon 2.6 x 103

Insulators

Glass (typical) 1 x 1012

Mica 9 x 1013

Quartz (fused) 5 x 1016

R ρL
A
---=
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where ρ is the resistivity of the material. The diameter and resistance per unit
length of selected copper wires are given in Table 1.3. In a practical electronic cir-
cuit, for example, a No. 22 wire 4 in. (0.1 m) long would have a resistance of only
0.006 Ω.

TABLE 1.3. Resistance of Various Sizes of Copper Wire

Ohm’s Law

As in our approximation earlier in this section, for many kinds of circuit elements it
is empirically true that the conductivity, and hence the resistance, of the element is
constant if the temperature and composition of the element are fixed. This is true
over an extremely large range of voltages and currents. Changing the voltage differ-
ence between the two terminals by any factor changes the current by exactly the
same factor; that is, doubling the voltage difference V = V2 - V1 exactly doubles the
current I.

Ohm’s law is simply the statement that the resistance R is constant. It can be
written in three ways:

(1.16)

These three forms of Ohm’s law can be thought of in the following terms. R = V/I
means that if there is a voltage difference across a circuit element through which a
current I is flowing, then the circuit element must have a resistance V/I. V = IR
means that if a current I is forced through a resistance R, then a voltage difference
IR will be developed between the two ends of the resistance. I = V/R means that if
there is a voltage difference across a resistance, then a current must be flowing
through the resistance.

AWG wire size Diameter (in.) Resistance per 1000 ft (Ω)

24 0.0201 28.4

22 0.0254 18.0

20 0.0320 11.3

18 0.0403 7.2

16 0.0508 4.5

R
V
I
---= V IR= I

V
R
---=
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Perhaps the most important thing to remember about Ohm’s law is that it is
only the difference in voltage across a resistor which causes current to flow. Thus a
5 KΩ resistor with one end at 35 V and the other end at 25 V will pass a current of
2 mA. A 5 KΩ resistor with one end at 1078 V and the other end at 1068 V will also
pass a current of 2 mA because the voltage difference is also 10 V.

1.5 RESISTORS

Any two-terminal circuit element of constant resistance is shown in circuit dia-
grams as a zig-zag line (see Fig. 1.6) and is called a resistor.

FIGURE 1.6. Schematic symbol for a resistor.

Resistors are described by their resistance, precision, and power rating. The resis-

tance of resistors is measured in ohms (Ω) in the range 0.01 to 1012 Ω. Scientific
notation is generally avoided for resistors less than 1012 Ω. The preferred units for
each range of resistance are 1-999 Ω, 1-999 KΩ, 1-999 MΩ, 1-999 GΩ. Resistors
are made with accuracies from 0.01% to 20% and come with power ratings from 1/
8 to 1000 W.

Resistors can be made from any conductor and a number of types are common.
The most common is made from a carbon composite, where the specific composi-
tion is used to vary the resistivity of the material. Carbon resistors are inexpensive
and available in a wide range of resistances, but are not very precise. Resistors are
also made from metal wires and films where the length and area control the resis-
tance (1.15). Metal-based resistors are used for precision applications such as stan-
dard values. The types of resistors are addressed more fully in Appendix A.

A three-digit number code is commonly used to describe the resistance printed
on an individual resistor, instead of the actual resistance. The first two digits of the
code should be read as a number, and the third digit is read as an exponent for a

power of 10. For example, a resistor printed with the number 471 is 47 x 101 Ω =

470 Ω; a resistor printed with the number 103 is 10 x 103 Ω = 10 KΩ. Note that this
second case is not 103 Ω, which would be 1 KΩ instead of the correct value 10 KΩ.

R
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The two digit numbers in the resistor code do not appear in all 100 possible
values. Because many common resistors have precision no better than 5%, 10% or
20%, the standard two digit numbers go up in steps roughly double the precision -
10%, 20% or 50%. These are shown in Table 1.4, where the 20% precision steps
use only six values, the 10% steps use 12 values, and the 5% steps use all 24 values
in the table.

TABLE 1.4. Standard two digit numbers for resistor values.

We should keep in mind the precision of the components in a circuit when selecting
a resistor value. If a circuits calls for a resistance of 205 Ω, but the components in
the circuit are only accurate to within 10%, a 220 Ω resistor could be used because
205 Ω is not available and 220 Ω is within 10% of the required value. Don’t try to
get too precise through a combination of different resistors or with expensive com-
ponents when the rest of the circuit doesn’t warrant the precision.

For the common carbon resistors in cylindrical packages the resistance of a
resistor usually is given by a color code instead of a number. The code is the same
as if a three-digit number was used, with each color representing a number:
black=0, brown=1, red=2, orange=3, yellow=4, green=5, blue=6, violet=7, grey=8,
white=9. If you have difficulty remembering the color code, note that the colors fol-
low the colors of the visible spectrum, starting with red for the number two and
going through violet for the number seven. In the color code, the first digit of the
resistance is given by the color band closest to an end of the resistor.

Many color-coded resistors have more than three bands. The fourth color band
gives the precision, also called the tolerance, of the resistor. Silver means 10% tol-
erance, gold means 5% tolerance, and no fourth colored band means 20% tolerance.
A 2 KΩ 10% resistor will have a resistance somewhere between 1.8 and 2.2 KΩ.

Certain high-reliability resistors are tested for failure rates under conditions of
maximum power and voltage, and the results are expressed in percentage failure

20%, 10%, 5% 5% 10%, 5% 5%

10 11 12 13

15 16 18 20

22 24 27 30

33 36 39 43

47 51 56 62

68 75 82 91
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per thousand hours. The fifth colored band represents the failure rate according to
the following scheme: brown 1%, red 0.1%, orange 0.01%, and yellow 0.001%. A
table of the resistor color code is included in Appendix A.

Variable resistors are also available (Fig 1.7). They come in many sizes and
styles, and are usually adjusted by manually turning a shaft. One special type of
variable resistor is the potentiometer or “pot.” Pots have three terminals: one at
each end of the resistor and one for the variable position of the tap. The total resis-
tance RT between the two end terminals A and B is always constant and equals the
resistance value of the pot. The resistance R1 between A and the tap and the resis-
tance R2 between B and the tap vary as the shaft is turned. Notice that if the shaft is
turned fully toward terminal A, the tap is electrically connected to terminal A and
R2 = RT, R1 = 0.

FIGURE 1.7. Schematic symbols for (a) variable resistors and (b) potentiometers.
R measures the maximum resistance.

A dc current I flowing through a resistor R develops a power dependent on the
voltage V across the resistor. Recalling that voltage is electrical potential energy per
unit charge, we see that a charge has less electrical potential energy when it leaves a
resistor than when it enters because of the decrease in voltage, or voltage “drop”
across the resistor. From (1.8), P = IV. But, from Ohm’s law, V = IR; the power can

also be expressed as P = I2R. And, again from Ohm’s law, I = V/R, so another way

of expressing the power is P =V2/R. These three expressions for the power are
equivalent and apply only to direct current flowing through a resistor. In short the

power developed by the resistor is I2R or VI or V2/R.

The power developed through a resistor shows up as heating of the resistor. In
other words, the loss of electrical potential energy (due to the IR voltage drop) of
the charge flowing through the resistor is converted into random thermal motion of
the molecules in the resistor. The kinetic energy of the flowing charges remains
approximately constant everywhere in the circuit. Electrical potential energy is con-

R R
Laboratory Electronics 15
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verted into heat energy in any dc circuit element across which there is a voltage
drop and through which current flows.

If too many watts of power are converted into heat in a resistor or in any circuit
element, the resistor may “burn up,” in which case the resistor turns brown or black
and may actually fragment, thus breaking the electrical circuit. In other words the
resistor is open or has an infinite resistance. Or, if the resistor is heated too much,
its resistance value may increase tremendously, thus changing the operation of the
circuit drastically. For these reasons resistors are rated by the manufacturer accord-
ing to how much power they can safely dissipate without being damaged. Resistors
are commonly available with wattage ratings of 1/8 W, 1/4 W, 1/2 W, 1 W and 2 W.
Special purpose resistors are available with higher wattage ratings. The larger the
resistor is physically, the more power it can safely dissipate as heat.

Note that the resistance does not depend on the actual physical size. The phys-
ical size determines the power rating; for example, a 1/2 W, 2.2 KΩ resistor is the
same size as a 1/2W, 470 KΩ resistor. Circuit designers usually choose a power rat-
ing of at least three or four times the expected power. For example, if a 1.5 KΩ
resistor is to carry 20 mA of direct current, then the power dissipated as heat in the

resistor will be (1.5 KΩ)(20 mA)2 = 0.6 W.

In an actual circuit a 1.5 KΩ 2 W resistor would be used, perhaps even a 5 W
resistor. If a large wattage is developed in a certain part of a circuit, care should be
taken to provide an adequate vertical flow path for air around the hot element so
that the heat can be carried away by the resulting convection air currents. A resistor
dissipating a large amount of power should never be placed in a closed chassis.
Heat is an enemy of transistors and other circuit elements.

1.6 TEMPERATURE DEPENDENCE

Resistivity varies for different materials; it depends also on the temperature, typi-
cally increasing with increasing temperature in most metals. For carbon resistors
used in most electronic circuits, resistivity increases by approximately 0.5% to 1%
for a 10ºC temperature increase. For most metallic conductors, the resistivity
increases slowly with increasing temperature. At high temperatures the thermal
motion of the atoms increases; hence the average distance moved by a free electron
between collisons decreases, producing a slightly lower drift speed. The resistance
of a metallic conductor depends upon temperature according to the relation

(1.17)RT R0 1 α T∆+( ) R0 1 αT αT0–+( )= =
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where R0 is the resistance at some reference temperature T0, ∆T = T - T0 and is the
temperature rise in ºC and α is the linear temperature coefficient of resistance in

(ºC)-1 (Table 1.5). α is typically 0.005(ºC)-1 for most metals or about 0.5%/ºC. For
example, if a piece of copper has a resistance of 100 Ω at 10ºC, at 300ºC it will
have a resistance of (100 Ω)[1 + (0.0039/ºC)(300ºC-10ºC)] = 213 Ω.

TABLE 1.5. Linear Temperature Coefficients for Various Materials.

The temperature dependence of conductors is used to measure temperature in
electronic devices. Two types of such devices are the resistance thermometer and
the thermistor.

The resistance of pure platinum is often used as a standard of temperature over
a wide temperature range, from -190ºC to over 600ºC; the device is called a resis-
tance thermometer. A constant known current is forced through a pure piece of plat-
inum wire, and the voltage across the platinum wire is measured. This voltage drop
is linearly proportional to the resistance of the platinum wire, which in turn depends
upon the temperature, according to the equation (1.17).

A thermistor is a special two-terminal device designed to have a strong func-
tion of temperature. The resistance, RT, of a thermistor is given by

(1.18)

where A is a constant in kelvins (K) whose value depends upon the particular ther-
mistor, R0 is the resistance at temperature T0 (K), T is the temperature of the ther-

Material α(ºC)-1

Carbon −0.0005

Silver +0.0038

Copper +0.0039

Aluminum +0.0039

Platinum +0.0039

Tungsten +0.0045

Iron +0.0050

Nickel +0.0067

RT R0e
A 1 T⁄ 1 T0⁄–( )

=
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mistor (K), and e = 2.718 (the basis of the natural logarithms). The constant A
depends slightly on temperature. Using (1.18) over a 50ºC range with A constant
would typically produce a 3ºC error. For greater accuracy the thermistor should be
calibrated experimentally over the temperature range expected.

The resistance change for a thermistor is typically ten times the resistance
change for copper for the same temperature change. The thermistor resistance
decreases with increasing temperature, which is like carbon, but opposite to the
temperature dependence for most metals.

Commercial thermistors are usually made from sintered mixtures of Mn2O3

and NiO or platinum alloys and are often encapsulated in metal or a thin glass bead
with two wire leads. They are available in a wide range of resistance values. The
thermistor resistance at 25ºC can range from 30 Ω to 20 MΩ for various types, and
the ratio of the resistance at 25ºC to resistance at 125ºC may range from 10:1 to
100:1.

The thermistor takes a certain time to come to equilibrium if its surrounding
temperature is changed. The thermistor time constant is defined as the time
required for the thermistor resistance to change by 63%, with 100% being the total
change in resistance for an infinite time. For example, consider a thermistor with a
10 KΩ resistance at 100ºC, and a 110 KΩ resistance at 30ºC, and a time constant of
100 ms. If the thermistor is initially in equilibrium at 100ºC and is suddenly
immersed in a 30ºC environment, then its resistance will increase to 110 KΩ +
0.63(110 KΩ - 10 KΩ) = 73 KΩ in the first 100 ms. Bare thermistors with no glass
covering are the fastest; they are available with time constants as short as 4 ms in
water and 100 ms in air. Larger thermistors encapsulated in glass would, of course,
have longer time constants, perhaps 200 ms in air and 5 s in water.

Finally it should be pointed out that the self-heating of the thermistor due to the
current I flowing through it should be as small as possible. The manufacturer will

specify a self-heating (I2RT) power per degree Celsius error produced. This might
be 0.5 mW/ºC in air and 2.5 mW/ºC in water for a typical thermistor. For such a
thermistor in water, the internal self-heating should be kept much less than 2.5 mW
for the temperature error to be much less than 1ºC.

1.7 POWER SOURCES

A power source or supply is a two-terminal circuit element that supplies the voltage
and current to other elements in a circuit. In a circuit with a power source the
remaining elements of the circuit are called the load. In a dc circuit a power source
Laboratory Electronics



D
R

A
F
T

has a positive terminal and a negative terminal, with the positive end acting as a
source of positive voltage or current. In general, current flows from the positive ter-
minal through a circuit and into the negative terminal. The fact that there is a more
positive and more negative end of a battery defines the polarity.

It is often convenient to use the concept of an ideal power source to describe
various circuits. An ideal voltage source is one that supplies a constant voltage to
the rest of the circuit regardless of the current drawn by the other elements in the
circuit. An ideal voltage source has zero internal resistance. The circuit symbol for
an ideal voltage source is a circle as shown in Fig. 1.8(a); a voltage V is always
present between points A and B. A specific type of dc voltage source is the battery,
shown in Fig 1.8(b). In many cases the symbol for a battery, with its alternating
long and short lines, is used for any dc voltage source. The positive “+” terminal of
a battery is not always marked, but always coinicides with the end with a long line.

An ideal current source is one that supplies a constant current regardless of the
voltage across the load. An ideal current source has an infinite internal resistance
so that changes in the load resistance will not affect the current supplied by the
source. The circuit symbol for an ideal current source is shown in Fig. 1.8(c); a cur-
rent I always flows through the circle representing the ideal current source regard-
less of the rest of the circuit.

FIGURE 1.8. Symbols for (a) voltage source, (b) battery and (c) current source.

Real power supplies cannot supply an arbitrary amount of voltage or current. A
real voltage source is limited in the amount of current it can supply before the volt-
age fails to meet the specified value. Similarly a real current supply is limited by
the amount of voltage it can supply. A real supply behaves like it has some resis-
tance inside, but for most purposes we can treat real supplies as ideal supplies.

A real voltage source or battery can be represented by an ideal battery or volt-
age source Vbb in series with a resistance r, as shown in Fig. 1.9. Two circuit ele-
ments are in series when all the current passing through one element also passes
through the other element. The terminal voltage of a real battery falls as we draw

I

+ −+ −
V

(a) (c)

A B

+ −

(b)

V
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more and more current from it because there is a voltage drop across the battery’s
internal resistance. The amount of the voltage drop comes directly from Ohm’s law
and is equal to Ir.

FIGURE 1.9. Real voltage source showing a series resistance.

For example a 6 V battery with a 1 MΩ internal resistance will essentially
deliver 6 uA to a 1 KΩ, a 10 KΩ, or a 100 KΩ resistor connected across it. The cur-
rent remains constant so long as the load resistance is small compared to the inter-
nal resistance. Such a source can be approximated by a battery with a series
resistance r much larger than any resistances in the load connected across the bat-
tery. Then the battery will always supply a current of Vbb/r regardless of any
changes in the load resistance.

A real current source can be represented by an ideal current source in parallel
with a resistance r, as shown in Fig. 1.10. Two circuit elements are in parallel when
both elements share the same voltage drop across their terminals. The current sup-
plied by a real current source falls if the load is large since it will demand a voltage
drop across the load, but this voltage drop will send current through the large inter-
nal resistance r. The current taken up by the internal resistance is equal to V/r.

Vbb

r I

V
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FIGURE 1.10. Real current source showing a parallel resistance.

Batteries

A battery is a power supply that converts a chemical reaction into electrical energy.
Batteries may use a variety of chemicals to generate the electrical energy. One of
the most common is the alkaline battery commonly used in household and elec-
tronic equipment. This battery runs on a mixture of manganese dioxide and carbon
as a cathode or negative source and powdered zinc for the anode or positive source.
A solution of potassium hydroxide in water forms an electrolyte that caries charges
between the anode and cathode. Other common batteries use only carbon and zinc,
camera and watch batteries may use lithium ions as their chemical components.

Batteries are rated by their size, voltage, lifetime, and power density. Many
battery sizes are standardized by size with names like AA and D for use in electrical
instruments. There are also many custom battery sizes for particular manufacturers,
such as for cellular phones and handheld computers.

Typical battery voltages range from just over 1 V to 12 V. This voltage rating is
the same as Vbb in Fig 1.9 and indicates the difference in voltage that the battery
will maintain between its two terminals. As a battery uses its chemicals it loses the
ability to maintain its rated voltage, and is said to go bad. At this point its internal
resistance r increases sharply. For good batteries this internal resistance can vary
from 0.03 Ω in a 12 V automobile battery, to 13 Ω in a standard 9 V battery.

A battery’s lifetime is measured ampere-hours (Ah), and indicates the total cur-
rent times the time that battery can supply its intended voltage before the chemical
reaction has weakened and the voltage falls off. For instance, a battery rated at 3000
mAh can supply a continuous current of 10 mA for 300 hours, or 100 µA as a
backup for 30,000 hours or about 3 1/2 years.

I0
r

I

V
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Power density measures the lifetime of the battery compared to the weight of
chemical in the battery. Power density only depends on the type of chemical used to
create the electrical energy. Higher power densities, such as in lithium batteries,
permit smaller battery size.

An important class of batteries are rechargeable. These batteries also use
chemical reactions, but are designed to allow the reactions to be reversed. This
allows the battery to be recharged by putting the battery in parallel with another
power supply which restores the lifetime of the battery. Examples of rechargeable
batteries include nickel-cadmium (NiCad) and nickel metal hydride (NiMH) as
well as the lead-acid battery used in cars. One disadvatage to a rechargeable battery
is that it continues to lose power even while no current is drawn from it.

For a brief summary of different types of batteries, see Appendix A.

1.8 KIRCHOFF’S LAWS AND NETWORK ANALYSIS

A battery with a voltage V and a resistor with resistance R can be connected by
wires to form a simple circuit as shown in Fig 1.11. Notice again that the straight
lines drawn in the circuit diagram represent wires with zero resistance, and there-
fore no change in voltage along those wires; the voltage at the positive battery ter-
minal is exactly the same as the voltage at the top of the resistor. When wires
connect both ends of a component to the other components in the circuit the circuits
is said to be closed. If there are wires or components that are unconnected as in Fig.
1.9 the circuit is said to be open. A special case of a closed circuit is a circuit closed
a zero resistance wire, which is called a short circuit.

Also notice that we may ground any one point in a circuit as shown in Fig.
1.11.Whether or not there is a ground the voltage difference between the battery ter-
minals is V, and the current in the circuit is the same: I = V/R. The ground connec-
tion merely sets the zero voltage level; no current flows into or out of the ground
connection. In some circuits more than one ground wire is shown. In this case, a
virtual wire is assumed to connect all ground points in a circuit so that the ground
connections can be used to close a circuit and current may flow through that virtual
wire.
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FIGURE 1.11. Simple circuit with a battery and resistor.

Kirchoff’s Laws

The two basic laws of electricity that are most useful in analyzing circuits are Kir-
choff’s laws of current and voltage:

Kirchoff Current Law (KCL) : The sum of currents entering a junction is equal to
the sum of currents leaving the junction.

Kirchoff Voltage Law (KVL) : The sum of voltage increases around a closed loop
of a circuit is equal to the sum of voltage drops around the loop.

The current law merely says that no electric charge is being created or
destroyed at the junction in question; that is the total current entering equals the
total current leaving. The voltage law says that there is no net gain in electrical
potential energy for any charge making a trip around any closed loop. For example
the energy the charge gains passing though a battery must all be lost as heat in the
resistor in the rest of the loop.

To solve for the currents and voltages in a circuit or network, using Kirchoff’s
laws, we must first identify and label all the voltage sources and voltage drops in
the circuit. We then draw an arrow for a current direction in each branch of the cir-
cuit and define a current symbol such as I for that current. It is useful to draw the
current arrows in the direction the current actually flows in the circuit; if this is
done, the numerical value obtained for the current at the end of the calculation will
turn out to be positive. However, if we guessed wrong as to the current direction,
the numerical value obtained for the current will be negative but of the same magni-
tude as if we guessed the current direction correctly. It should also be emphasized

V R

I
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that once the current directions are chosen, the polarities of the voltage drops are
fixed.

Network analysis is the method of calculating voltages and currents in a circuit.
There are basically three methods we will discuss, and only experience will enable
you to choose the easiest method for a given situation. In the following paragraphs,
a branch is simply one path or wire through which one current can flow, a loop is a
closed path in the circuit (an electron can flow around any loop and return to its
starting point without leaving the actual circuit), and a junction or node is a point in
a circuit where three or more wires come in contact together. In all three methods
we must have a clear circuit diagram with all the voltages and currents clearly
defined.

The Branch Method

In this method we define the current in each of n branches of the circuit. Then we
can write a KCL equation at each junction and a KVL equation for each closed loop
in the circuit. However, a little thought will show that such a procedure applied to
each junction and each closed loop will produce a number of nonindependent equa-
tions; that is, we might obtain five equations in three unknowns. Obviously, we
wish to obtain n independent equations to solve for the n unknown currents.

It can be shown that if there are k junctions in the circuit, there are only k − 1
independent KCL equations. For example if there are four junctions, there are three
independent equations. It can also be shown that there are only n − (k − 1) indepen-
dent KVL equations. If there are three branches and two junctions there are only
two independent loops. Totaling the number of independent equations (KCL and
KVL) is (k − 1) + n − (k − 1) = n. We can solve these n equations for the n unknown
currents. The only constraint in selecting independent equations is that each current
must appear in at least one KCL junction equation and in at least one KVL loop
equation.

As an example of the branch method, let us solve for the currents and voltages
in the circuit of Fig 1.12. In this problem all the voltages and resistances are known.
First we define the three currents in the three branches and draw the arrows to mark
the current directions. Note that current I1 flows through V1, R1, and R4. The
ground connection is ignored for the purposes of the branch since it is not needed to
connect to another ground. The other two currents each flow through a single resis-
tor.
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FIGURE 1.12. Circuit problem using branch currents.

For this circuit there are two junctions, B and C, so k = 2, so there is k − 1 = 1
independent KCL equation. The KCL says that the total current entering a junction
equals the total current leaving the junction. At junction B we have

(1.19)

This equation uses all three branch currents I1, I2, and I3 so we can use this equation
for our analysis.

There are n = 3 branch currents, and k = 2 junctions, so there are n − ( k − 1 ) =
2 independent KVL equations. The KVL says that the sum of voltage increases
equals the sum of voltage drops around one loop. We can obtain one KVL equation
by starting at G, which is ground (0 V), and going around the circuit clockwise
through R2, getting

(1.20)

Another KVL equation can be found by starting at G and going around clockwise
through R3, getting

(1.21)

V1

R1

I1
I2 I3

R4

R2 R3

3 KΩ

5 KΩ

1 KΩ 2 KΩ
24 V

B

C
G

A

I1 I2 I3+=

V1 R1I1 R2I2 R4I1+ +=

V1 R1I1 R3I3 R4I1+ +=
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Since all three currents appear in one or the other of these two KVL equations they
can be used for our analysis.

Substituting (1.19) for I1 in (1.20) and in (1.21) immediately gives us two
equations in the two unknowns I2 and I3.

(1.22)

(1.23)

And now (1.22) can be solved for I3 and substituted into (1.23).

(1.24)

This equation can finally be solved for I2, then used to find I3 from (1.23) and I1
from (1.19).

(1.25)

(1.26)

(1.27)

Note that no specific values have been placed into the equations up to this point.
This greatly helps avoid errors in arithmetic. Finally we can insert the given values
for resistors and batteries in the circuit, and find that I1 = 2.77 mA, I2 = 1.85 mA
and I3 = 0.92 mA.

We can calculate the voltages at points B and C by using Ohm’s law and the
values for the branch currents. Starting from ground at 0 V, VC = +I1R4 = (2.77
mA)(5 KΩ) = 13.85 V. Moving from G to A to B, VB = V1 - I1R1 = 24 V - (2.77
mA)(3 KΩ) = 15.7 V.

V1 R1 I2 I3+( ) R2I2 R4 I2 I3+( )+ + R1 R2 R4+ +( )I2 R1 R4+( )I3+= =

V1 R1 I2 I3+( ) R3I3 R4 I2 I3+( )+ + R1 R4+( )I2 R1 R3 R4+ +( )I3+= =

V1 R1 R4+( )I2 R1 R3 R4+ +( )
V1 R1 R2 R4+ +( )I2–

R1 R4+
---------------------------------------------------- 
 +=

I2 V1

R3

R1R2 R1R3 R2R3 R2R4 R3R4+ + + +
--------------------------------------------------------------------------------------- 
 =

I3
V1 R1 R4+( )I2–

R1 R3 R4+ +
--------------------------------------- V1

R2

R1R2 R1R3 R2R3 R2R4 R3R4+ + + +
--------------------------------------------------------------------------------------- 
 = =

I1 V1

R2 R3+

R1R2 R1R3 R2R3 R2R4 R3R4+ + + +
--------------------------------------------------------------------------------------- 
 =
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The Loop Current Method

In this method one loop current is drawn for each closed loop of the circuit, as
shown in Fig. 1.13. Note that this is the same circuit we used in the example for the
branch method. It is convenient to draw all the loop currents going clockwise. Also,
the currents in the loop method are not necessarily the same as the currents in the
branch method.

FIGURE 1.13. Circuit problem using loop currents.

Notice that a loop current, by definition, always flows through a junction, so
the KCL is automatically satisfied. Unlike the branch method, we write only the
KVL equations, and we need write only one KVL equation for each loop. We will
always have an equal number of KVL equations and loop currents, so we can solve
for the loop currents.

In writing the KVL equations, notice that we must always use the total current
flowing through a resistance to calculate the voltage drop across that resistance. For
this example there are two currents flowing through R2 so the voltage drop from B
to C is (I1 - I2)R2. It is very important to keep track of the direction of the current
when calculating the voltage changes.

The two KVL equations are

(1.28)

V1

R1

I1 I2

R4

R2 R3

3 KΩ

5 KΩ

1 KΩ 2 KΩ
24 V

B

C
G

A

V1 R1I1 R2 I1 I2–( ) R4I1+ +=
Laboratory Electronics 27



Direct Current Circuits

28

D
R

A
F
T

(1.29)

In the loop used for (1.29) there was no voltage source, and the direction of the loop
through R2 was opposite to the direction of the loop through that resistor in (1.28).
Solving (1.29) for I2 and substituting that value into (1.28),

(1.30)

Finally we find for the two loop currents

(1.31)

(1.32)

These are the same results found in the branch method, where I1 and I2 in this loop
method are respectively the same as I1 and I3 in the branch method.

The Nodal Method

In this method the voltages are the unknowns, and the KCL is written for each junc-
tion in terms of voltages and resistances. For this method, the number of equations
equals the number of independent junctions ( k - 1 ), where k is the total number of
junctions. Currents are drawn with directions as in the branch method.

Again we’ll use the circuit of Fig. 1.13 for our example. There are two junc-
tions: B and C. We therefore obtain one independent KCL equation in terms of the
voltages. Let VB and VC be the voltages at junctions B and C, respectively. The
KCL at B is I1 + I2 = I3, or, in terms of voltages,

(1.33)

The voltage VC = I1R4 = (V1 - VB)R4/R1. So (1.33) can be rewritten to eliminate VC.

0 R2 I2 I1–( ) R3I2+=

V1 R1I1 R2 I1
R2

R2 R3+
------------------I1– 

  R4I1+ + R1

R2R3

R2 R3+
------------------ R4+ + 

  I1= =

I1
V1

R1

R2R3

R2 R3+
------------------ R4+ +

------------------------------------------- V1

R2 R3+

R1R2 R1R3 R2R3 R2R4 R3R4+ + + +
--------------------------------------------------------------------------------------- 
 = =

I2
R2

R2 R3+
------------------ 
  I1 V1

R2

R1R2 R1R3 R2R3 R2R4 R3R4+ + + +
--------------------------------------------------------------------------------------- 
 = =

V1 VB–

R1
------------------

VB VC–

R2
-------------------

VB VC–

R3
-------------------+=
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(1.34)

This equation can be solved for VB,

(1.35)

And finally we can return to I1,

(1.36)

Which matches the result from the branch method.

Notice that we solved for the currents by using Ohm’s law. The algebra is often
simplified by using the conductance G instead of resistance: G1 = 1/R1, etc. The
nodal method is useful when the total number of junctions is less than the number
of loops. Then there will be fewer nodal equation than loop equations.

1.9 RESISTOR NETWORKS

Many problems in network analysis can be simplified before applying a particular
method to solve the problem. In many cases a connected set of resistors, power
sources, and other components can be replaced by a single equivalent component.

If two resistors are connected in series, they are connected end-to-end so that
the same current flows through each of them, as in Fig. 1.14(a). The effective resis-
tance of the two resistors can be found from Ohm’s law.

(1.37)

The total effective resistance is simply the sum of the two individual resistances.
Thus a 1 KΩ resistor and a 3 KΩ resistor in series act like a single 4 KΩ resistor.
This rule can be extended to N resistors in series, in which case the total effective
resistance is equal to the sum of all the N individual resistances.

V1 VB–
R1

------------------
VB

R2
------

V1 VB–( )R4

R1R2
-----------------------------–

VB

R3
------

V1 VB–( )R4

R1R3
-----------------------------–+=

VB V1

R2R3 R3R4 R2R4+ +
R1R3 R3R4 R1R2 R2R4 R2R3+ + + +
--------------------------------------------------------------------------------------- 
 =

I1
V1 VB–

R1
------------------ V1

R2 R3+

R1R3 R3R4 R1R2 R2R4 R2R3+ + + +
--------------------------------------------------------------------------------------- 
 = =

Reff

VA VC–
I

-------------------
VA VB–

I
------------------

VB VC–
I

-------------------+ R1 R2+= = =
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(1.38)

FIGURE 1.14. Two resistors in series.

Consider the same problem using a one loop application of Kirchoff’s law in
Fig. 1.14(b). If there is an equivalent resistor, Reff, then the current I through the cir-
cuit will be the same whether the loop has the two resistors, R1 and R2 or a single
resistor, Reff. The loop equation for two resistors is

(1.39)

And for the single equivalent resistor

(1.40)

Combining these two equations again gives the result for a series resistor (1.37).

Rtotal R1 R2 … RN+ + +=

R1 R2

B CA
I

(a)

V1

R1

I

(b)

R2

B

G

A

V1 R1I R2I+ R1 R2+( )I= =

V1 ReffI=
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If two resistors are connected in parallel or side by side as in Fig. 1.15(a) the
same voltage appears across each one. The effective resistance is given by splitting
the current into two parts:

(1.41)

If we have N resistors connected in parallel, then

(1.42)

FIGURE 1.15. Two resistors in parallel.

Now consider the circuit using a two loop application of Kirchoff’s law in Fig.
1.15(b). If there is an equivalent resistor, Reff, then the current I1 through the circuit

Reff

VA VB–

I
------------------

VA VB–

VA VB–
R1

------------------
VA VB–

R2
------------------+

--------------------------------------------
1

1
R1
-----

1
R2
-----+

------------------
R1R2

R1 R2+
------------------= = = =

Reff
1

1
R1
-----

1
R2
----- … 1

RN
------+ + +

--------------------------------------------=

R1

R2

BAI

(a)

V1
R1 R2I2I1

(b)
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will be the same whether the loop has the two resistors, R1 and R2 or a single resis-
tor, Reff. The loop equations are

(1.43)

(1.44)

And for the single equivalent resistor

(1.45)

Combining these three equations gives the result for a parallel resistor (1.42).

The use of series and parallel equivalent resistors can be extended to an arbi-
trary network. In Fig. 1.16(a) four resistors are arranged with some in parallel and
some in serial configurations. To reduce this look for one pair that makes either a
serial or parallel connection. Here R3 and R4 are in series and can be replaced by
R34 = R3 + R4 as shown in Fig. 1.16(b).

In Fig. 1.16(b) we now see resistors R2 and R34 in parallel. Their parallel resis-
tance, R234, is

(1.46)

That substitution is made in Fig. 1.16(c). The final substitution is to replace R1 and
R234 with their equivalent.

(1.47)

V1 R1I1 R1I2–=

0 R1I2 R1I1– R2I2+=

V1 ReffI1=

R234

R2R34

R2 R34+
--------------------

R2 R3 R4+( )
R2 R3 R4+ +
------------------------------= =

Req R1

R2 R3 R4+( )
R2 R3 R4+ +
------------------------------+=
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FIGURE 1.16. Simplification of a resistor network.

Voltage Dividers

Let’s look at the voltage at point B in Fig. 1.14(b). We can find it from (1.39)
and use Ohm’s law from ground at point G.

R1

R2

R3

R4

(a)

R1

R2 R34

(b)

R1

R234

(c)
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(1.48)

The value of VB is always a fraction of V1 that depends on the values of the resis-
tors. This type of circuit where the resistors create a voltage that is a fraction of the
initial voltage is called a voltage divider. This a very useful combination to spot in a
circuit, because the voltage divider is perhaps the most common circuit combina-
tion!

For example, we often wish to reduce a power supply voltage to a smaller
value. In Fig. 1.17 we have a 20 V battery and we would like to supply −4 V to a
load resistor RL. If RL is unconnected, forming an open circuit, I = V1 / (R1 + R2) =
1 mA, and the voltage at A is set by the voltage divider VA = −V1R2 / (R1 + R2) =
−4 V. Note that the battery has its positive terminal grounded and A is negative with
respect to G because the current flows from G towards A.

FIGURE 1.17. Voltage divider.

As a real circuit application of a voltage divider, there are two things to keep in
mind. First, keep the total current drawn from the battery low to ensure reasonably
long battery life. Second, realize that any current drawn from terminal may greatly

VB R2I
R2

R1 R2+
------------------ 
 V1= =

V1

R1

I

I - IL

IL

R2 RL

16 KΩ

4 KΩ

20 V

G

A
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affect the voltage at A. In Fig 1.17 the load RL is in parallel with R2, so VA is not a
simple voltage divider and is given by

(1.49)

For example, if RL = 1 KΩ, then by inserting the values, the parallel resistance of R2

and RL is 0.8 KΩ and the voltage at the load is VA = −0.95 V. This is substantially
less than the designed value of −4 V, and we say that the 1 KΩ resistor has loaded
the voltage divider.

Similarly, any change in RL will cause VA to vary. This variation can be mini-
mized by making R2 much less than RL. This is equivalent to making the current I
through the divider much larger than the current IL through the load. If this is true in
the divider any change in RL will have minimal effect on the voltage VA. Such a
divider is said to be stiff. Note that a stiff divider can use a lot of current compared
to the load and may be wasteful if the battery has limited power or lifetime.

1.10 EQUIVALENT CIRCUITS

In the loop method of network analysis we saw that two loop currents could be
treated independently and then summed to get the correct current in a branch. This
is an example of the superposition theorem which applies to any linear circuit. A
linear circuit is one in which all the KVL equations are mathematically linear in the
currents and the voltage. This requires that the resistance and voltage of the circuit
elements are independent of the current, and there are no terms in the equation con-
taining products or quotients like V1V2 or V1/V2. All dc circuits containing only bat-
teries and resistances are linear. In general, all circuits are linear when the voltages
and currents are relatively small; they become nonlinear for larger currents and
voltages.

For any linear circuit containing more than one voltage source, the superposi-
tion theorem states that the total current in any part of the circuit equals the alge-
braic sum of the currents produced by each source separately. To calculate the
current due to any one particular source, replace all the other voltage sources by
short circuits and all other current sources by open circuits.

VA

R2 RL||( )
R1 R2 RL||( )+
---------------------------------- V1

R2RL

R2 RL+
------------------

R1

R2RL

R2 RL+
------------------+

------------------------------- V1= =
Laboratory Electronics 35



Direct Current Circuits

36

D
R

A
F
T

FIGURE 1.18. Superposition theorem problem.
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In the circuit of Fig 1.18(a), let us use the superposition theorem to calculate
the current I through R1. The current through R1 due to V1 alone is obtained by
shorting out V2, as shown in Fig. 1.18(b), and

(1.50)

The current through R2 due to V2 alone is obtained by shorting out V1, as shown in
Fig. 1.18(c):

(1.51)

and the current Ix through R1 is then

(1.52)

By the superposition theorem the current through R1 is just I = I1 - Ix or

(1.53)

This result could be obtained from a Kirchoff analysis with considerably more
effort.

V-I Curves

One the requirements of the superposition theorem is that the circuit elements be
linear. It is very useful to look at the current through a circuit element or connected
group of circuit elements compared to the voltage through the same circuit ele-
ments. Typically the voltage is plotted on the x-axis of the graph and the current is
plotted on the y-axis. Linear devices and circuits will appear as straight lines on
these voltage-current (V-I) graphs.

I1
V1

R1 R2 R3||( )+
----------------------------------=

I2
V2

R2 R1 R3||( )+
----------------------------------=

Ix
V2

R2 R1 R3||( )+
---------------------------------- 
  R3

R1 R3+
------------------ 
 =

I
V1

R1 R2 R3||( )+
----------------------------------

V2

R2 R1 R3||( )+
---------------------------------- 
 –

R3

R1 R3+
------------------ 
 =
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FIGURE 1.19. Voltage-current curves: (a) resistor, (b) voltage source, (c) current
source, (d) battery and resistor in series.

A resistor, or any device that strictly obeys Ohm’s law as in Fig. 1.19(a) will
appear on a V-I graph as a straight line with a slope of 1/R = I/V. An ideal voltage
source produces the same voltage regardless of the current drawn and the V-I graph
will be a vertical line as shown in Fig. 1.19(b) with an x-intercept at the nominal
voltage V0. An ideal current source produces the same current regardless of the
voltage across its terminals and the V-I graph will be a horizontal line as shown in
Fig. 1.19(c) with a y-intercept at the nominal current I0.

Consider the voltage-current relationship for a battery and resistor in series
such as in Fig. 1.9 from Section 1.7. This is the same relationship that is found with
a real battery with internal resistance. If there is no load, then the circuit is open and
there is no current and the voltage between the open terminals would be V0. Once a
load is placed on the circuit there will be a voltage drop due to the resistor r equal to
Ir. The expression for voltage as a function of current is

(1.54)

or expressed as current as a function of voltage

(1.55)

V

I

I = V/R

V

I

V = V0

V

I

I = I0

V

I

I = V0/R - V/R

(a) (b)

(c) (d)

V V0 Ir–=

I
V0

r
-----

V
r
---–=
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This can be graphed as a straight line with y-intercept V0/r and slope -1/r as shown
in Fig. 1.19(d). Graphically we see that circuits with resistors and power sources
are linear − their V-I curves are straight lines.

In a formal sense a battery has a negative resistance because the battery gives
energy to the charge, making V1 greater than V2; but this occurs because chemical
energy is converted into electrical energy in a battery. Some circuit elements are
said to have negative resistance because the slope is negative, but this is not the real
resistance. This rate of change of voltage with respect to current is defined as
dynamic, or ac, resistance. A circuit for which the V-I curve is not a straight line has
non-linear resistance.

Thevenin’s Theorem

Thevenin’s theorem is useful for analyzing many circuits. The theorem states that
any combination of batteries and resistances with two terminals is electrically
equivalent to an ideal battery of voltage e in series with one resistance r, as shown
in Fig 1.20. This a direct result of the superposition theorem, and the same require-
ments for that theorem apply to Thevenin’s theorem.

FIGURE 1.20. Thevenin equivalence circuit.

Note that an ideal battery has a consistent voltage regardless of the rest of the
circuit, a resistor’s value does not depend on current, and all the Kirchoff voltage
loop equations for linear circuit elements are linear. Thus for two points A and B in
the circuit, the current I flowing out of A (to the “outside world”) must be linearly

e
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B’

A

B

ANY COMBINATION
OF BATTERIES AND
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related to the voltage difference VAB. Such a linear relationship, of course, yields
straight-line plot of VAB versus I of the form

(1.56)

But (1.56) is precisely the equation for VA’B’ of the Thevenin equivalent circuit of
Fig 1.20 that we saw in (1.54).

We can now look at both (1.56) and the V-I graph in Fig 1.19(d) and see that
the Thevenin equivalent voltage e is the open circuit voltage VAB measured when
no current flows into or out of A and B. It also follows that the Thevenin resistance
r is given by

(1.57)

Once we obtain the linear relationship between VAB and I, both e and r are easily
determined. Any method that determines the graph in Fig. 1.19(d) will uniquely
determine e and r. For the equivalent circuit, terminals A’ and B’ will act electri-
cally exactly like terminals A and B of the actual circuit.

Theoretically speaking, e is the open circuit voltage measured when RL is infi-
nite. If the internal voltages and resistances are known, this can be determined
through Kirchoff’s laws or the network analysis techniques of Section 1.8. The
equivalent resistance r is also the open circuit voltage VAB divided by the short-cir-
cuit current Isc, which is the current flowing from terminals A and B when they are
shorted together. A useful way to calculate r is to consider the same circuit, but
short out all batteries - replace them with wires. The resistance r is then the total net
resistance between output terminals A and B. However, this method of shorting out
the batteries to determine r is appropriate only for constant voltage sources such as
batteries.

In practice, we can use measuring instruments to determine the voltage-current
relationship for a circuit, even if we cannot calculate the behavior by knowing the
individual component values. It is easy and safe to measure the open-circuit voltage
to determine e. However, it is often disastrous (producing sparks, smoke, vile
odors, destruction of the circuit, and embarrassment) actually to short terminals A
and B to determine r. A better way to determine r experimentally is to measure the
voltage VAB between the two circuit terminals for a known load resistance RL con-
nected between A and B. The r is given again by (1.57).

VAB e Ir–=

r
e VAB–

I
------------------=
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FIGURE 1.21. Thevenin equivalent circuit problem.

Let us consider the Thevenin equivalent circuit for the circuit of Fig. 1.21(a)
which was also the circuit that appeared in Section 1.8. We found there that the cur-
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rent through the 2 KΩ resistor was 0.92 mA, so the open circuit voltage VAB =
(0.92 mA)(2 KΩ) = 1.84 V. The short circuit voltage is found by connecting a wire
from A to B and then finding the current through that wire. For Fig 1.21(b) that
becomes a one loop circuit with V1, R1, and R4 in series. The current Isc = V1/(R1 +
R4) = 3 mA. By division r = (1.84 V)/(3 mA) = 610 Ω. If instead we short out the
battery V1 as in Fig. 1.21(c) then calculate the equivalent resistance we get 610 Ω
just as we did by finding the short circuit current.

Norton’s Theorem

Norton’s theorem simply states that any combination of batteries and resistors with
two terminals is electrically equivalent to an ideal current source in parallel with a
resistance, as shown in Fig 1.22. Remember from Section 1.7, any real current
source can be represented by an ideal current source i in parallel with a resistance r,
so this is an example of Norton’s theorem. The equivalent current is just the short
circuit current Isc found in the same way as we found it for the Thevenin equivalent
circuit. The equivalent resistance is the same as the equivalent resistance of the
Thevenin equivalent circuit and can be found the same way by finding the open cir-
cuit voltage VAB, then r = VAB/Isc.

FIGURE 1.22. Norton equivalence circuit.

We emphasize that the Thevenin equivalent is just as good as the Norton equiv-
alent, and vice versa. Each is electrically equivalent to the original circuit being
analyzed and to each other. Which equivalent circuit you use is a matter of taste and
convenience, although we will see that there is a tendency to use the current equiv-
alent circuit for certain types of circuits based on industry usage.
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