EDN

Boost converter generates three analog rails

tim Herklots, Maxim Integrated Products Ltd, Theale, Berkshire, UK

The standard boost converter in Figure 1 uses not only IC_{1}, $\mathrm{C}_{1}, \mathrm{~L}_{1}, \mathrm{D}_{1}$, and C_{2} to generate a main 5 V output, but also additional small, low-cost components to provide two auxiliary supply rails of 10 and -5 V . These auxiliary outputs are useful for analog circuitry in small handheld instruments, which often require supply voltages greater than the signal range. Input voltages of 0.8 to 5.5 V , which is equivalent to voltages from a battery pack of one to three cells, sustain the main regulated output of $5 \mathrm{~V} \pm 2 \%$. With an input of 1.8 V from two flat cells, for instance, and with the other rails unloaded, the circuit can produce 25 mA with 80 to 90% efficiency.
The converter's LX switching node drives low-cost, discrete charge pumps via "flying capacitors" C_{3} and C_{6} to create the -5 V and 10 V outputs. The LX node switches between 0 V and a level-one diode drop above the 5 V rail, so the charge pumps' drive voltage is reasonably well-regulated. Moreover, the drop across D_{1} roughly compensates for diode drops in the two charge-pump outputs. IC $_{1}$'s internal control scheme also assists in regulating the auxiliary outputs. This IC's current-limited, minimum-off-time, pulse-frequency modulation constantly adapts its switching frequency to the net load current; the frequency increases when the load increases, producing a greater transfer of energy via the flying capacitors. The result is a type of pseudoregulation for the charge-pump outputs.

These analog supply rails can drive precision op amps,
such as the MAX400 and OP-07, whose input common-mode-rejection and output-range specifications are 2 to 3 V within the supply rails. Thus, the rails are good enough if the -5 V output is less than -3 V and the 10 V output is more than 8V. Accordingly, the component choices in Figure 1, such as the lossy RC output filters and silicon signal diodes in place of Schottky diodes, provide for minimal cost and ripple rather than maximum regulation. The $4.7-\mu \mathrm{F}$ capacitors, C_{4} and C_{7}, can be high-ESR, commodity, multilayerceramic types with 16 V ratings, a 1206 case, and a Y5V dielectric, such as the 1206YG475ZAT2A from AVX Corp (www.avxcorp.com).

The output ripple varies with the supply voltage and output load. Operating with an input voltage of 1.8 V , the circuit produces ripple amplitudes over the load of 2 to 10 mV p-p for the 10 V rail and 15 to 30 mV p-p for the -5 V rail. By increasing C_{5} and C_{8} to $2.2 \mu \mathrm{~F}$, you can reduce these ripple levels to 1 and 5 mV , respectively.

With no load on the auxiliary rails, the 5 V output's maximum available load current rises with input supply voltage (Figure 2a). You can increase this available output power by replacing D_{1} with a lower loss Schottky diode. At an input of 1.8 V , the output power available for the three rails (loaded with 10 mA at $5 \mathrm{~V}, 5 \mathrm{~mA}$ at 10 V , and 5 mA at -5 V) is somewhat less than 125 mA ; with a $5-\mathrm{mA}$ load, the 10 V and -5 V outputs are approximately 9.75 and -3.7 V , respectively (Figure 2b). A 2.7 V input based on three flat cells yields

Adding external charge pumps to this $\mathbf{5 V}$ boost converter produces auxiliary analog rails of 10 and $\mathbf{- 5 V}$.
around 275 mW .
The MAX858 operates with peak inductor currents of 125 mA . If you need more current, you can replace this IC with related parts that have 500 mA and 1 A ratings. Note that these changes require different passive components; the inductor and main output diode ratings must match the inductor's peak current. The charge pumps can remain the same if their output currents don't change much.

You can also retain the cheap, common, commodity dual diodes $\mathrm{D}_{1}, \mathrm{D}_{2}$, and D_{3}, but detail specifications vary, so look carefully at data sheets for the part you actually use. For example, the BAV70's dc forward current, I_{F}, and peak forward surge current, $\mathrm{I}_{\mathrm{FSM}}$ for 1 $\mu \mathrm{sec}$, differ among manufacturers. For the Motorola (www.motorola.com) part, $I_{\mathrm{F}}=200 \mathrm{~mA}$, and $\mathrm{I}_{\mathrm{FSM}}=500 \mathrm{~mA}$. For National Semiconductor (www. national.com), $\mathrm{I}_{\mathrm{F}}=600 \mathrm{~mA}$, and $\mathrm{I}_{\mathrm{FSM}}=2 \mathrm{~A}$. For Philips (www.philips.com), $\mathrm{I}_{\mathrm{F}}=125$ mA , and $\mathrm{I}_{\mathrm{FSM}}=4 \mathrm{~A}$, and for Vishay-Siliconix (www.siliconix.com), $\mathrm{I}_{\mathrm{F}}=250 \mathrm{~mA}$, and $\mathrm{I}_{\mathrm{FSM}}=4.5 \mathrm{~A}$. This caution is advisable in all second-source considerations. (DI \#2200)

EDN
To Vote For This Design, Circle No. 514

With auxiliary rails unloaded, the 5 V output's maximum available load current rises with input supply voltage (a). The auxiliary-output voltage levels depend on the load current (b).

Automatic-exposure scheme uses CCD shutter

Giovanni Romeo and Sandro Rao, Istituto Nazionale di Geofisica, Rome, Italy

This application follows the Design Idea, "Peak detector maximizes CCD-sensor range" (EDN, Aug 15, 1996). Its aim was to optimize the performance of an A/D converter used to digitize a linear CCD sensor's analog output. The method involved stretching the upper reference of the flash ADC for the highest lit pixel in the array. The method works well, but does not obtain the best performance from the CCD, which can saturate for overexposure or can produce noise for underexposure. Figure 1 shows a better method that you can use with CCD sensors that provide a shutter facility. The shutter signal in a modern CCD array (such as the Sony ILX703A) removes the electrical charges the light produces during the exposure. Thus, the time between the shutter signal and the data reading is the exposure time. The
circuit in Figure 1 simply moves the shutter pulse between two subsequent readout gates.

The circuit digitally compares the ADC's output with the desired level (near the maximum ADC output). If the output exceeds the threshold level, the up/down counter increments; otherwise, it decrements. The magnitude comparator compares the up/down counter's register contents with the pixel-counter data, and, when the data exceeds the contents, the shutter signal activates. The system requires an average settling time of (number of pixels) $/(2 \times$ pixel time $)$ and, in the steady-state condition, oscillates with a period of one pixel time. Our application required obtaining the shape of the light distribution, neglecting the absolute illumination information. You can use the contents of the
up/down counter's register as a scale factor, when you need to measure the absolute illumination.
Figure 2 shows the waveforms in the system. A 1016 PLD generates the signals to control the system and the CCD. Listing 1 gives the Abel program for the 1016. You can download the file from $E D N$'s Web site www.ednmag.com.

To adjust the automatic-exposure system, set constant B near the maximum ADC level, tuned to match the maximum unsaturated CCD output.

The shutter signal keeps the sensor empty after asserting the readout gate. The exposure begins just in time to keep the CCD's output at a level that uses the ADC's entire dynamic range.

At the registered-user area, go into the Software Center to download the files from DI-SIG, \#2213. You can better understand the CCD's operation by referring to Sony's 1992 application note, "Linear Sensor Application Note." (DI \#2213) EDN

ABEL PROGRAM FOR AUTOMATIC-

 EXPOSURE PLDmeviss met

shat pracrackuy mock akatioky

coentes
cocrts
cot
cicter
crechor, anctac:
eleck
cor
TN1entisen
man
man
man

courct - [00Li:,000
Eqaations

Whet, [p11, Dob] = [P13, N0],

FF.D = cur,

ocumti.clk - - Coxil

Nan CrFor il than !
\rangle


```
|NSN--kNE
```

```
|NSN--kNE
```


Itrad

Low-power converter has galvanic isolation

Jose Carrasco, Universidad de Valencia, Spain

Certain low-power applications require a simple, low-cost, galvanically isolated power supply. Figure 1 shows a circuit that meets these requirements. The dc/dc converter provides a $12 \mathrm{~V}, 150-\mathrm{mW}$ output using only a few components and a small transformer. The input can come from any power source that supplies 14 to 18 V . The CD4049 forms an oscillator that operates at approximately 200 kHz (Figure 2). The asymmetry of the oscillator's waveform depends on the value of R. The voltage V_{s} in Figure 1 is proportional to the waveform's asymmetry.

You could also use the circuit as a dc/dc converter with unity transfer ratio by removing the regulator stage at the output. You can easily change the transfer ratio by varying the oscillator's duty cycle (by adjusting R). If you need to increase the output power, remember that in this configuration, the load current flowing through the transformer must be much lower than the magnetizing current. (DI \#2214) EDN

Figure 2

The symmetry of the waveforms of V_{D} and V_{p} in Figure 1 determines the value of \mathbf{V}_{s}.

A simple CMOS oscillator, an inexpensive transformer, and a few components form a low-cost, galvanically isolated dc/dc converter

EDN

Circuit protects against ac-line disturbances

Basilio Simoes, ISA, Coimbra, Portugal

The circuit in Figure 1 protects the ac line against disturbances. It operates by switching off the power supply upon detection of undervoltage or overvoltage conditions. The circuit thus protects refrigerators, washing machines, air conditioners, and other appliances from permanent damage that could accrue from working outside their specified power requirements. The problem assumes particular importance in underdeveloped countries or regions where the ac-supply network is incorrectly configured, and the voltage frequently drops to levels low enough to damage coils and motors. When the ac-line voltage returns to its nominal level, the circuit automatically resets a switch and reconnects the line voltage.

The input stage contains a voltage divider, which you can adjust with the $1-\mathrm{k} \Omega$ potentiometer. The circuit incorpo-
rates a rectifying diode and a $10-\mu \mathrm{F}$ storage capacitor that provides lowpass filtering to stabilize the ac-supply voltagecomparison level. You should adjust the potentiometer such that the normal condition of the ac supply, 220 V , corresponds to a 1.97 V voltage-comparison level. Three comparison voltages verify the ac-line status, using resistive voltage dividers. The voltages correspond to a 10%-undervoltage warning, a 20%-undervoltage failure level, and a 20\%-overvoltage failure level. These comparison voltages correspond to ac-supply voltages of 198, 176, and 264V, respectively. Three sections of the quad open-collector LM339 comparator convert these voltage thresholds to digital signals.

The 10%-undervoltage warning condition turns on a yellow LED. Failure conditions turn on a red LED and trigger

Avoid motor burnout, using this circuit that provides undervoltage warning signals and disconnects the line from the load for severe under- and overvoltage conditions.
the dual retriggerable monostable multivibrator, IC_{2}. The output of the first , $\mathrm{IC}_{2 A}$, is narrow and serves to define a time window that prevents sudden transient disturbances from triggering $\mathrm{IC}_{2 \mathrm{~B}}$. Consequently, if the ac-line voltage quickly returns to its nominal condition, the circuit does not disconnect the load. The output pulse width of the other monostable, which you can adjust via the $50-\mathrm{k} \Omega$ potentiometer, defines the time the load remains disconnected after the return of the nominal ac-line voltage.

An RC delay line ensures that when the second monostable triggers, the first one has already activated its Clear input. The fourth comparator of the LM339 produces a high-frequency square wave that continuously retriggers the monostable while the fault condition is present. To save
power from the regulated 5 V supply and to allow use of this circuit to protect high-current equipment, you should use an output relay whose coil control comes from the powersupply rail. A TIC206D triac, gated by the monostable, switches the relay coil. A green LED indicates that the acline level is normal and the relay's contact is closed. IC_{1}, a Harris HV-2405E offline regulator, supplies the regulated 5V. Because this circuit connects to the ac line, you should use an insulated enclosure, and take care in testing the circuit. (DI \#2215) EDN

To Vote For This Design, Circle No. 517

Fleapower circuit detects short circuits

W Dijkstra, Wallre, The Netherlands

Sometimes, the need arises for a short-circuit tester that supplies a low current to the device under test (DUT) and also uses voltages lower than 100 mV to prevent conduction of semiconductors. The circuit in Figure 1 meets these requirements. R_{1} limits the current in the DUT to 0.9 mA . The voltage on the DUT can not exceed the value set by the ratio $\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$. The NE5230 micropower op amp compares the voltage on R_{x} (representing the DUT) with the voltage at the
junction of R_{3} and R_{4}. You can adjust the op amp's supply current by trimming R_{5}; in this circuit, the current is 0.1 mA . If the value of R_{x} falls below 14Ω, the output of the op amp switches low and the LED illuminates. The circuit derives its power from a 1.5 V battery. IC_{1} converts the battery voltage to 5V. (DI \#2216)

EDN
To Vote For This Design, Circle No. 518

FIGURE 1

This short-circuit detector uses little power, and provides low currents and voltages to avoid damage to the device under

PLL-based converter controls light source

Massimo Gottardi, ITC-IRST, Trento, Italy

Using the circuit in Figure 1, you can digitally control the light intensity of a lamp. The control loop is based on a PLL, in which the VCO comprises a light-to-frequency converter (TSL220) coupled to a light source that derives its drive from a switching regulator (L4970A). The output of the phase/frequency comparator (4046) serves as the control voltage for the switching regulator. The control voltage is proportional to the frequency error between the reference frequency $\left(\mathrm{f}_{\text {REF }}\right)$ and the signal frequency (f_{IN}) coming from the light-to-frequency converter.

Changing the reference frequency regulates the voltage supplied to the lamp to force the output of the TSL220 to lock to $\mathrm{f}_{\text {REF }}$. The two resistors at the output of the 4046 provide an attenuation of 1000 to guarantee the loop stability. As an example, we used the L4970A to drive a 12 V , 50 W halogen lamp. The control loop operates over a frequency of dc to 500 kHz . To prevent the system from entering a positivefeedback condition, the maximum allowable value of $f_{\text {REF }}$ should not exceed the saturation frequency of the TSL220. This maximum value depends on the integrating capacitor used for the light-to-frequency converter and must not exceed 750 kHz . To prevent lamp damage, the $10-\mathrm{k} \Omega$ trim-

A PLL and a light-to-frequency converter allow you to digitally control the intensity of a lamp.

Relay driver saves substantial power

tim Herklots, Maxim Integrated Products, Southampton, UK

It is common practice to operate relays and solenoids at a reduced holding power once the mechanical actuation takes place. Relays are usually specified to pull in within 3 msec at 80% of the rated voltage and to release at 30% of the rated voltage. The circuit in Figure 1 drives as many as eight 12 V (120Ω coil) power relays, which memory-map into an 8 -bit μ P bus. An octal latch stores the relay status, where each bit of the 8 -bit word serves a separate relay ($0=$ off, $1=$ on). The latch's Select line latches data on the rising edge. Whenever the relay's status data changes, the relay's drive voltage rises to the full 12 V for 140 msec to ensure that the relay pulls in. A series zener diode then reduces the relay's drive voltage by 50% to reduce dissipation.

A ULN2803, an octal Darlington array with base resistors for direct logic interface, drives the relays. A useful feature
is the inclusion of eight inductive-load clamping diodes, internally connected between the Outx pins and the Com pin. Com thus connects to the relay-supply rail. The powersaving timing comes from IC_{1}, a micropower MAX810 processor supervisor powered by the normally high Select line. When the system processor writes to the IC_{2} latch, the supply to IC IC_{1} toggles for 200 nsec , causing IC_{1} to take its RST output high for 140 to $560 \mathrm{msec} . \mathrm{Q}_{1}$ operates as a gated current source, dragging current from Q_{2}, thereby shorting out D_{1}, a 5.6 V zener diode. Hence, the relays receive full bus power during the switching phase. After this period, Q_{2} turns off, and D_{1} drops the relay supply to the holding voltage. (DI \#2217)

EDN

To Vote For This Design, Circle No. 520

EDN Design Ideas

FIGURE 1

This power-saving circuit takes advantage of the large turn-on/turn-off hysteresis in electromechanical relays and solenoids.

