Batteries in a Portable World 2nd Ed.
       A Handbook on Rechargeable Batteries for Non-Engineers


<< Previous page   INDEX   Next page >>

The SLA should not be discharged beyond 1.75V per cell, nor can it be stored in a discharged state. The cells of a discharged SLA sulfate, a condition that renders the battery useless if left in that state for a few days.

The Li-ion typically discharges to 3.0V/cell. The spinel and coke versions can be discharged to 2.5V/cell. The lower end-of-discharge voltage gains a few extra percentage points. Since the equipment manufacturers cannot specify which battery type may be used, most equipment is designed for a three-volt cut-off.

Caution should be exercised not to discharge a lithium-based battery too low. Discharging a lithium-based battery below 2.5V may cut off the battery’s protection circuit. Not all chargers accommodate a recharge on batteries that have gone to sleep because of low voltage.

Some Li-ion batteries feature an ultra-low voltage cut-off that permanently disconnects the pack if a cell dips below 1.5V. This precaution prohibits recharge if a battery has dwelled in an illegal voltage state. A very deep discharge may cause the formation of copper shunt, which can lead to a partial or total electrical short. The same occurs if the cell is driven into negative polarity and is kept in that state for a while. A fully discharged battery should be charged at 0.1C. Charging a battery with a copper shunt at the 1C rate would cause excessive heat. Such a battery should be removed from service.

Discharging a battery too deeply is one problem; equipment that cuts off before the energy is consumed is another. Some portable devices are not properly tuned to harvest the optimal energy stored in a battery. Valuable energy may be left behind if the voltage cut-off-point is set too high.

Digital devices are especially demanding on a battery. Momentary pulsed loads cause a brief voltage drop, which may push the voltage into the cut-off region. Batteries with high internal resistance are particularly vulnerable to premature cut-off. If such a battery is removed from the equipment and discharged to the appropriate cut-off point with a battery analyzer on DC load, a high level of residual capacity can still be obtained.

Most rechargeable batteries prefer a partial rather than a full discharge. Repeated full discharge robs the battery of its capacity. The battery chemistry which is most affected by repeat deep discharge is lead acid. Additives to the deep-cycle version of the lead acid battery compensate for some of the cycling strain.

Similar to the lead acid battery, the Li-ion battery prefers shallow over repetitive deep discharge cycles. Up to 1000 cycles can be achieved if the battery is only partially discharged. Besides cycling, the performance of the Li-ion is also affected by aging. Capacity loss through aging is independent of use. However, in daily use, there is a combination of both.

The NiCd battery is least affected by repeated full discharge cycles. Several thousand charge/discharge cycles can be obtained with this battery system. This is the reason why the NiCd performs well on power tools and two-way radios that are in constant use. The NiMH is more delicate with respect to repeated deep cycling.

<< Previous page   INDEX   Next page >>

The original Batteries in a Portable World book was written by Isidor Buchmann and is Copyright © Cadex Electronics Inc. (www.cadex.com). All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system or translated into any language or computer language in any form or by any means without written permission of Cadex Electronics Inc., 22000 Fraserwood Way, Richmond, BC, V6W 1J6, Canada. Tel: 604-231-7777, Fax: 604-231-7755, Toll free (US & Canada) 1-800-565-5228 email: info@cadex.com The 300-page book is available from Cadex Electronics Inc. through book@cadex.com, tel. 604-231-7777 or most bookstores. For additional information on battery technology visit www.buchmann.ca.
This is an original HTML version of Batteries in a Portable World reproduced by permission.
Back to Hardware Guides
[HomePage] [Hardware Reviews] [Pinouts] [Circuits] [Guides] [Links] [News] [Forums] [Download] [Dictionary] [Utils] [Updates Log] [About] [Agreement] [Privacy] [Advertising] [Search] [Contact us]